
GUM Tree Calculator
Release 0.9.10

Measurement Standards Laboratory of New Zealand

Jul 22, 2016

CONTENTS

I License 1

1 License 3

II Getting started 5

2 Installation 7
2.1 Obtaining GTC . 7
2.2 Upgrading . 7
2.3 Installing . 7
2.4 Uninstalling . 9
2.5 Documentation . 9

3 Operation 11
3.1 The Command Prompt . 11
3.2 Explorer context menus . 14
3.3 The SciTE editor . 17

3.3.1 Help inside SciTE . 19

4 A quick tour 21
4.1 First steps . 21
4.2 Uncertain numbers . 22

4.2.1 Uncertain real numbers . 22
4.2.2 Uncertain complex numbers . 23

4.3 Programming . 25
4.3.1 Sequences . 25
4.3.2 Functions . 26
4.3.3 Strings and printing . 27
4.3.4 Operators . 28
4.3.5 Modules . 28
4.3.6 Errors . 29

III User Guide 31

5 Overview 33
5.1 Measurement errors and uncertainty . 33

5.1.1 Measurement functions . 33
5.2 Uncertain Numbers . 34

5.2.1 Elementary uncertain numbers . 34
5.2.2 Uncertain Number Attributes . 34
5.2.3 Uncertain numbers and measurement errors . 35

6 Examples 37
6.1 GUM Appendices . 37

i

6.1.1 Gauge block measurement (GUM H1) . 37
6.1.2 Resistance and reactance measurement (GUM H2) . 40
6.1.3 Calibration of a thermometer (GUM H3) . 42

6.2 EURACHEM / CITAC Guide Examples . 46
6.2.1 Preparation of a Calibration Standard (A1) . 46
6.2.2 Standardising a Sodium Hydroxide Solution (A2) . 47
6.2.3 An Acid/Base Titration (A3) . 49
6.2.4 Cadmium released from ceramic-ware (A5) . 52

6.3 Linear calibration . 57
6.3.1 Linear Calibration Equations . 57
6.3.2 Linear Regression Results . 62
6.3.3 Straight-line calibration functions . 63

6.4 RF and microwave problems . 69
6.4.1 Mismatch . 69
6.4.2 Equivalent reflection coefficient . 71
6.4.3 One-port vector network analyser calibration . 73

6.5 Working with Files . 78
6.5.1 Reading and Writing XLS files . 78
6.5.2 Reading and Writing XLSX files . 82
6.5.3 Reading and Writing CSV files . 84
6.5.4 Archive to a file . 85
6.5.5 Text File Input and Output . 87

7 Frequently Asked Questions 93
7.1 What is GTC? . 93
7.2 What does that funny symbol mean? . 94
7.3 How do I report a bug in GTC? . 94
7.4 Can I do a type-A analysis on a set of uncertain numbers? . 95
7.5 Can I use CSV (comma-separated value) files? . 96
7.6 Can I use .XLS spreadsheet files? . 96
7.7 Can I use .XLSX spreadsheet files? . 96
7.8 Can I use RTF (rich text format) files? . 96
7.9 How do I define an uncertain number with relative uncertainty? 96
7.10 Is there a simple way to chain GTC calculations? . 97
7.11 Why does the GTC window close before I can read anything? 97

IV Reference 99

8 GTC Modules 101
8.1 Core Functions and Classes . 101

8.1.1 Uncertain Number Types . 101
8.1.2 Core Functions . 107

8.2 Evaluating type-A uncertainty . 117
8.2.1 Sample estimates . 117
8.2.2 Correcting indications . 118
8.2.3 Least squares regression . 118
8.2.4 Merging uncertain components . 118
8.2.5 Module contents . 118

8.3 Evaluating type-B uncertainty . 129
8.3.1 Real-valued problems . 129
8.3.2 Complex-valued problems . 129
8.3.3 A table of distributions . 129
8.3.4 Module contents . 130

8.4 Reporting functions . 131
8.4.1 Reporting functions . 132
8.4.2 Coordinate changes . 132
8.4.3 Uncertainty functions . 132
8.4.4 Type functions . 132

ii

8.4.5 Module contents . 132
8.5 Linear algebra . 142

8.5.1 Classes . 142
8.5.2 Arithmetic operations . 142
8.5.3 Functions . 142
8.5.4 Array broadcasting . 142
8.5.5 Module contents . 143

8.6 Conversion between numbers and strings . 148
8.6.1 Loss of precision . 148
8.6.2 Functions . 148
8.6.3 Module contents . 148

8.7 Additional functions . 151
8.7.1 Coordinate transformation . 151
8.7.2 Implicit problems . 151
8.7.3 Utility functions . 151
8.7.4 Least-squares regression . 151
8.7.5 Module contents . 151

8.8 Storing uncertain numbers . 157
8.8.1 Class . 157
8.8.2 Functions . 157
8.8.3 Module contents . 158

8.9 Tools for validating uncertainty calculations . 159
8.9.1 Functions that create simple random error generators (real-valued) 159
8.9.2 Functions that generate estimates (real-valued) . 160
8.9.3 Functions that create random error generators (complex-valued) 160
8.9.4 Functions that generate estimates (complex-valued) . 160
8.9.5 Utility functions . 160
8.9.6 Module contents . 160

9 Other Topics 167
9.1 Windows command prompt syntax . 167

9.1.1 Interactive mode . 167
9.2 Windows environment variables . 167

9.2.1 The Windows user environment variable PATH . 168
9.2.2 The user’s environment variable GTC_LIB . 168
9.2.3 The user’s environment variable GTC_SCRIPTS . 168
9.2.4 Extension modules and packages . 168

9.3 Some comments about GTC regression functions . 168
9.3.1 Overview . 169
9.3.2 The type_a module regression functions . 169
9.3.3 The function module regression functions . 170

9.4 Change History . 171
9.4.1 Version 0.9.10 . 171
9.4.2 Version 0.9.9 . 172
9.4.3 Version 0.9.8 . 173
9.4.4 Version 0.9.7 . 173
9.4.5 Version 0.9.6 . 175
9.4.6 Version 0.9.5 . 176

Index 177

iii

iv

Part I

License

1

CHAPTER

ONE

LICENSE

End User License Agreement
==========================

This license agreement (the "Agreement") is entered into between you, as a
private person or a company (the "Licensee") and Callaghan Innovation, a Crown
agency of the New Zealand government, having its registered address at
69 Gracefield Road, Lower Hutt, New Zealand ("CI"). By installing,
copying or otherwise using all or any portion of the GUM Tree Calculator
you ('the Licensee') agree to be bound by the terms of the Agreement.
If you do not agree to the terms of this Agreement do not install or
use the Software Product.

The Software Product is protected by Copyright and other intellectual property
laws and treaties. CI reserves all of its rights in the Software Product that
are not expressly granted under the terms of this Agreement.

1. LICENSE

Subject to the terms of this Agreement, CI hereby grants to Licensee a non-
exclusive, non-transferable, non-sublicensable and limited license only to
install and use one copy of the Software Product.

2. DEFINITIONS

"Software Product" means (a) the GUM Tree Calculator included third party
software files and other information and (b) upgrades, updates and additions to
such provided to you by CI, to the extent not provided under a separate
agreement.

3. LIMITATIONS AND RESTRICTIONS

The following shall apply in addition to the limitations and restrictions set
forth elsewhere in this Agreement:

Licensee shall not modify, adapt, translate or create derivative works based
upon the Software Product. Licensee shall not reverse engineer, decompile,
disassemble or otherwise attempt to discover the source code of the Software
Product except to the extent permitted by law.

Licensee shall not use, distribute, rent, lease, disclose or license out the
Software Product to its own end users or third parties.

Licensee shall not transfer any of its rights under this Agreement without the
express written consent of CI.

Licensee shall ensure all processing performed by the Software Product is
initiated by a local human user only. The Software Product may not be used as
part of a Web application or other server software.

3

GUM Tree Calculator, Release 0.9.10

4. SUPPORT AND MAINTENANCE

E-mail support: CI will attempt to respond to technical questions made by the
Licensee by email within a reasonable period of time.

Upgrades: CI will attempt to distribute upgrades to the Software Product on a
regular basis. Installation and use of such upgrades will be governed by the
terms of this Agreement.

5. THIRD PARTY RIGHTS

Any software provided along with the Software Product that is supplied under the
terms of a separate license agreement is subject to the terms of that license
agreement. This license does not apply to those portions of the Software
Product. Copies of those third party licenses are included in all copies of the
Software Product.

6. PRIVACY

The Licensee grants CI the right to store contact details and other related
information in order for CI to contact the Licensee occasionally regarding the
Software Product. CI will not use contact details and other related information
for any other purpose.

7. TERM AND TERMINATION

The Agreement and the licensing rights provided to the Licensee shall continue
until terminated. Without prejudice to any other rights, CI may terminate the
Agreement if the Licensee fails to comply with the terms and conditions of this
Agreement.

8. NO WARRANTY

TO THE MAXIMUM EXTENT PERMITTED BY LAW, CI DISCLAIMS ANY WARRANTY FOR
THE SOFTWARE. THE SOFTWARE, THE SERVICES AND ANY RELATED DOCUMENTATION
IS PROVIDED ON AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND, WHETHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT OF THE RIGHTS OF THIRD PARTIES.

9. EXCLUSION

TO THE MAXIMUM EXTENT PERMITTED BY LAW, IN NO EVENT SHALL CI BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, PERSONAL
INJURY, LOSS OF PRIVACY OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OF OR INABILITY TO USE THE SOFTWARE EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

10. GOVERNING LAW

This Agreement shall be governed by and construed in accordance with New Zealand
law and shall be subject to the non-exclusive jurisdiction of the New Zealand
Courts.

4 Chapter 1. License

Part II

Getting started

5

CHAPTER

TWO

INSTALLATION

2.1 Obtaining GTC

GTC is available without charge from http://mst.irl.cri.nz. Registration is required and use of the tool is subject to
a non- exclusive, non-transferable and non-sublicensable limited end-user license agreement (License).

2.2 Upgrading

Before upgrading GTC on the computer, the previous version must be removed (see Uninstalling). Then follow
the installation instructions (see Installing).

Note:

• Prior to version 0.9.9, GTC was installed under Program files, or Program files (x86), in the
Windows file system (typically, C:\Program files (x86)\GTC).

• If you have one of these earlier versions, remove GTC (see Uninstalling) and copy any user-defined files to
a safe place, then delete the old GTC installation folder completely.

• After installing the new version of GTC, copy any user-defined files to an appropriate folder and update the
GTC_LIB environment variable if necessary (see Windows environment variables).

• By default, the installation creates a user lib folder under My GTC in the user’s home directory (typically,
e.g., C:\Users\user.name). If user-defined modules are copied here, there is no need to update the
GTC_LIB environment variable.

2.3 Installing

Run setup.exe to install the GUM Tree Calculator software.

7

http://mst.irl.cri.nz

GUM Tree Calculator, Release 0.9.10

Note:

• Installation is for a single user only (administrator rights are not required during installation).

• The software will be installed under the user’s AppData folder (for example,
C:\Users\users.name\AppData\Local\GTC)

• A user’s AppData folder is hidden in the Windows Explorer by default (this can be changed in the Windows
Explorer ‘Folder options’ settings).

• The user’s path environment variable is modified and options are added to the Windows Explorer Extended
Context Menu (see also Windows environment variables).

• A GTC entry is created in the Windows Start Menu. This contains shortcuts to the GTC command prompt
(see The Command Prompt), as well as help files and an editor (see The SciTE editor).

Several options in the installer software relate to the extended Windows Explorer context menu.

• The context menu items for the SciTE editor and SendTo for GTC can be installed.

• A user My GTC folder can be created, in which case a subfolder examples will be created, containg some
of the example files referred to in this manual, and a lib folder will be created and the path added to the
user’s GTC_LIB environment variable (see Windows environment variables) and a scripts folder will be
created and added to the user’s GTC_SCRIPTS environment variable.

• On Windows XP machines, an item that allows you to open a command window can be installed (in more
recent Windows versions, this is always there by default).

8 Chapter 2. Installation

GUM Tree Calculator, Release 0.9.10

2.4 Uninstalling

The Add / Remove Programs utility of the Windows Control Panel can be used to remove the software.

Alternatively, there is a link to uninstall.exe in the GTC Start Menu folder. The uninstall.exe program
is located in the installation folder (e.g., C:\Users\users.name\AppData\Local\GTC).

Note:

• Uninstalling GTC does not remove user-defined modules that have been stored under the installation folder
(e.g., in C:\Users\users.name\AppData\Local\GTC\lib), nor does it affect any user-made
changes to the environment variable GTC_LIB.

2.5 Documentation

Several forms of documentation are provided, which can all be accessed from shortcuts in the GTC group in the
Windows Start menu.

An on-line version of documentation is also available: http://www.uncertainnumbers.com/gtc/manual.

2.4. Uninstalling 9

http://www.uncertainnumbers.com/gtc/manual

GUM Tree Calculator, Release 0.9.10

10 Chapter 2. Installation

CHAPTER

THREE

OPERATION

• The Command Prompt

• Explorer context menus

• The SciTE editor

– Help inside SciTE

The GUM Tree Calculator (GTC.exe) can be activated from the Windows Command Prompt, or from the Win-
dows Explorer extended context menu.

The SciTE editor, with context sensitive syntax highlighting and help facilities, is also provided.

3.1 The Command Prompt

There are several ways to use GTC from the Windows command prompt (see also Windows command prompt
syntax).

1. When run without arguments, GTC enters an interactive mode.

For instance:

>>> print copyright
Copyright (c) 2014, Callaghan Innovation. All rights reserved.
>>> print version

11

GUM Tree Calculator, Release 0.9.10

0.9.9
>>> 2**16 + 1
65537

To close the command window, type:

quit()

or CTRL-Z (press the CTRL key and the Z key together) at the command prompt.

2. GTC can execute data-processing scripts passed to it on the command-line

For example, a file hello.py that contains:

msg = 'Hello'
print(msg)

can be executed by:

C:\> gtc hello.py
Hello

A series of scripts can be passed to GTC on a single command line, allowing calculations to be chained

3. After processing scripts, GTC can be placed in an interactive mode, allowing further commands to be entered
in by hand. The command-line switch -i selects interactive mode, e.g.:

C:\> gtc -i hello.py
Hello

>>> print(msg)
Hello
>>>

Help

Information about a particular GTC command, or module, can be obtained by typing help(subject) at the
command prompt 1.

1 When Help is displayed in the Command Prompt, some embedded formatting (mark-up) is visible. For example, :arg:, :type: and
:rtype: are formatting commands.

12 Chapter 3. Operation

GUM Tree Calculator, Release 0.9.10

If the help text is too long to fit in the command window, -- more -- will appear at the bottom. To display the
next line of text, press ENTER, or to display the next full page of text press the space bar.

3.1. The Command Prompt 13

GUM Tree Calculator, Release 0.9.10

To leave the Help facility, type: CTRL-C.

3.2 Explorer context menus

Two options are available in the ‘extended’ Explorer context menu. A GTC item has also been added to the
Explorer SendTo facility.

Extended context menu items for folders and files

Pressing the Shift key while right-clicking on a file or folder in the right-hand pane of the Windows Explorer
activates the ‘extended’ context menu.

1. When a folder is selected, the menu item Open command window here opens a Windows Command
Prompt in the folder (see command_line).

2. When a file with a .py extension is selected, the Edit with SciTE (GTC) option will appear (see
scite_editor).

14 Chapter 3. Operation

GUM Tree Calculator, Release 0.9.10

Context menu SendTo

The SendTo item in the Windows Explorer context menu passes a file to GTC for execution. After processing,
GTC will remain in interactive mode (see command_line).

3.2. Explorer context menus 15

GUM Tree Calculator, Release 0.9.10

16 Chapter 3. Operation

GUM Tree Calculator, Release 0.9.10

3.3 The SciTE editor

The SciTE editor can be activated in two ways:

• There is a link to SciTE in the GTC Start Menu.

• In the Windows Explorer, pressing SHIFT while right-clicking on a file with the .py extension activates a
context menu with an item Edit with SciTE (GTC).

SciTE editor will highlight the language syntax. It has a command-completion feature that provides information
about commands as they are typed in. The GTC and Python Help files are also integrated.

3.3. The SciTE editor 17

GUM Tree Calculator, Release 0.9.10

Executing scripts

SciTE can be used to write and execute scripts:

• The Go command (function key F5, or menu selection Tools | Go) executes the current file.

• The Interactive Mode (press CTRL-3 or select the Tools | Interactive Mode menu item)
executes the current file, leaving the interpreter in interactive mode. Commands can then be entered at the
>>> prompt in the SciTE output window.

To close an interactive session in SciTE, type:

quit()

(CTRL-Z does not work in SciTE)

Note: Commands can be typed at the >>> prompt in the SciTE output window. However, basic editing features
(such as a recalling previous command, command completion, etc) are not available.

In particular, it is impossible to correct any typing mistakes by pressing the Backspace key. Doing so erases
characters from the display, but it does not remove them from the editor’s buffer.

18 Chapter 3. Operation

GUM Tree Calculator, Release 0.9.10

3.3.1 Help inside SciTE

Pressing F1 opens the GTC help file.

Typing CTRL-4 opens the Python help file.

If a word is selected before pressing either of these help keys, the Help file index is automatically searched for a
reference to the word.

3.3. The SciTE editor 19

GUM Tree Calculator, Release 0.9.10

20 Chapter 3. Operation

CHAPTER

FOUR

A QUICK TOUR

• First steps

• Uncertain numbers

– Uncertain real numbers

– Uncertain complex numbers

• Programming

– Sequences

– Functions

– Strings and printing

– Operators

– Modules

– Errors

4.1 First steps

In the interactive mode, commands are typed at the prompt. For example,

>>> 3 + 3**2
12

or

>>> print "Hello world"
Hello world

Variables can be defined:

>>> name = "Mick"
>>> surname = "Dundee"
>>> print name,surname
Mick Dundee

>>> x = 4
>>> y = 2.5
>>> x * y
10.0

Iteration is possible:

21

GUM Tree Calculator, Release 0.9.10

>>> for i in range(10):
... print i, 2.5 * i
...
0 0.0
1 2.5
2 5.0
3 7.5
4 10.0
5 12.5
6 15.0
7 17.5
8 20.0
9 22.5

Note:

• The prompt changes from >>> to ... when a command is incomplete, allowing multi-line statements to
be entered, like the for statement above.

• Indentation delimits a block of instructions. In the for statement above, the second line is indented, making
it part of the for-loop body. Any number of lines can be indented to form a block of code.

Conditional statements also use blocks:

>>> data = 15
>>> if data > 10:
... print "big"
... else:
... print "small"
...
big

4.2 Uncertain numbers

• Uncertain real numbers

• Uncertain complex numbers

GTC uses an uncertain number to represent a value that is not precisely known.

Different types of uncertain number are used for real and complex values.

4.2.1 Uncertain real numbers

At least two pieces of information are needed to define an uncertain real number:

• a value (the estimate)

• a standard uncertainty (of the estimate).

For example, suppose the current flowing in an electrical circuit 𝐼 and the voltage across a circuit element 𝑉 have
been measured.

The estimates are 𝑉 ≈ 0.1 V and 𝐼 ≈ 15 mA, with standard uncertainties 𝑢(𝑉) = 1 mV and 𝑢(𝐼) = 0.5 mA,
respectively.

Uncertain numbers for 𝑉 and 𝐼 are defined using ureal

22 Chapter 4. A quick tour

GUM Tree Calculator, Release 0.9.10

>>> V = ureal(0.1,1E-3)
>>> I = ureal(15E-3,0.5E-3)

The resistance can be calculated using Ohm’s law

>>> R = V/I

Uncertain number attributes

Information about the value (estimate) and the associated uncertainty can be obtained from an uncertain number
in different ways.

• Typing the name of an uncertain number at the prompt displays its Python representation:

>>> R
ureal(6.666666666666667, 0.23200681130912335, inf)

The value is 6.666666666666667 and the standard uncertainty 0.23200681130912335 (inf sig-
nifies infinite degrees-of-freedom, see note below).

• Attributes, or corresponding functions, can be used to obtain the value, or the uncertainty, etc,

>>> R.x
6.666666666666667
>>> value(R)
6.666666666666667

>>> R.u
0.23200681130912335
>>> uncertainty(R)
0.23200681130912335

• Alternatively, a summary string can be generated showing the value, the uncertainty and the degrees of
freedom. Numbers in the string are formatted to show only significant digits:

>>> print R.s
6.67, u=0.23, df=inf
>>> summary(R)
'6.67, u=0.23, df=inf'

Note: By default, the number of degrees of freedom is infinity (inf): this implies that the standard uncertainty
is known exactly.

4.2.2 Uncertain complex numbers

To define an uncertain number for a complex quantity, at least two pieces of information are needed:

• a value (the estimate)

• an uncertainty (of the estimate - different formats may be used, see below)

The same functions, or attributes, mentioned above, can be used to obtain information about uncertain complex
numbers.

For example, suppose the alternating current flowing in an electrical circuit 𝑖, the voltage across a circuit element
𝑣 and the phase of the voltage with respect to the current 𝜑 have been measured.

The estimates are: 𝑣 ≈ 4.999 V, 𝑖 ≈ 19.661 mA and 𝜑 ≈ 1.04446 rad, with standard uncertainties 𝑢(𝑣) =
0.0032 V, 𝑢(𝑖) = 0.0095 mA and 𝑢(𝜑) = 0.00075 rad.

4.2. Uncertain numbers 23

GUM Tree Calculator, Release 0.9.10

Uncertain numbers for 𝑣, 𝑖 and 𝜑 can be defined using ucomplex:

>>> v = ucomplex(complex(4.999,0),(0.0032,0))
>>> i = ucomplex(complex(19.661E-3,0),(0.0095E-3,0))
>>> phi = ucomplex(complex(0,1.04446),(0,0.00075))

Note that in these definitions the second argument is a pair of numbers 1. These are the standard uncertainties
associated with estimates of the real and imaginary components.

The complex impedance is

>>> z = v * exp(phi) / i

The value, uncertainty and degrees-of-freedom of z are (in summary form)

>>> print z.s
(127.73-219.85j), u=[0.19,0.20], r=0.058, df=inf

In this format, the complex estimate is followed by the standard uncertainty of the real and imaginary components.
The term r=0.058 is the correlation coefficient between the real and imaginary component estimates.

If the magnitude and phase of 𝑧 are of interest

>>> print magnitude(z).s
254.26, u=0.20, df=inf

>>> print phase(z).s
1.04446, u=0.00075, df=inf

Different formats for the uncertainty of uncertain complex numbers

It is possible to specify the uncertainty of a complex estimate in different ways when defining an uncertain complex
number:

• When a single number is used, the standard uncertainty of real and imaginary components are equal,

• A 2-element sequence of numbers specifies the standard uncertainties of the real and imaginary components

• A 4-element sequence of numbers specifies the elements of the variance-covariance matrix

If v is such a 4-element sequence then

– v[0] is the standard variance associated with the real component (the standard uncertainty is
math.sqrt(v[0]))

– v[3] is the standard variance associated with the imaginary component (the standard uncertainty is
math.sqrt(v[3]))

– v[1] and v[2] must be equal, they represent the covariance between the real and imaginary compo-
nents (the correlation coefficient is v[1]/math.sqrt(v[0]*v[3]))

For example,

>>> z = ucomplex(1+1j,1)
>>> uncertainty(z)
standard_uncertainty(real=1.0, imag=1.0)
>>> variance(z)
variance_covariance(rr=1.0, ri=0.0, ir=0.0, ii=1.0)

>>> z = ucomplex(1+1j,(.5,.5))
>>> uncertainty(z)
standard_uncertainty(real=0.5, imag=0.5)
>>> variance(z)

1 The parentheses around these numbers are important: they define a type of Python sequence called a tuple.

24 Chapter 4. A quick tour

GUM Tree Calculator, Release 0.9.10

variance_covariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)

>>> z = ucomplex(1+1j,(.5,0.1,0.1,.5))
>>> uncertainty(z)
standard_uncertainty(real=0.70710678118654757, imag=0.70710678118654757)
>>> z = ucomplex(1+1j,(.5,0.1,0.1,.5))
>>> variance(z)
variance_covariance(rr=0.50000000000000011, ri=0.099999999999999992,

ir=0.099999999999999992, ii=0.50000000000000011)

Note: A namedtuple is returned by the functions uncertainty and variance.

The elements of a namedtuple can be accessed by index, or by name. For example,

>>> cv = variance(z)
>>> cv
variance_covariance(rr=0.5000000000000001, ri=0.09999999999999999,

ir=0.09999999999999999, ii=0.5000000000000001)
>>> cv[0]
0.50000000000000011
>>> cv.rr
0.50000000000000011

4.3 Programming

• Sequences

• Functions

• Strings and printing

• Operators

• Modules

• Errors

GTC uses the Python programming language. This section gives a very brief introduction to some aspects of the
language (see references 2 and 3 for more comprehensive Python tutorials).

4.3.1 Sequences

A sequence is a collection of objects. The two main types of sequence are list and tuple. Tuples cannot be altered
(they are read-only) whereas elements may be inserted, changed, sorted, etc, in lists.

For example, a tuple containing the numbers 1 and 2 is

>>> tup = (1,2)

The elements can be accessed by index (sequences are always base-0)

>>> print tup[0]
1

2 “A Non-Programmer’s Tutorial” <http://en.wikibooks.org/wiki/Non-Programmer’s_Tutorial_for_Python_2.6>
3 A list of beginner guides for non-programmers is available here: http://wiki.python.org/moin/BeginnersGuide/NonProgrammers

4.3. Programming 25

http://en.wikibooks.org/wiki/Non-Programmer's_Tutorial_for_Python_2.6
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers

GUM Tree Calculator, Release 0.9.10

but cannot not changed

>>> tup[1] = 3
Traceback (most recent call last):

File "<console>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Lists are created using square brackets

>>> l = [-8,6,9]
>>> print l[1]
6

The elements of both tuples and lists can be iterated over using for loops

>>> data = (1.1,3.2,6.7)
>>> for d in data:
... print d**2
...
1.21
10.24
44.89

The function range creates a list of integers, which can be useful for iteration

>>> for i in range(4):
... print i
...
0
1
2
3

>>> print range(4)
[0, 1, 2, 3]

A useful feature allows sequences to be packed, and unpacked, by matching the number of elements on either side
of an = sign. For example,

>>> a = 1,2,3
>>> a
(1,2,3)

>>> x,y,z = a
>>> y
2

4.3.2 Functions

A function is defined by a name followed by a list of arguments in parentheses and a colon. An indented block of
code defines the function body. A return statement sends a result back to the calling context.

Here is a function that calculates the surface area of a box, given the length, width and height of the sides

def surface(l,w,h):
end_area = 2 * w * h
side_area = 2 * l * h
top_bottom = 2 * w * l

26 Chapter 4. A quick tour

GUM Tree Calculator, Release 0.9.10

area = end_area + side_area + top_bottom

return area

Note: This code snippet would be stored in a file, so the interactive prompt >>> does not appear.

Note: The arguments l, w and h can be ordinary numbers or uncertain numbers.

4.3.3 Strings and printing

When a print statement is used to display an uncertain number, the value will be displayed between question
marks. The number of significant digits is determined by the uncertainty

>>> x = ureal(1.11111,0.1)
>>> print x
?1.11?

However, typing the name of the uncertain number (without using print) produces a more detailed description,
called the Python representation:

>>> x
ureal(1.111, 0.10000000000000001, inf)

There is a way of formatting data as strings (described in detail under % formatting in the Python documentation)
that uses a template string containing format specifiers to determine how data will appear in a resulting string.

For example, the %s format specifier is a placeholder for a string in the output

>>> name = 'Jim'
>>> "Hello %s" % name
'Hello Jim'

Note: Strings are delimited by apostrophes ' or quotation marks " and multi-line strings begin and end with
triple delimiters of either kind.

There are format specifiers for display floating point numbers (e.g., %f, %E, %G)

>>> p = math.pi
>>> "pi = %f" % p
'pi = 3.141593'
>>> "pi = %E" % p
'pi = 3.141593E+00'
>>> "pi = %G" % p
'pi = 3.14159'

The %G format specifier switches automatically to an exponential scientific format when the number becomes too
big, or too small (use %E to always get the scientific format)

>>> bigger = p * 1E6
>>> "pi = %G" % bigger
'pi = 3.14159E+06'

Several arguments can inserted in a string using format specifiers. The corresponding data must be contained in a
tuple to the right of the % operator. For example,

4.3. Programming 27

GUM Tree Calculator, Release 0.9.10

>>> quantity = 'voltage'
>>> value = 1.4
>>> unit = 'V'
>>> "%s = %f (%s)" % (quantity,value,unit)
'voltage = 1.400000 (V)'

4.3.4 Operators

A few Python operators may be unfamiliar. For example, raising one number to the power of another uses a double
asterisk operator

>>> 2 ** 4
16

Testing for equality uses a double equals operator

>>> 2.0 == 2
True

Note that a single ‘=’ is used to assign one thing to another, so the following is an error

>>> 2.0 = 2
File "<console>", line 1

SyntaxError: can't assign to literal

There are quite a few different operators in Python, so it is best to consult the Python Help file, or a Python
reference, for further details 4.

4.3.5 Modules

Libraries of functions and classes can be defined in files called modules. Many standard Python modules are
included with GTC. For example, math and cmath define basic mathematical operations for real and complex
numbers.

GTC has a module structure of its own. The different GTC modules are all accessible by name (or through a shorter
alias). For example, the function reporting.budget, which is part of the reporting module (alias rp) is
useful for obtaining an uncertainty budget, as this short example shows:

x1 = ureal(1,0.1,label='x1')
x2 = ureal(1,0.1,label='x2')
x3 = ureal(1,0.1,label='x3')

x4 = x1 + x2
x5 = x2 + x3

x6 = x4 + x5

print "u(x6) = %G" % uncertainty(x6)
for u_cpt in reporting.budget(x6):

print " %s: %G" % u_cpt

The results are

u(x6) = 0.244949
x2: 0.2
x1: 0.1
x3: 0.1

4 The Python Help file distributed with GTC can be used to quickly check if a symbol is in fact a Python operator. Open the Help file and
type the symbol (or symbols) into the index line. If the symbol is part of Python, the Help file will provide some reference information.

28 Chapter 4. A quick tour

GUM Tree Calculator, Release 0.9.10

4.3.6 Errors

When programming errors occur, an exception is raised. This halts execution and generates an error message
called a traceback.

Example: RuntimeError

An exception is raised when an attempt is made to define an uncertain number with a negative uncertainty

>>> x = ureal(1,-1)
Traceback (most recent call last):

File "<console>", line 1, in <module>

RuntimeError: invalid uncertainty: -1

The error message is invalid uncertainty: -1 and the exception is an instance of a RuntimeError.
The problem occurred while executing the "<console>" file, which is actually the GTC command window.

If a file containing the same faulty command had been executed, the error message would look slightly different.
Here, executing a file called simple_error.py, containing x = ureal(1,-1) in line 1, we see:

C:\>gtc simple_error.py
Traceback (most recent call last):

File "simple_error.py", line 1, in <module>
x = ureal(1,-1)

RuntimeError: invalid uncertainty: -1

The first line now refers to the file by name and identifies the code that caused the problem. The RuntimeError
error message invalid uncertainty: -1 is given at the bottom, as before.

Other types of error

A RuntimeError is just one of a number of built-in Python exceptions. However, the basic structure of trace-
back messages remain the same.

Here is an example where a ValueError is raised while performing a mathematical operation:

>>> x = ureal(-1,1)
>>> sqrt(x)
Traceback (most recent call last):

File "<console>", line 1, in <module>

ValueError: math domain error

The exception was raised while executing sqrt(x) and the problem is signaled as a math domain error.

4.3. Programming 29

GUM Tree Calculator, Release 0.9.10

30 Chapter 4. A quick tour

Part III

User Guide

31

CHAPTER

FIVE

OVERVIEW

• Measurement errors and uncertainty

– Measurement functions

• Uncertain Numbers

– Elementary uncertain numbers

– Uncertain Number Attributes

– Uncertain numbers and measurement errors

The GUM Tree calculator (GTC) is a tool for data processing with automatic uncertainty calculation. It uses
uncertain numbers to represent quantities that have been measured, or estimated in some way.

5.1 Measurement errors and uncertainty

Measurement can never provide an exact value for a quantity of interest (the measurand). The difference, between
the true, but unknown, value 𝑌 and the measurement result 𝑦, is called the measurement error

𝐸 = 𝑦 − 𝑌 .

When considering the uncertainty of 𝑦 as an estimate of 𝑌 , the likely magnitude of 𝐸 must be taken into account.
Although 𝐸 is never known, a statistical distribution can be used to describe it. The standard deviation of this
distribution is called the standard uncertainty.

5.1.1 Measurement functions

A measurand is often defined in terms of other quantities in an equation

𝑌 = 𝑓(𝑋1, 𝑋2, · · ·) ,

where the 𝑋𝑖 are called influence quantities.

However, 𝑋1, 𝑋2, · · · are unknown; only estimates 𝑥1, 𝑥2, · · · are available. These estimates can be used to
calculated an estimate of the measurand

𝑦 = 𝑓(𝑥1, 𝑥2, · · ·) .

The error in 𝑦 depends on the individual measurement errors 𝐸1 = 𝑥1 − 𝑋1, 𝐸2 = 𝑥2 − 𝑋2, etc, which are
unknown. So, the uncertainty of the result as an estimate of the measurand must be calculated from information
about the uncertainties of 𝑥1, 𝑥2, etc.

33

GUM Tree Calculator, Release 0.9.10

5.2 Uncertain Numbers

An uncertain number is used to represent a quantity that is unknown. It holds an estimate of that quantity and the
uncertainty of that estimate.

Suppose a flag is flying from a pole that is estimated to be 15 metres away from an observer (with an uncertainty
of 3 cm). The angle between horizontal and line-of-sight to the top of the pole is 38 degrees (with an uncertainty
of 2 degrees). The measurement equation is

𝐻 = 𝐵 tan Φ ,

where 𝐻 is the actual height, 𝐵 is the length from the base of the pole and Φ is the actual line-of-sight angle. The
question is: how high is the flag?

The following calculation obtains 11.7 metres, with a standard uncertainty of 0.8 metres

>>> B = ureal(15,3E-2)
>>> Phi = ureal(math.radians(38),math.radians(2))
>>> H = B * tan(Phi)
>>> H
ureal(11.719284397600761, 0.843532951107579, inf)

It is important to note that GTC calculations are open ended. It is possible to continue the calculation above and
evaluate the observer angle at 20 metres from the pole (the base distance still has an uncertainty of 3 cm)

>>> B_20 = ureal(20,3E-2)
>>> Phi_20 = atan(H/B_20)
>>> Phi_20
ureal(0.5300351420781763, 0.031403340387013895, inf)
>>> math.degrees(Phi_20.x)
30.36877663469645
>>> math.degrees(Phi_20.u)
1.7992788667886215

5.2.1 Elementary uncertain numbers

We use the term elementary uncertain number to describe uncertain numbers associated with problem inputs (e.g.,
B and Phi above). Elementary uncertain numbers are defined by functions like ureal and ucomplex.

5.2.2 Uncertain Number Attributes

Uncertain numbers use attributes to provide access to the value (the estimate), the uncertainty (of the esti-
mate) and the degrees of freedom (associated with the uncertainty), as well as some other properties (see
UncertainReal).

Continuing with the flagpole example, the attributes x, u, df can be used to see the estimate, the uncertainty and
the degrees-of-freedom (which is infinity), respectively

>>> H.x
11.719284397600761
>>> H.u
0.84353295110757898
>>> H.df
inf

Alternatively, there are GTC functions that return the same numbers

34 Chapter 5. Overview

GUM Tree Calculator, Release 0.9.10

>>> value(H)
11.719284397600761
>>> uncertainty(H)
0.84353295110757898
>>> dof(H)
inf

5.2.3 Uncertain numbers and measurement errors

To make the best use of GTC it is helpful to think in terms of the quantities that appear in measurement equations.
Many of these will be residual errors with estimates of zero or unity.

In the context of the example above, the measured data are 𝑏 = 15 m and 𝜑 = 38 deg, so now let 𝐸𝑏 and 𝐸𝜑 stand
for the respective measurement errors. That is,

𝑏 = 𝐵 + 𝐸𝑏

𝜑 = Φ + 𝐸𝜑

These are residual errors: our best estimates are 𝐸𝑏 ≈ 0 and 𝐸𝜑 ≈ 0, with uncertainties in these estimates of
𝑢(𝐸𝑏) = 3 × 102 m and 𝑢(𝐸𝜑) = 2 deg.

The GTC calculation now looks like this

>>> b = 15
>>> E_b = ureal(0,3E-2)
>>> B = b - E_b
>>> phi = math.radians(38)
>>> E_phi = ureal(0,math.radians(2))
>>> Phi = phi - E_phi
>>> H = B * tan(Phi)
>>> H
ureal(11.719284397600761, 0.843532951107579, inf)

This calculation better reflects our understanding of the problem: 𝑏 = 15 and 𝜑 = 38 are precisely known numbers,
there is nothing ‘uncertain’ about their values. The unknown errors 𝐸𝑏 and 𝐸𝜑 give rise to the uncertainty.

Measurements are sometimes easier to analyse by making the errors explicit in this way.

5.2. Uncertain Numbers 35

GUM Tree Calculator, Release 0.9.10

36 Chapter 5. Overview

CHAPTER

SIX

EXAMPLES

• GUM Appendices

• EURACHEM / CITAC Guide Examples

• Linear calibration

• RF and microwave problems

• Working with Files

Note: There is a shortcut to the folder where the following example files are located in the Start Menu GTC group.

6.1 GUM Appendices

6.1.1 Gauge block measurement (GUM H1)

The example described here is taken from Appendix H1 of the GUM 1.

A copy of this script may be found under the user’s folder My GTC\examples\GUM_H1.py.

print """

Example from Appendix H1 of GUM

"""

Lengths are in nm
d0 = ureal(215,5.8,24,label='d0')
d1 = ureal(0.0,3.9,5,label='d1')
d2 = ureal(0.0,6.7,8,label='d2')

Intermediate quantity 'd'
d = d0 + d1 + d2

alpha_s = ureal(11.5E-6, type_b.uniform(2E-6),label='alpha_s')
d_alpha = ureal(0.0, type_b.uniform(1E-6), 50,label='d_alpha')
d_theta = ureal(0.0, type_b.uniform(0.05), 2,label='d_theta')

theta_bar = ureal(-0.1,0.2,label='theta_bar')
Delta = ureal(0.0, type_b.arcsine(0.5),label='Delta')

1 BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum

37

http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461

GUM Tree Calculator, Release 0.9.10

Intermediate quantity 'theta'
theta = theta_bar + Delta

l_s = ureal(5.0000623E7,25,18,label='l_s')

two more intermediate steps
tmp1 = l_s * d_alpha * theta
tmp2 = l_s * alpha_s * d_theta

Final equation for the measurement result
l = l_s + d - (tmp1 + tmp2)
l.label = 'l'

print "Measurement result for %s" % summary(l)

• Explanation

– Uncertainty budget

– Second-order contributions to the uncertainty

Explanation

The measurand is the length, at 20 ∘C, of an end-gauge that is being calibrated. The measurement equation is 2

𝑙 = 𝑙s + 𝑑− 𝑙s(𝛿𝛼𝜃 + 𝛼s𝛿𝜃) ,

where

• 𝑙s - the length of the standard

• 𝑑 - the difference in length between the standard and the end-gauge

• 𝛿𝛼 - the difference between coefficients of thermal expansion for the standard and the end-gauge

• 𝜃 - the deviation in temperature from 20 ∘C

• 𝛼s - the coefficient of thermal expansion for the standard

• 𝛿𝜃 - the temperature difference between the standard and the end-gauge

The calculation can be described in stages.

First, three inputs are defined: an estimate of the length difference measured by the comparator (d0), which is
based of the arithmetic mean of a number of difference indications; an estimate of random comparator errors (d1)
and an estimate of systematic comparator errors (d2). These are combined to obtain an intermediate result d

d0 = ureal(215,5.8,24,label='d0')
d1 = ureal(0.0,3.9,5,label='d1')
d2 = ureal(0.0,6.7,8,label='d2')

Intermediate quantity 'd'
d = d0 + d1 + d2

Then terms are introduced to account for temperature variability and thermal properties of the gauge blocks.

In particular, the quantity 𝜃 is defined in terms of two other input quantities

𝜃 = 𝜃 + ∆

2 In fact, the GUM uses more terms to calculate the uncertainty than are defined. We will see that quantities 𝑑 and 𝜃 depend on more than
one influence quantity.

38 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

where

• 𝜃 is the mean deviation of the test-bed temperature from 20 ∘C

• ∆ is a cyclical error in the test-bed temperature

In defining the inputs, the variability of some errors is described by uniform or arc-sine distributions. The GTC
functions type_b.uniform and type_b.arcsine are used to convert the width of a particular distribution
into a standard uncertainty 3.

alpha_s = ureal(11.5E-6, type_b.uniform(2E-6), label='alpha_s')
d_alpha = ureal(0.0, type_b.uniform(1E-6), 50, label='d_alpha')
d_theta = ureal(0.0, type_b.uniform(0.05), 2, label='d_theta')

theta_bar = ureal(-0.1,0.2, label='theta_bar')
Delta = ureal(0.0, type_b.arcsine(0.5), label='Delta')

Intermediate quantity 'theta'
theta = theta_bar + Delta

An estimate of the length of the standard gauge block is given in a calibration report

l_s = ureal(5.0000623E7,25,18,label='ls')

two more intermediate results, representing thermal errors, are then

two more intermediate steps
tmp1 = l_s * d_alpha * theta
tmp2 = l_s * alpha_s * d_theta

Finally, the length of the gauge block is

Final equation for the measurement result
l = l_s + d - (tmp1 + tmp2)
l.label = 'l'

print "Measurement result for %s" % summary(l)

When this script is executed the output is

Measurement result for l: 50000838., u=32., df=16.8

Uncertainty budget

An uncertainty budget can be obtained.

In interactive mode, after running the script above, the following commands print the components of uncertainty
for l, due to each influence:

print """
Components of uncertainty in l (nm)
-----------------------------------"""
for u_cpt in reporting.budget(l,trim=0):

print " %s: %G" % u_cpt

The output is

Components of uncertainty in l (nm)

ls: 25

3 ureal creates a new uncertain real number. It takes a standard uncertainty as its second argument, which is usually the standard deviation
of the error distribution.

6.1. GUM Appendices 39

GUM Tree Calculator, Release 0.9.10

d_theta: 16.599
d2: 6.7
d0: 5.8
d1: 3.9
d_alpha: 2.88679
alpha_s: 0
theta_bar: 0
Delta: 0

Second-order contributions to the uncertainty

The GUM, in H.1.7, notes that the uncertainty associated with the products 𝛼s 𝛿𝜃 and 𝛿𝛼 𝜃 may be underestimated,
because in each case one of the factors is estimated as zero.

The GTC calculation can include second-order terms associated with a zero product. This can be done by modi-
fying the definitions of tmp and tmp2 as follows (function.mul2 includes second-order contributions to the
product uncertainty):

two more intermediate steps
tmp1 = l_s * function.mul2(d_alpha, theta)
tmp2 = l_s * function.mul2(alpha_s, d_theta)

The result is now

Measurement result for l: 50000838., u=34., df=21.6

which agrees with the GUM (although no value is given in the GUM for the degrees of freedom).

We note, however, that 𝛼s and 𝜃 represent estimates based on measured data. In that case, a different second-order
calculation is preferred

tmp1 = l_s * function.mul2(d_alpha, theta, estimate=True)
tmp2 = l_s * function.mul2(alpha_s, d_theta estimate=True)

which gives

Measurement result for l: 50000838., u=32., df=16.5

This result is better than the GUM’s treatment of this problem, which over-estimates the uncertainty 4.

6.1.2 Resistance and reactance measurement (GUM H2)

The example is taken from Appendix H2 of the GUM 1.

This script, which evaluates the measurement uncertainty, is under the user’s folder: My
GTC\examples\GUM_H2.py.

print """

Example from Appendix H2 of GUM

"""

V = ureal(4.999,3.2E-3,dependent=True) # volt
I = ureal(19.661E-3,9.5E-6,dependent=True) # amp
phi = ureal(1.04446,7.5E-4,dependent=True) # radian

4 B D Hall, Using simulation to check uncertainty calculations, Meas. Sci. Technol., 22 (2011) 025105 (10pp) http://mst.irl.cri.nz
1 BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML, Evaluation of measurement data - Guide to the expression of

uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum

40 Chapter 6. Examples

http://mst.irl.cri.nz/Publications/ValidatingUncertainty/tabid/384/Default.aspx
http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461

GUM Tree Calculator, Release 0.9.10

set_correlation(-0.36,V,I)
set_correlation(0.86,V,phi)
set_correlation(-0.65,I,phi)

R = V * cos(phi) / I
X = V * sin(phi) / I
Z = V / I

print 'R = %s' % R.s
print 'X = %s' % X.s
print 'Z = %s' % Z.s

print 'Correlation between R and X = %.2G' % get_correlation(R,X)
print 'Correlation between R and Z = %.2G' % get_correlation(R,Z)
print 'Correlation between X and Z = %.2G' % get_correlation(X,Z)

print """
(These are not exactly the same values reported in the GUM.
There is some numerical round-off error in the GUM's calculations.)
"""

• Explanation

– Calculating the expanded uncertainty

Explanation

Several quantities associated with an electrical component in an AC electrical circuit are of interest here. Estimates
of the resistance 𝑅, the reactance 𝑋 and the magnitude of the impedance |𝑍| are required. These can be obtained
by measuring voltage 𝑉 , current 𝐼 and phase angle 𝜑 and then using the measurement equations:

𝑅 = 𝑉 𝐼 cos𝜑

𝑋 = 𝑉 𝐼 sin𝜑

|𝑍| = 𝑉 𝐼

Five repeat measurements of each quantity are performed. The mean values, and associated uncertainties (type-
A analysis) provide estimates of voltage, current and phase angle. The correlation coefficients between pairs of
estimates is also calculated.

This information is used to define three inputs to the calculation and assign correlation coefficients (the additional
argument dependent=True is needed to allow the set_correlation command to be used).

V = ureal(4.999,3.2E-3,dependent=True) # volt
I = ureal(19.661E-3,9.5E-6,dependent=True) # amp
phi = ureal(1.04446,7.5E-4,dependent=True) # radian

set_correlation(-0.36,V,I)
set_correlation(0.86,V,phi)
set_correlation(-0.65,I,phi)

Estimates of the three required quantities are then

R = V * cos(phi) / I
X = V * sin(phi) / I
Z = V / I

6.1. GUM Appendices 41

GUM Tree Calculator, Release 0.9.10

Results are displayed here using the attribute ‘.s‘ (equivalent to the function summary) and the function
get_correlation:

print 'R = %s' % R.s
print 'X = %s' % X.s
print 'Z = %s' % Z.s

print 'Correlation between R and X = %.2G' % get_correlation(R,X)
print 'Correlation between R and Z = %.2G' % get_correlation(R,Z)
print 'Correlation between X and Z = %.2G' % get_correlation(X,Z)

The output is

R = 127.732, u=0.070, df=nan
X = 219.85, u=0.30, df=nan
Z = 254.26, u=0.24, df=nan
Correlation between R and X = -0.59
Correlation between R and Z = -0.49
Correlation between X and Z = 0.99

Calculating the expanded uncertainty

The expanded uncertainty of the results obtained for R, X and Z cannot be evaluated in the GUM, because the
Welch-Satterthwaite equation for the effective degrees of freedom is invalid when input estimates are correlated
(the reported value of degrees-of-freedom for R, X and Z shown above is nan, which signifies an invalid calcula-
tion).

However, an alternative calculation is applicable in this case 2.

There are two different ways to carry out the calculation. One uses the GTC function
type_a.multi_estimate_real, the other uses multiple_ureal.

multiple_ureal allows several elementary uncertain real numbers to be created at the same time and grouped
for the purposes of subsequent uncertainty calculations. The documentation for multiple_ureal shows how
this can be applied to the GUM H2 example.

With type_a.multi_estimate_real, a type-A analysis is performed on the raw data (in this case,
three sets of five readings) and a set of elementary uncertain real numbers is created. Again, these
are identified as a group by GTC for the purposes of subsequent calculations. The documentation for
type_a.multi_estimate_real shows how this is applied to the GUM H2 example.

Note: The impedance calculation can also be treated as a complex-valued problem. There are two
other functions in GTC that do data processing using uncertain complex numbers. The documentation for
type_a.multi_estimate_complex and multiple_ucomplex both use GUM H2 as an example.

6.1.3 Calibration of a thermometer (GUM H3)

The example described here is taken from Appendix H3 of the GUM 1.

This script, which evaluates the measurement uncertainty, is under the user’s folder: My
GTC\examples\GUM_H3.py.

print """

2 R Willink, ‘A generalization of the Welch-Satterthwaite formula for use with correlated uncertainty components’, Metrologia 44 (2007)
340-349, Sec. 4.1

1 BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum

42 Chapter 6. Examples

http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461

GUM Tree Calculator, Release 0.9.10

Example from Appendix H3 of GUM

"""
Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,23.999,24.513,25.002,25.503,26.010,26.511)

Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

Arbitrary offset temperature (degrees C)
t_0 = 20.0

Calculate the temperature relative to t_0
t_rel = [t_k - t_0 for t_k in t]

Least-squares regression
y_1, y_2 = type_a.line_fit(t_rel,b).a_b

Show the results
print "Intercept: %G u=%G, dof=%G" % (y_1.x,y_1.u,y_1.df)
print "Slope: %G u=%G, dof=%G" % (y_2.x,y_2.u,y_2.df)
print "Correlation r=%G" % get_correlation(y_1,y_2)
print

Apply correction at 30 C
b_30 = y_1 + y_2*(30.0 - t_0)

print "Correction at 30 C"
print "b(30)=%G, u=%G, dof=%G" % (b_30.x, b_30.u, b_30.df)

• Explanation

• Other error models

– Known variance

– Systematic error in the standard temperature

Explanation

A thermometer is calibrated by comparing 11 readings 𝑡𝑘 with corresponding values of a temperature reference
standard 𝑡R·𝑘.

The readings and the differences 𝑏𝑘 = 𝑡R·𝑘 − 𝑡𝑘 are used to calculate the slope and intercept of a calibration line,
which can be used to estimate a temperature correction for a thermometer reading, including the uncertainty.

A linear model of the thermometer is assumed,

𝐵𝑘 = 𝑌1 + 𝑌2(𝑡𝑘 − 𝑡0) + 𝐸𝑘

An arbitrary fixed temperature 𝑡0 is chosen for convenience, 𝑡𝑘 is the temperature indicated by the thermometer
and 𝐵𝑘 is the correction that should be applied to a reading. The constants 𝑌1 and 𝑌2 define a linear relationship
between the indicated temperature and the correction 𝐵𝑘.

The accuracy of the temperature standard is high, so values of 𝑡R·𝑘 have no significant error. However, the
estimates obtained for the difference between the actual temperature and the indicated temperature are 𝑏𝑘 are
subject to error.

A pair of numbers 𝑦1 and 𝑦2 are obtained by least-squares regression on 𝑏𝑘 and 𝑡𝑘. The uncertainty in 𝑦1 and 𝑦2,
as estimates of 𝑌1 and 𝑌2, respectively, is due to random fluctuations (𝐸𝑘) in the measurement system.

6.1. GUM Appendices 43

GUM Tree Calculator, Release 0.9.10

The GTC calculation follows. The data are entered in a pair of sequences, the function type_a.line_fit then
performs the regression. (The intercept and slope are returned as a pair from the a_b attribute.)

Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,23.999,24.513,25.002,25.503,26.010,26.511)

Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

Arbitrary offset temperature (degrees C)
t_0 = 20.0

Calculate the temperature relative to t_0
t_rel = [t_k - t_0 for t_k in t]

Least-squares regression
y_1, y_2 = type_a.line_fit(t_rel,b).a_b

Show the results
print "Intercept: %G u=%G, dof=%G" % (y_1.x,y_1.u,y_1.df)
print "Slope: %G u=%G, dof=%G" % (y_2.x,y_2.u,y_2.df)
print "Correlation r=%G" % get_correlation(y_1,y_2)
print

The uncertain numbers y_1 and y_2 can be used to calculate the correction for a reading of 30 C

Apply correction at 30 C
b_30 = y_1 + y_2*(30.0 - t_0)

print "Correction at 30 C"
print "b(30)=%G, u=%G, dof=%G" % (b_30.x, b_30.u, b_30.df)

The results agree with the numbers reported in the GUM

Example from Appendix H3 of GUM

Intercept: -0.171204 u=0.0028776, dof=9
Slope: 0.0021827 u=0.000667939, dof=9
Correlation r=-0.93043

Correction at 30 C
b(30)=-0.149377, u=0.0041386, dof=9

Other error models

In GUM appendix H.3.6, two alternative scenarios are considered for the thermometer calibration.

Known variance

In the first, the variance of the b_k data is assumed known from prior calibrations.

There are two ways to do this regression problem with GTC.

First, a sequence of uncertainties for the respective b_k observations can be used with the function
type_a.line_fit_wls to obtain the slope and intercept. Alternatively, we can define a sequence of un-
certain real numbers representing the b_k data and use the function function.line_fit

u_b = 0.001 # an arbitrary value, just as an example
y_1, y_2 = fn.line_fit(t_rel,[ureal(b_i,u_b) for b_i in b]).a_b

44 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

in either case the results obtained can be used as above to evaluate corrections.

Systematic error in the standard temperature

The other situation considered in the GUM involves a systematic error associated with the measurement standard
reading: all b_k values are subject to some constant error. A type-A analysis is still required to estimate the
uncertainty due to system instability. However, the systematic error cannot be evaluated by the statistical analysis
(since it is constant).

One way to handle this in GTC, is to combine type-A and type-B regression analyses.

First, we define a sequence of uncertain real numbers for the b_k data, in which the uncertainty due to a systematic
error is included

e_sys = ureal(0,0.005) # the value of uncertainty is arbitrary
b_sys = [b_i + e_sys for b_i in b]
y_1_sys, y_2_sys = function.line_fit(t_rel,b_sys).a_b

Note that e_sys is defined outside the list and then added to each list element. e_sys represents the error
common to all the data. The results for y_1_sys and y_2_sys are

>>> y_1_sys
ureal(-0.17120379013134998, 0.005, inf)
>>> y_2_sys
ureal(0.0021826977398872772, 1.6263032587282567e-19, inf)

The standard uncertainty in y_2_sys is effectively zero, as expected: an error in the temperature standard shifts
all values of b_k by the same amount, so the slope does not change.

Next, the type-A regression analysis is done on the b_k data sequence (this operates only on the values of the
uncertain numbers)

y_1_a, y_2_a = type_a.line_fit(t_rel,b_sys).a_b

The results are (as before)

>>> y_1_a
ureal(-0.17120379013134998, 0.002877597835159957, 9)
>>> y_2_a
ureal(0.0021826977398872772, 0.0006679387732278324, 9)

Finally, the results involving the systematic error and the type-A error are combined

y_1 = type_a.merge_components(y_1_a,y_1_sys)
y_2 = type_a.merge_components(y_2_a,y_2_sys)

which gives

>>> y_1
ureal(-0.17120379013134998, 0.005768931382926761, 145.37964721007148)
>>> y_2
ureal(0.0021826977398872772, 0.0006679387732278324, 9.0)

Notice that the estimates have not changed, and the standard uncertainty in the slope has not changed either.
However, the standard uncertainty of the intercept has increased due to uncertainty about the systematic error, as
described in H.3.6 in the GUM.

6.1. GUM Appendices 45

GUM Tree Calculator, Release 0.9.10

6.2 EURACHEM / CITAC Guide Examples

6.2.1 Preparation of a Calibration Standard (A1)

This section is based on a measurement described in Appendix 1 of the 3rd edition of the EURACHEM / CITAC
Guide 1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the subsequent calculation can be preformed using GTC.

The measurement

The concentration of Cd in a standard solution is to be determined.

This can be expressed by the equation

𝑐Cd =
1000 ·𝑚 · 𝑃

𝑉
,

where

• 𝑐Cd is the concentration expressed (mg/L),

• 1000 is a conversion factor from mL to L,

• 𝑚 is the mass of high purity metal (mg),

• 𝑃 is the purity of the metal as a mass fraction,

• 𝑉 is the volume of liquid of the standard (mL).

The uncertainty contributions

In section A1.4 of the CITAC Guide the numerical estimates of influence quantities are described. These can be
used to define uncertain numbers for the mass, purity and volume. The mass and purity are defined directly as
elementary uncertain numbers 2:

>>> P = ureal(0.9999,type_b.uniform(0.0001),label='P')
>>> m = ureal(100.28,0.05,label='m') # mg

The volume has three influences that contribute to the overall uncertainty: the manufacturing tolerances of the
measuring flask, the repeatability of filling and the variability of temperature during the experiment. Each is
represented by an elementary uncertain number

>>> V_flask = ureal(100,type_b.triangular(0.1),label='V_flask')
>>> V_rep = ureal(0,0.02,label='V_rep')
>>> V_T = ureal(0,type_b.uniform(0.084),label='V_T')

Note that the value assigned to V_rep and V_T is zero. These represent repeatability error and the temperature
error incurred during the experiment. The best estimate of these errors is zero but the uncertainty is given in the
second argument to ureal.

After these definitions an uncertain number representing the volume of fluid is (we label the uncertain number for
convenience when reporting the uncertainty budget later)

>>> V = V_flask + V_rep + V_T
>>> V.label = 'V'

1 On-line: http://www.citac.cc/QUAM2012_P1.pdf
2 Functions from the type_b module are used to scale the uncertainty parameter of a non-Gaussian error to obtain the standard deviation.

46 Chapter 6. Examples

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator, Release 0.9.10

The uncertainty calculation

The concentration calculation is then simply 3

>>> c_Cd = 1000 * m * P / V
>>> print "c_Cd=%G, u=%G" % (c_Cd.x,c_Cd.u)
c_Cd=1002.7, u=0.835199 mg/L

The contributions to the standard uncertainty can be itemised using reporting.budget:

>>> for cp in rp.budget(c_Cd):
... print " %s: %G" % cp
...
m: 0.49995
V_T: 0.486284
V_flask: 0.40935
V_rep: 0.20054
P: 0.0578967

The contribution from the overall uncertainty in the volume of fluid, rather than the individual terms can also be
compared with other contributions by using a list of influences

>>> for cp in rp.budget(c_Cd,[m,P,V]):
... print " %s: %G" % cp
...
V: 0.666525
m: 0.49995
P: 0.0578967

These results can be compared with Figure A1.5 in the CITAC Guide.

6.2.2 Standardising a Sodium Hydroxide Solution (A2)

This section is based on a measurement described in Appendix 2 of the 3rd edition of the EURACHEM / CITAC
Guide 1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the subsequent calculation can be preformed using GTC.

The measurement

The concentration of a solution of NaOH is to be determined. The NaOH is titrated against the titrimetric standard
potassium hydrogen phthalate (KHP).

The measurand can be expressed as

𝑐NaOH =
1000 ·𝑚KHP · 𝑃KHP

𝑀KHP · 𝑉T
,

where

• 𝑐NaOH is the concentration expressed in mol/L,

• 1000 is a volume conversion factor from mL to L,

• 𝑚KHP is the mass of the titrimetric standard in g,

• 𝑃KHP is the purity of the titrimetric standard as a mass fraction,

• 𝑀KHP is the molar mass of KHP in g/mol,

• 𝑉T is the titration volume of NaOH solution in mL.
3 The numbers differ slightly because numbers in the CITAC Guide calculations have been rounded
1 On-line: http://www.citac.cc/QUAM2012_P1.pdf

6.2. EURACHEM / CITAC Guide Examples 47

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator, Release 0.9.10

The uncertainty contributions

Section A2.4 of the CITAC Guide provides numerical estimates of influence quantities, which can be used to
define uncertain numbers for the calculation.

The mass 𝑚KHP is determined from the difference of two weighings with balance linearity as the only source of
measurement error considered. However, a linearity error occurs twice: once in the tare weighing and once in
the gross weighing. So in the calculations we introduce the nett weight as a number (0.3888) and the uncertainty
contribution is found by taking the difference of uncertain numbers representing the errors that occur during
the weighings (if the raw observations were available, they might have been used to define u_lin_tare and
u_lin_gross) 2.

>>> u_lin_tare = ureal(0,type_b.uniform(0.15E-3),label='u_lin_tare')
>>> u_lin_gross = ureal(0,type_b.uniform(0.15E-3),label='u_lin_gross')
>>> u_m_KHP = u_lin_gross - u_lin_tare
>>> m_KHP = 0.3888 + u_m_KHP

The purity 𝑃KHP is 3

>>> P_KHP = ureal(1.0,type_b.uniform(0.0005),label='P_KHP')

The molar mass 𝑚KHP is calculated from IUPAC data and the number of each constituent element in the KHP
molecule C8H5O4K.

>>> M_C = ureal(12.0107,type_b.uniform(0.0008),label='M_C')
>>> M_H = ureal(1.00794,type_b.uniform(0.00007),label='M_H')
>>> M_O = ureal(15.9994,type_b.uniform(0.0003),label='M_O')
>>> M_K = ureal(39.0983,type_b.uniform(0.0001),label='M_K')

>>> M_KHP = 8*M_C + 5*M_H + 4*M_O + M_K

The volume term 𝑉T2 is affected by contributions from calibration error and temperature.

>>> uV_T_cal = ureal(0,type_b.triangular(0.03),label='V_T_cal')
>>> uV_T_temp = ureal(0,0.006,label='V_T_temp')

>>> V_T = 18.64 + uV_T_cal + uV_T_temp

The CITAC Guide introduces a further multiplicative term 𝑅 to represent repeatability errors (𝑅 ≈ 1)

𝑐NaOH = 𝑅
1000 ·𝑚KHP · 𝑃KHP

𝑀KHP · 𝑉T
,

In the GTC calculation this is represented by another uncertain number

>>> R = ureal(1.0,0.0005,label='repeatability')

The uncertainty calculation

The calculation of 𝑐NaOH is now 4:

>>> c_NaOH = R * (1000 * m_KHP * P_KHP)/(M_KHP * V_T)
>>> c_NaOH
ureal(0.10213615970679071, 0.00010050072212400463, inf)

The contribution from different influences can be examined (and compared with Fig. A2.9 in the Guide)

2 If the balance indications for the tare and gross weighings were known they could have been used to define the values of these uncertain
numbers, however the Guide does not provide this raw data. Instead, the zero value used here represents an estimate of the linearity error.

3 Functions from the type_b module are used here to scale the uncertainty parameters, as described in the CITAC Guide
4 The numbers differ slightly because numbers in the the CITAC Guide calculations have been rounded

48 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

>>> for cpt in rp.budget(c_NaOH,[m_KHP,P_KHP,M_KHP,V_T,R]):
... print " %s: %G" % cpt
...
V_T: 7.47292E-05
R: 5.10681E-05
m_KHP: 3.21735E-05
P_KHP: 2.94842E-05
M_KHP: 1.88312E-06

The full uncertainty budget is

>>> for cpt in rp.budget(c_NaOH):
... print " %s: %G" % cpt
...
V_T_cal: 6.71088E-05
R: 5.10681E-05
V_T_temp: 3.28764E-05
P_KHP: 2.94842E-05
u_lin_tare: 2.27501E-05
u_lin_gross: 2.27501E-05
m_C: 1.84798E-06

6.2.3 An Acid/Base Titration (A3)

This section is based on a measurement described in Appendix Appendix 3 of the 3rd edition of the EURACHEM
/ CITAC Guide 1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the subsequent calculation can be preformed using GTC.

The measurement

The method determines the concentration of an HCl solution by a sequence of experiments. This is a longer
calculation than the previous examples, so the code shown below should be considered as lines of text in a file that
can be executed by GTC.

The measurand can be expressed by

𝑐HCl =
1000 ·𝑚KHP · 𝑃KHP · 𝑉T2

𝑉T1 ·𝑀KHP · 𝑉HCl
,

where

• 𝑐HCl is the concentration expressed (mol/L),

• 1000 is a volume conversion factor from mL to L,

• 𝑚KHP is the mass of KHP taken (g),

• 𝑃KHP is the purity of KHP as a mass fraction,

• 𝑉T1 is the volume of NaOH to titrate KHP (mL).

• 𝑉T2 is the volume of NaOH to titrate HCl (mL).

• 𝑀KHP is the molar mass of KHP (g/mol),

• 𝑉T is the titration volume of NaOH solution (mL).
1 On-line: http://www.citac.cc/QUAM2012_P1.pdf

6.2. EURACHEM / CITAC Guide Examples 49

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator, Release 0.9.10

The uncertainty contributions

Section A3.4 of the CITAC Guide provides numerical estimates of influence quantities, which can be used to
define uncertain numbers for the uncertainty calculation.

The mass 𝑚KHP is determined from the difference of two weighings with balance linearity as the only source
of measurement error. However, a linearity error arises twice: once in the tare weighing and once in the gross
weighing. So, in the calculations we introduce the nett weight as a number (0.3888) and the uncertainty contribu-
tion is found by taking the difference of uncertain numbers representing estimates of the errors that occur during
the weighings (if the raw observations were available, they might have been used to define u_lin_tare and
u_lin_gross) 2.

u_lin_tare = ureal(0,type_b.uniform(0.15E-3),label='u_lin_tare')
u_lin_gross = ureal(0,type_b.uniform(0.15E-3),label='u_lin_gross')
m_KHP = 0.3888 + u_lin_gross - u_lin_tare

The purity 𝑃KHP is 3

P_KHP = ureal(1.0,type_b.uniform(0.0005),label='P_KHP')

The volume term 𝑉T2 is affected by contributions from calibration error and temperature. In calculating the
uncertainty contribution due to temperature, the volume expansion coefficient for water 2.1 × 10−4 ∘C−1 is used,
the volume of the pipette is 15 mL and the temperature range is ±4 ∘C.

uV_T2_cal = ureal(0,type_b.triangular(0.03),label='V_T2_cal')
uV_T2_temp = ureal(0,type_b.uniform(15 * 2.1E-4 * 4),label='V_T2_temp')

V_T2 = 14.89 + uV_T2_cal + uV_T2_temp
V_T2.label='V_T2'

The influences of the volume term 𝑉T1 are almost the same as 𝑉T2, only the temperature contribution is different
because a 19 mL volume of NaOH was used.

uV_T1_cal = ureal(0,type_b.triangular(0.03),label='V_T1_cal')
uV_T1_temp = ureal(0,type_b.uniform(19 * 2.1E-4 * 4),label='V_T1_temp')

V_T1 = 18.64 + uV_T1_cal + uV_T1_temp
V_T1.label = 'V_T1'

The molar mass 𝑚KHP is calculated from IUPAC data and the number of each constituent element in the KHP
molecule C8H5O4K. This can be done as follows

M_C = ureal(12.0107,type_b.uniform(0.0008),label='M_C')
M_H = ureal(1.00794,type_b.uniform(0.00007),label='M_H')
M_O = ureal(15.9994,type_b.uniform(0.0003),label='M_O')
M_K = ureal(39.0983,type_b.uniform(0.0001),label='M_K')

M_KHP = 8*M_C + 5*M_H + 4*M_O + M_K

The influences on the volume term 𝑉HCl are similar to the 𝑉T1 and 𝑉T2. A 15 mL pipette was used with a stated
uncertainty tolerance of 0.02. The range of temperature variation in the laboratory is 4 ∘C.

uV_HCl_cal = ureal(0,type_b.triangular(0.02),label='uV_HCl_cal')
uV_HCl_temp = ureal(0,type_b.uniform(15 * 2.1E-4 * 4),label='uV_HCl_temp')

V_HCl = 15 + uV_HCl_cal + uV_HCl_temp

2 If the balance indications for the tare weighing and gross weighing were known they could have been used to define the values of these
uncertain numbers, however the CITAC Guide does not provide this raw data. Instead, the zero value used here represents the linearity error.

3 Functions from the type_b module are used here to scale the uncertainty parameters, as described in the CITAC Guide

50 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

The CITAC Guide introduces a further multiplicative term 𝑅 to represent repeatability error (𝑅 ≈ 1)

𝑐NaOH = 𝑅
1000 ·𝑚KHP · 𝑃KHP

𝑀KHP · 𝑉T
,

Another uncertain number is defined to represent this

R = ureal(1.0,0.001,label='R')

The uncertainty calculation

The calculation of 𝑐NaOH is now

c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
print summary(c_HCl)

resulting in

c_HCl: 0.10139, u=0.00018, df=inf

The contribution from different influences can be examined

for cpt in rp.budget(c_HCl,[m_KHP,P_KHP,M_KHP,V_T1,V_T2,V_HCl,R]):
print " %s: %G" % cpt

The results (which can be compared with Figure A3.6 in the Guide) show that repeatability is the dominant
component of uncertainty:

R: 0.000101387
V_T2: 9.69953E-05
V_T1: 8.33653E-05
V_HCl: 7.39151E-05
m_KHP: 3.19376E-05
P_KHP: 2.9268E-05
M_KHP: 1.86931E-06

The full uncertainty budget is obtained by

for cpt in rp.budget(c_HCl):
print " %s: %G" % cpt

This shows that calibration error in the volume titrated is also an important component of uncertainty

R: 0.000101387
V_T2_cal: 8.33938E-05
V_T1_cal: 6.66166E-05
uV_HCl_cal: 5.51882E-05
V_T1_temp: 5.01198E-05
V_T2_temp: 4.95334E-05
uV_HCl_temp: 4.91702E-05
P_KHP: 2.9268E-05
u_lin_tare: 2.25833E-05
u_lin_gross: 2.25833E-05
M_C: 1.83443E-06

Special aspects of this measurement

The CITAC Guide discusses some aspects of this measurement in section A3.6. Two in particular are: the uncer-
tainty associated with repeatability and bias in titration volumes.

6.2. EURACHEM / CITAC Guide Examples 51

GUM Tree Calculator, Release 0.9.10

A reduction in the uncertainty attributed to repeatability, by a factor of
√

3, has a small effect on the final combined
uncertainty. This may be seen in the GTC calculation by changing the definition of the uncertain number R

R = ureal(1.0,0.001/math.sqrt(3),label='R')

c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
print summary(c_HCl)

for cpt in rp.budget(c_HCl,[m_KHP,P_KHP,M_KHP,V_T1,V_T2,V_HCl,R]):
print " %s: %G" % cpt

The new results show that the combined uncertainty is not much changed when the repeatability is improved.

c_HCl: 0.10139, u=0.00016, df=inf

V_T2: 9.69953E-05
V_T1: 8.33653E-05
V_HCl: 7.39151E-05
R: 5.85359E-05
m_KHP: 3.19376E-05
P_KHP: 2.9268E-05
M_KHP: 1.86931E-06

Another consideration is that a bias may be introduced by the use of phenolphthalein as an indicator. The excess
volume in this case is about 0.05 mL with a standard uncertainty of 0.03 mL.

We can adapt our calculations above by defining two elementary uncertain numbers to represent the bias. These
can be subtracted from the previous estimates 4:

V_T1_excess = ureal(0.05,0.03,label='V_T1_excess')
V_T1 = V_T1 - V_T1_excess

V_T2_excess = ureal(0.05,0.03,label='V_T2_excess')
V_T2 = V_T2 - V_T2_excess

print uncertainty(V_T1)
print uncertainty(V_T2)

The uncertainties are roughly twice the previous values

0.0336883837546
0.0332102393849

The concentration of HCl can then be re-calculated using the same measurement equation

c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
c_HCl.label = 'c_HCl'
print uncertainty(c_HCl)

The final combined uncertainty is now about twice as large (in mol/L)

0.000320501672797

6.2.4 Cadmium released from ceramic-ware (A5)

• The measurement

4 The CITAC Guide does not provide different raw titration results for this case. However, the numerical values of V_T1 and V_T2 will
not be the same, because there are now two different parts to the experiment.

52 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

• The uncertainty contributions

– Dilution factor

– Leachate volume

– A calibration curve for cadmium concentration

– Liquid surface area

– Temperature effect

– Time effect

– Acid concentration

• The uncertainty calculation

This section is based on a measurement described in Appendix 5 of the 3rd edition of the EURACHEM / CITAC
Guide 1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the data processing could be preformed using GTC.

The measurement

The experiment determines the amount of cadmium released from ceramic ware.

The measurand can be expressed as

𝑟 =
𝑐0 · 𝑉L

𝑎v
· 𝑑 · 𝑓acid · 𝑓time · 𝑓temp ,

where

• 𝑟 is the mass of cadmium leached per unit area (mg dm−2),

• 𝑐0 cadmium content in the extraction solution (mg L−1),

• 𝑉L is the volume of leachate (L),

• 𝑑 is the dilution factor,

• 𝑎v is the surface area of the liquid (dm2).

• 𝑓acid is the influence of acid concentration.

• 𝑓time is the influence of the duration,

• 𝑓temp is the influence of temperature.

The uncertainty contributions

Section A5.4 of the CITAC Guide provides numerical estimates of these quantities that can be used to define
uncertain numbers for the calculation.

Dilution factor

In this example there was no dilution.

1 On-line: http://www.citac.cc/QUAM2012_P1.pdf

6.2. EURACHEM / CITAC Guide Examples 53

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator, Release 0.9.10

Leachate volume

Several factors contribute to the uncertainty of 𝑉L:

• 𝑉L−fill the relative accuracy with which the vessel can be filled

• 𝑉L−temp temperature variation affects the determined volume

• 𝑉L−read the accuracy with which the volume reading can be made

• 𝑉L−cal the accuracy with which the manufacturer can calibrate a 500 mL vessel

Uncertain numbers for each contribution can be defined and combined to obtain an uncertain number for the
volume. In this case, the volume of leachate is 332 mL.

v_leachate = 332 # mL
a_liquid = 2.1E-4 # liquid volume expansion per degree
v_fill = ureal(0.995,tb.triangular(0.005),label='v_fill')
v_temp = ureal(0,tb.uniform(v_leachate*a_liquid*2),label='v_temp')
v_reading = ureal(1,tb.triangular(0.01),label='v_reading')
v_cal = ureal(0,tb.triangular(2.5),label='v_cal')

Change units to liters now
V_L = (v_leachate * v_fill * v_reading + v_temp + v_cal)/1000 # L
V_L.label = 'V leachate'
print summary(V_L)

giving (in L)

V leachate: 0.3303, u=0.0018, df=inf

A calibration curve for cadmium concentration

The amount of leached cadmium is calculated using a calibration curve. A linear relationship is assumed between
observed absorbance and cadmium concentration.

𝐴𝑖 = 𝑐𝑖 ·𝐵1 + 𝐵0 + 𝐸𝑖 ,

where 𝐵1 and 𝐵0 are the slope and intercept, respectively, of the line, 𝐴𝑖 is the observed absorbance, 𝑐𝑖 is the
concentration of the 𝑖th calibration standard and 𝐸𝑖 is the unknown measurement error incurred during the 𝑖th

observation.

Three repeat observations are made for each of five calibration standards and the parameters of the calibration line
are estimated by ordinary least-squares regression.

The GTC calculation uses the line_fit function

x_data = [0.1, 0.1, 0.1, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.9, 0.9, 0.
→˓9]
y_data = [0.028, 0.029, 0.029, 0.084, 0.083, 0.081, 0.135,

0.131, 0.133, 0.180, 0.181, 0.183, 0.215, 0.230, 0.216]

fit = ta.line_fit(x_data,y_data)

B_0, B_1 = fit.a_b
B_0.label = 'B_0'
B_1.label = 'B_1'

print summary(B_0)
print summary(B_1)

This gives

54 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

B_0: 0.0087, u=0.0029, df=13.0
B_1: 0.2410, u=0.0050, df=13.0

There is correlation between these uncertain numbers (the estimates are correlated)

print get_correlation(B_0, B_1)

yielding

-0.870388279778

The object fit contains information about the regression that can be used to make predictions about cadmium
concentration from subsequent observations of absorbance. In this case, two further observations of absorbance
are used to estimate the concentration 𝑐0.

Using the function x_from_y we write (the label ‘absorbance’ will be attached to the mean of the observations
and identify this influence in the uncertainty budget below)

c_0 = fit.x_from_y([0.0712,0.0716], label='absorbance')
c_0.label = 'c_0'
print summary(c_0)

giving

c_0: 0.260, u=0.018, df=13.0

Liquid surface area

There are two contributions to the uncertainty of 𝑎V:

• 𝑎V−dia uncertainty due to the diameter measurement

• 𝑎V−shape uncertainty due to imperfect shape

Uncertain numbers for each contribution can be combined to obtain an estimate of the surface area

dia = ureal(2.70,0.01,label='dia')
a_dia = math.pi*(dia/2)**2
a_shape = ureal(1,0.05/1.96,label='a_shape')
a_V = a_dia * a_shape
a_V.label = 'a_V'
print summary(a_V)

giving 2

a_V: 5.73, u=0.15, df=inf

Temperature effect

The temperature factor is given as 𝑓temp = 1 ± 0.1. Assuming a uniform distribution we define

f_temp = ureal(1,tb.uniform(0.1),label='f_temp')

2 Note there is a mistake in the standard uncertainty quoted in the CITAC Guide 𝑢(𝑎V) = 0.19, as can be verified by evaluating√︀
(0.0422 + 0.1462).

6.2. EURACHEM / CITAC Guide Examples 55

GUM Tree Calculator, Release 0.9.10

Time effect

The time factor is given as 𝑓time = 1 ± 0.0015. Assuming a uniform distribution we define

f_time = ureal(1,tb.uniform(0.0015),label='f_time')

Acid concentration

The acid concentration factor is given as 𝑓acid = 1± 0.0008. This is already in the form of a standard uncertainty
so we define

f_acid = ureal(1,0.0008,label='f_acid')

The uncertainty calculation

To estimate 𝑟 we now evaluate

r = c_0 * V_L / a_V * f_acid * f_time * f_temp
r.label = 'r'
print summary(r)

resulting in 3

r: 0.0150, u=0.0014, df=45.2

The contribution from the different influences can be examined

for cpt in rp.budget(r,[c_0,V_L,a_V,f_acid,f_time,f_temp]):
print " %s: %G" % cpt

The results (which can be compared with Figure A5.8 in the Guide) show that the content of cadmium in the
extraction solution is the dominant component of uncertainty:

c_0: 0.00102956
f_temp: 0.00086663
a_V: 0.000398736
V leachate: 8.28714E-05
f_time: 1.29994E-05
f_acid: 1.20084E-05

The full uncertainty budget can be obtained by writing

for cpt in rp.budget(r,trim=0):
print " %s: %G" % cpt

This reveals that the two additional observations of absorbance have contributed most to the uncertainty (so per-
haps a few more observations would help)

absorbance: 0.000928623
f_temp: 0.00086663
B_0: 0.000688685
a_shape: 0.00038292
B_1: 0.000311899
dia: 0.000111189
v_reading: 6.128E-05
v_cal: 4.63764E-05
v_fill: 3.0794E-05

3 The mistake in 𝑢(𝑎V), mentioned above , leads to give a slightly different value 𝑢(𝑟) = 0.0015 mg dm−2 in the CITAC Guide.

56 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

f_time: 1.29994E-05
f_acid: 1.20084E-05
v_temp: 3.65814E-06

6.3 Linear calibration

6.3.1 Linear Calibration Equations

This section shows how GTC can be applied to a simple calibration problem 1.

• The calibration

– The measurement model

• A 2-point calibration curve

– The non-linearity error

– The calibration equation

• Linearising the sensor response

– The calibration equation

The calibration

A pressure sensor is to be calibrated. The type of sensor is known to have an approximately linear response.

Eleven reference pressures are accurately generated at a calibration laboratory and the corresponding sensor indi-
cations are recorded.

The y_data are standard pressures and x_data are sensor readings (from Table 4 in 1):

y_data = (0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0)
x_data = (0.0000,0.2039,0.4080,0.6120,0.8160,1.0201,

1.2242,1.4283,1.6325,1.8367,2.0410)

We are told that the sensor indication does not change when observations are repeated at the same standard
pressure, which suggests that the digital resolution of the sensor is much less than any random system noise.
So we ignore noise as a source of error.

The measurement model

A linear model of the sensor’s intrinsic behaviour is

𝑌 = 𝛼 + 𝛽 𝑋 ,

where 𝑌 is the applied pressure and 𝑋 is a an internal property of the sensor related to the applied pressure. The
sensor indication, 𝑥 is an estimate of 𝑋 .

In operation, the relationship between an applied pressure 𝑌𝑖 and the indication 𝑥𝑖 may be expressed as

𝑌𝑖 = 𝛼 + 𝛽 (𝑥𝑖 − 𝐸res·𝑖) + 𝐸lin·𝑖

where 𝐸res·𝑖 and 𝐸lin·𝑖 are unknown errors.
1 R Kessel, R N Kacker and K-D Sommer, Uncertainty budget for range calibration, Measurement 45 (2012) 1661 – 1669.

6.3. Linear calibration 57

GUM Tree Calculator, Release 0.9.10

𝐸res·𝑖 is due to the finite number of digits displayed, i.e., the number displayed is 𝑥𝑖 = 𝑋𝑖 +𝐸res·𝑖. We will assign
an uncertainty to 𝑥𝑖 as an estimate of 𝑋𝑖 below.

𝐸lin·𝑖 is the difference between the applied pressure 𝑌𝑖 and the value of the linear model 𝛼+𝛽 𝑋𝑖. 𝐸lin·𝑖 is ignored
initially, while estimating 𝛼 and 𝛽 2.

The reference pressure 𝑌cal·𝑖 is not known exactly, but the nominal pressure is

𝑦cal·𝑖 = 𝑌cal·𝑖 + 𝐸cal·𝑖 ,

where 𝐸cal·𝑖 is the measurement error. The uncertainty of 𝑦cal·𝑖 as an estimate of 𝑌cal·𝑖 has been determined by
the calibration laboratory and was reported as a relative standard uncertainty

𝑢(𝑦cal·𝑖)

𝑦cal·𝑖
= 0.000115 .

A calibration procedure estimates 𝛼 and 𝛽.

A 2-point calibration curve

The slope of the calibration curve can be found as

𝛽 =
𝑌cal·10 − 𝑌cal·0

𝑋cal·10 −𝑋cal·0
.

Points near the ends of the range of data available are most influential when estimating the slope and intercept of
a linear calibration function (but the remainder of the calibration data are used later to assess the importance of
non-linear sensor response across the range), Hence an estimate of the slope is

𝑏 =
𝑦cal·10 − 𝑦cal·0
𝑥cal·10 − 𝑥cal·0

.

Using uncertain numbers, this becomes

u_ycal_rel = 0.000115
u_res = type_b.uniform(0.00005)

x_0 = x_data[0] - ureal(0,u_res,label='e_res_0')
x_10 = x_data[10] - ureal(0,u_res,label='e_res_10')

y_0 = ureal(y_data[0],y_data[0]*u_ycal_rel,label='y_0')
y_10 = ureal(y_data[10],y_data[10]*u_ycal_rel,label='y_10')

b = (y_10 - y_0)/(x_10 - x_0)
a = y_10 - b * x_10

The results for a and b, as well as the correlation coefficient, are

>>> a
ureal(0.0, 0.0002828761730473424, inf)
>>> b
ureal(9.799118079372857, 0.0011438175474686209, inf)
>>> get_correlation(a,b)
-0.12117041864179227

The non-linearity error

We can now look at the differences between the calibration line and the calibration data points. We can display a
table of differences

2 The uncertainty due to linearity errors can be estimated later by comparing the calibration data with the pressure predicted by the linear
calibration curve.

58 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

for x_i,y_i in zip(x_data,y_data):
dif = y_i - (x_i * b + a)
print "x=%G, dif=%G" % (x_i,dif)

which generates

x=0, dif=0
x=0.2039, dif=0.00195982
x=0.408, dif=0.00195982
x=0.612, dif=0.00293974
x=0.816, dif=0.00391965
x=1.0201, dif=0.00391965
x=1.2242, dif=0.00391965
x=1.4283, dif=0.00391965
x=1.6325, dif=0.00293974
x=1.8367, dif=0.00195982
x=2.041, dif=0

From this data, a maximum deviation (worst case error) of 0.005 is obtained 1 that accounts for the deviations
from linearity of the sensor 3.

The calibration equation

The procedure above obtains sufficient information to define a calibration function that takes a sensor reading and
returns an uncertain number corresponding to the pressure estimate.

For instance (assuming that we now have only the results given above, from a calibration report, not the calibration
data.),

u_lin = type_b.uniform(0.005)
u_res = type_b.uniform(0.00005)

a = ureal(0.0,0.00028,label='a')
b = ureal(9.79912, 0.00114,label='b')
set_correlation(-0.1212,a,b)

def cal_fn(x):
"""-> pressure estimate

:arg x: sensor reading (a number)
:returns: an uncertain number representing the

applied pressure
"""
e_res_i = ureal(0,u_res,label='e_res_i')
e_lin_i = ureal(0,u_lin,label='e_lin_i')

return a + b * (x + e_res_i) + e_lin_i

We can calculate pressure estimates with expanded uncertainties (𝑘 = 2), as in Table 7 of the reference 1, by
applying this function to the calibration data

for i,x_i in enumerate(x_data):
y_i = cal_fn(x_i)
print "%i: p=%G, U(p)=%G" % (i,y_i.x,2*y_i.u)

The output is

0: p=0.0000, U(p)=0.0058
1: p=1.9980, U(p)=0.0058

3 A linear model is chosen for simplicity of use by the client. There is an obvious bias in the residuals that is ignored at this stage.

6.3. Linear calibration 59

GUM Tree Calculator, Release 0.9.10

2: p=3.9980, U(p)=0.0059
3: p=5.9971, U(p)=0.0060
4: p=7.9961, U(p)=0.0061
5: p=9.9961, U(p)=0.0062
6: p=11.996, U(p)=0.0064
7: p=13.996, U(p)=0.0066
8: p=15.997, U(p)=0.0069
9: p=17.998, U(p)=0.0071
10: p=20.000, U(p)=0.0074

Linearising the sensor response

To improve measurements with this type of sensor a function can be used to pre-process readings

𝑓lin(𝑋) = 𝑐0 + 𝑐1𝑋 + 𝑐2𝑋
2 + 𝑐3𝑋

3

The 𝑐𝑖 coefficients are not determined as part of the calibration procedure so no uncertainty need be associated
with these numbers.

We implement this function as follows

def f_lin(x):
"""improve sensor linearity
"""
c0 = 0.0
c1 = 9.806
c2 = -2.251E-3
c3 = -5.753E-4
return c0 + (c1 + (c2 + c3*x)*x)*x

In operation, our model of the sensor now becomes

𝑌𝑖 = 𝛼 + 𝛽 𝑓lin(𝑥𝑖 − 𝐸res·𝑖) + 𝐸lin·𝑖

The effect of 𝑓lin is to reduce the difference between the pressure estimates and actual pressures.

To calibrate this ‘linearised’ sensor, the original indications 𝑥cal·10 and 𝑥cal·0 are transformed by 𝑓lin(𝑋) before
calculating the slope and intercept (this transformation includes the reading error uncertainty).

u_ycal_rel = 0.000115
u_res = type_b.uniform(0.00005)

x_0 = f_lin(x_data[0] - ureal(0,u_res,label='e_res_0'))
x_10 = f_lin(x_data[10] - ureal(0,u_res,label='e_res_10'))

y_0 = ureal(y_data[0],y_data[0]*u_ycal_rel,label='y_0')
y_10 = ureal(y_data[10],y_data[10]*u_ycal_rel,label='y_10')

b = (y_10 - y_0)/(x_10 - x_0)
a = y_10 - b * x_10

The results are

>>> a
ureal(0.0, 0.00028307798251305335, inf)
>>> b
ureal(1.000011112006328, 0.00011672745986082041, inf)
>>> get_correlation(a,b)
-0.12125729816056871

The differences between nominal standard values and the sensor estimates can be generated by

60 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

for x_i,y_i in zip(x_data,y_data):
dif = y_i - (f_lin(x_i) * b + a)
print "x=%G, dif=%G" % (x_i,dif)

We see that the differences are much smaller than before

x=0, dif=0
x=0.2039, dif=0.000632846
x=0.408, dif=-0.00047867
x=0.612, dif=-0.000363706
x=0.816, dif=2.65297E-05
x=1.0201, dif=-0.00025863
x=1.2242, dif=-0.000209565
x=1.4283, dif=0.000203072
x=1.6325, dif=2.9212E-05
x=1.8367, dif=0.000278049
x=2.041, dif=0

The worst-case error is now about ±0.0007.

The calibration equation

A new calibration function can be defined that includes f_lin. This takes the same raw sensor reading as before,
but returns a better estimate of the applied pressure

u_lin = type_b.uniform(0.0007)
u_res = type_b.uniform(0.00005)

a = ureal(0.0,0.00028,label='a')
b = ureal(1.000011, 0.000117,label='b')
set_correlation(-0.1215,a,b)

def lin_cal_fn(x):
"""-> linearised pressure estimate

:arg x: sensor reading (a number)
:returns: an uncertain number representing the

applied pressure
"""
e_res_i = ureal(0,u_res,label='e_res_i')
e_lin_i = ureal(0,u_lin,label='e_lin_i')

return a + b * f_lin(x + e_res_i) + e_lin_i

The improvement to accuracy can be seen by applying this function to the calibration points

for i,x_i in enumerate(x_data):
y_i = lin_cal_fn(x_i)
print "%i: p=%#0.5G, U(p)=%#.2G" % (i,y_i.x,2*y_i.u)

The results are:

0: p=0.0000, U(p)=0.0011
1: p=1.9994, U(p)=0.0012
2: p=4.0005, U(p)=0.0014
3: p=6.0004, U(p)=0.0018
4: p=8.0000, U(p)=0.0021
5: p=10.000, U(p)=0.0025
6: p=12.000, U(p)=0.0030
7: p=14.000, U(p)=0.0034
8: p=16.000, U(p)=0.0038

6.3. Linear calibration 61

GUM Tree Calculator, Release 0.9.10

9: p=18.000, U(p)=0.0043
10: p=20.000, U(p)=0.0047

6.3.2 Linear Regression Results

• Example

– Estimates of the slope and intercept

– The mean response

– A single future response

– Estimating the stimulus from observations of the response

Conventional least-squares regression of a line to a set of data provides estimates of the parameters of a linear
model (slope and intercept) The best-fit line is sometimes called a calibration line.

Example

Linear regression is performed with x data, that are considered to be stable stimuli, and y data that are observations
of the system response subject to noise (random errors)

>>> x = [3, 7, 11, 15, 18, 27, 29, 30, 30, 31, 31, 32, 33, 33, 34, 36,
... 36, 36, 37, 38, 39, 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 50]
>>> y = [5, 11, 21, 16, 16, 28, 27, 25, 35, 30, 40, 32, 34, 32, 34, 37,
... 38, 34, 36, 38, 37, 36, 45, 39, 41, 40, 44, 37, 44, 46, 46, 49, 51]

>>> fit = type_a.line_fit(x,y)

The object fit (returned by type_a.line_fit) can be used in different ways.

Estimates of the slope and intercept

Least-squares regression assumes that a model of the system is

𝑌 = 𝛼 + 𝛽 𝑥 + 𝐸 ,

where 𝛼 and 𝛽 are unknown constants, 𝐸 is a random error with zero mean and unknown variance 𝜎2, 𝑥 is the
independent (stimulus) variable and 𝑌 is the response.

Least-squares regression provides generates the fit object above, which holds a pair of uncertain numbers rep-
resenting 𝛼 and 𝛽:

>>> a, b = fit.a_b
>>> a
ureal(3.829633197588695, 1.7684473272506525, 31)
>>> b
ureal(0.9036432105793234, 0.050118973559182003, 31)
>>> get_correlation(a,b)
-0.9481240708919155

The mean response

The uncertain numbers a and b can be used to calculate the mean response for a particular stimulus, say 𝑥 = 21.5

62 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

>>> y = a + b*21.5
>>> y
ureal(23.25796222504415, 0.8216070588885063, 31.0)

y is an estimate of the response that would be observed, in the absence of noise, to a stimulus of 21.5.

A single future response

A single response in the future to a given stimulus may also be of interest (as opposed to the mean response).
Again, say 𝑥 = 21.5

>>> y0 = fit.y_from_x(21.5)
>>> y0
ureal(23.25796222504415, 3.3324092579571105, 31.0)

The value predicted is the same as before, but the uncertainty is much larger now.

Estimating the stimulus from observations of the response

Another possibility is that several observations of the response to a steady stimulus may be used to estimate that
stimulus value 1.

Suppose that three observations were made [31.4,29.3,27.1]

>>> x0 = fit.x_from_y([31.4, 29.3, 27.1])
>>> x0
ureal(28.149421332751846, 2.1751408733425195, 31.0)

The value of x0 is an estimate of the stimulus based on the mean of the observations and taking into account the
variability of the y data used in the regression.

6.3.3 Straight-line calibration functions

• Example 1: equal weights

– Application: an additional y observation

– Forward evaluation: an additional x value

• Example 2: unequal weights

– Application: an additional y observation

• Example 3: uncertainty in x and y

• Example 4: relative uncertainty in y

• Example 5: unknown uncertainty in y

– Application: an additional response

– Forward evaluation: an additional stimulus

This section shows how GTC uses straight-line least-squares regression algorithms to obtain and use calibration
functions.

1 This scenario is sometimes called calibration. The response of an instrument to a number of different reference stimuli is observed and a
calibration curve is calculated. The curve is then used in the opposite sense, to convert observations of the instrument response into estimates
of the stimulus applied.

6.3. Linear calibration 63

GUM Tree Calculator, Release 0.9.10

Each example consists of a small sample of x-y observation pairs, together with information about the variability
of the data. No measurement context is given 1.

In some of the examples, we show how the GTC results can be used to estimate either a stimulus value x, when
given further observations of the response y, or to evaluate a future response y to a stimulus x.

Example 1: equal weights

A series of six pairs of x-y observations have been collected.

The data sequences x and y and a sequence of uncertainties in the 𝑦 values are

x = [1,2,3,4,5,6]
y = [3.3,5.6,7.1,9.3,10.7,12.1]
u_y = [0.5] * 6

We apply a weighted least-squares regression to the data, which assumes that the values in u_y are known uncer-
tainties for the y data (i.e., they have infinite degrees of freedom)

fit = type_a.line_fit_wls(x,y,u_y)
print fit

That generates the following

Weighted Least-Squares Results:

Number of points: 6
Intercept: 1.87, u=0.47, df=inf
Slope: 1.76, u=0.12, df=inf
Correlation: -0.9
Sum of the squared residuals: 1.66476

More significant figures can be obtained with these commands

a, b = fit.a_b
print "a=%.15G, u=%.15G" % (value(a),uncertainty(a))
print "b=%.15G, u=%.15G" % (value(b),uncertainty(b))
print "cov(1,b)=%.15G" % (a.u*b.u*get_correlation(a,b))

giving

a=1.86666666666667, u=0.465474668125631
b=1.75714285714286, u=0.119522860933439
cov(1,b)=-0.05

These results agree with published values 2

a = 1.867, u(a) = 0.465
b = 1.757, u(b) = 0.120
cov(a,b) = -0.50
chi-squared = 1.665, with 4 degrees of freedom

The value of chi-squared should be compared with the Sum of the squared residuals above and
the degrees of freedom is the Number of points minus 2.

1 These examples also appear in BS DD ISO/TS 28037:2010 Determination and use of straight-line calibration functions, (British Stan-
dards Institute, 2010).

2 Section 6.3, page 13, in BS DD ISO/TS 28037:2010.

64 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

Application: an additional y observation

The regression results may be used to find a value of x that corresponds to another observation y. This is a typical
application of a calibration curve.

For example, if we observe 𝑦1 = 10.5, and 𝑢(𝑦1) = 0.5, we can estimate the corresponding stimulus 𝑥1 as follows

y1 = ureal(10.5,0.5)
x1 = (y1-a)/b
print "x1=%.15G, u=%.15G" % (value(x1),uncertainty(x1))

giving

x1=4.91327913279133, u=0.32203556012891

The result includes uncertainty in the estimates of slope and intercept, which have been propagated from the
uncertain numbers a and b.

Forward evaluation: an additional x value

The regression results can also be used to estimate the response 𝑦 corresponding to a stimulus 𝑥.

For example, if 𝑥2 = 3.5, and 𝑢(𝑥2) = 0.2, we estimate 𝑦2 as follows

x2 = ureal(3.5,0.2)
y2 = a + b*x2
print "y2=%.15G, u=%.15G" % (value(y2),uncertainty(y2))

giving

y2=8.01666666666667, u=0.406409531732455

Again, the uncertain number for 𝑦2 includes uncertainty in the estimates of slope and intercept.

Example 2: unequal weights

A series of six pairs of x-y observations have been collected.

The data sequences for x, y and the uncertainties are

x = [1,2,3,4,5,6]
y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
u_y = [0.5,0.5,0.5,1.0,1.0,1.0]

Again, a weighted least-squares regression can be used. This choice implies that the uncertainties in y values are
exactly known (i.e., they have infinite degrees of freedom)

fit = type_a.line_fit_wls(x,y,u_y)
print fit

This generates

Weighted Least-Squares Results:

Number of points: 6
Intercept: 0.89, u=0.53, df=inf
Slope: 2.06, u=0.18, df=inf
Correlation: -0.87
Sum of the squared residuals: 4.1308

6.3. Linear calibration 65

GUM Tree Calculator, Release 0.9.10

More significant figures can be obtained by the same commands used in Example 1:

a=0.885232067510549, u=0.529708143508836
b=2.05696202531646, u=0.177892016741205
cov(1,b)=-0.0822784810126582

These results agree with published values 3

a = 0.885, u(a) = 0.530
b = 2.057, u(b) = 0.178
cov(a,b) = -0.082
chi-squared = 4.131, with 4 degrees of freedom

Application: an additional y observation

After regression, the results for a and b can be used to calculate 𝑥 when a further observation of 𝑦 is available.
For example, if 𝑦1 = 10.5 and 𝑢(𝑦1) = 1.0, 𝑥1 is obtained in the same way as Example 1

y1 = ureal(10.5,1)
x1 = (y1-a)/b
print "x=%.15G, u=%.15G" % (value(x1),uncertainty(x1))

giving

x=4.67425641025641, u=0.533180902231294

Example 3: uncertainty in x and y

A series of six pairs of x-y observations have been collected.

The data sequences for x, y and the uncertainties are

x = [1.2,1.9,2.9,4.0,4.7,5.9]
u_x = [0.2] * 6
y = [3.4,4.4,7.2,8.5,10.8,13.5]
u_y = [0.2,0.2,0.2,0.4,0.4,0.4]

We need to use total least-squares regression in this case, because there is uncertainty in both the dependent and
independent variables. Weighted least-squares is used initially, to obtain an estimate of the slope and intercept,

fit_i = ta.line_fit_wls(x,y,u_y)
print fit_i

which produces

Weighted Least-Squares Results:

Number of points: 6
Intercept: 0.66, u=0.22, df=inf
Slope: 2.148, u=0.076, df=inf
Correlation: -0.89
Sum of the squared residuals: 9.70522

The weighted total least-squares regression algorithm uses these estimates of slope and intercept

fit = type_a.line_fit_wtls(fit_i.a_b,x,y,u_x,u_y)
print fit

3 Section 6.3, page 15, in BS DD ISO/TS 28037:2010.

66 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

giving

Weighted Total Least-Squares Results:

Number of points: 6
Intercept: 0.58, u=0.48, df=4.0
Slope: 2.16, u=0.14, df=4.0
Correlation: -0.9
Sum of the squared residuals: 2.74268

Again, more figures can be obtained using the same commands as in Example 1

a=0.578822122145264, u=0.480359046511757
b=2.15965656740064, u=0.136246483136605
cov(1,b)=-0.0586143419560877

These results agree with the published values 4

a = 0.5788, u(a) = 0.0.4764
b = 2.159, u(b) = 0.1355
cov(a,b) = -0.0577
chi-squared = 2.743, with 4 degrees of freedom

(The slight differences are due to a different number of iterations in the TLS calculation.)

Example 4: relative uncertainty in y

A series of six pairs of x-y observations values has been collected. The uncertainties in the 𝑦 values are not known.
However, a scale factor 𝑠𝑦 is given and it is assumed that, for every observation 𝑦, the associated uncertainty
𝑢(𝑦) = 𝑠𝑦𝜎. The common factor 𝜎 is not known, but can be estimated from the residuals. This is done by the
function line_fit_rwls.

We proceed as above

x = [1,2,3,4,5,6]
y = [3.014,5.225,7.004,9.061,11.201,12.762]
u_y = [1] * 6
fit = type_a.line_fit_rwls(x,y,u_y)

print fit

which displays

Relative Weighted Least-Squares Results:

Number of points: 6
Intercept: 1.17, u=0.16, df=4.0
Slope: 1.964, u=0.041, df=4.0
Correlation: -0.9
Sum of the squared residuals: 0.116498

More precise values of the fitted parameters are

a=1.172, u=0.158875093196181
b=1.96357142857143, u=0.0407953578791729
cov(a,b)=-0.00582491428571429

These results agree with the published values 5

4 Section 7.4, page 21, in BS DD ISO/TS 28037:2010.
5 Appendix E, pages 58-59, in BS DD ISO/TS 28037:2010.

6.3. Linear calibration 67

GUM Tree Calculator, Release 0.9.10

a = 1.172, u(a) = 0.159
b = 1.964, u(b) = 0.041
cov(a,b) = -0.006
chi-squared = 0.171, with 4 degrees of freedom

Note: In our solution, 4 degrees of freedom are associated with 𝑢(𝑎) and 𝑢(𝑏). This is the usual statistical
treatment. However, a trend in recent uncertainty guidelines is to dispense with the frequentist statistics notion
of degrees of freedom. So, in a final step, reference 1 multiplies 𝑢(𝑎) and 𝑢(𝑏) by an additional factor of 2. We
do not believe that this last step is correct. GTC uses the finite degrees of freedom associated with 𝑢(𝑎) and 𝑢(𝑏)
when calculating the coverage factor required for an expanded uncertainty.

Example 5: unknown uncertainty in y

The data in previous example could also have been processed with an ‘ordinary’ least-squares algorithm, because
the scale factor for each observation of y was unity. In effect, a series of six pairs of x-y observations were
collected and the variance associated with each observation was assumed the same.

We proceed as follows. The data sequences are defined and the ordinary least-squares function is applied

x = [1,2,3,4,5,6]
y = [3.014,5.225,7.004,9.061,11.201,12.762]
fit = type_a.line_fit(x,y)

print fit

which displays

Ordinary Least-Squares Results:

Number of points: 6
Intercept: 1.17, u=0.16, df=4.0
Slope: 1.964, u=0.041, df=4.0
Correlation: -0.9
Sum of the squared residuals: 0.116498

More precise values of the fitted parameters are

a=1.172, u=0.158875093196181
b=1.96357142857143, u=0.0407953578791729
cov(a,b)=-0.00582491428571429

The same results were obtained in Example 4.

Application: an additional response

After regression, if a further observation of 𝑦 becomes available, or a set of observations, then the corresponding
stimulus can be estimated.

For example, if we wish to know the stimulus 𝑥 that gave rise to a response 𝑦1 = 10.5, we can use the object fit
returned by the regression function (note that x_from_y takes a sequence of y values)

y1 = 10.5
x1 = fit.x_from_y([y1])
print summary(x1)

which displays

68 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

4.751, u=0.097, df=4

Forward evaluation: an additional stimulus

The regression results can also be used to predict a single future response 𝑦 for a given stimulus 𝑥.

For example, if 𝑥2 = 3.5 we can find 𝑦2 as follows

x2 = 3.5
y2 = fit.y_from_x(x2)
print summary(y2)

giving

8.04, u=0.18, df=4

In this case, the uncertainty includes the variability of individual responses. The method y_from_x incorporates
this information from the regression analysis.

Alternatively, the mean response to a stimulus 𝑥 can be obtained directly from the fitted parameters

x2 = 3.5
a, b = fit.a_b
y2 = a + b*x2
print summary(y2)

which gives

8.044, u=0.070, df=4

6.4 RF and microwave problems

6.4.1 Mismatch

• Known complex reflection coefficients

• Unknown phases

Known complex reflection coefficients

An effect called mismatch arises frequently in RF and microwave measurements. In the context of a simple power
measurement the mismatch correction factor is

𝑀 = |1 − ΓsΓg|2 ,

where Γs and Γg are complex reflection coefficients associated with a power sensor and a signal generator.

Suppose Γs ≈ 0.01 − j0.02 and Γg ≈ 0.04 − j0.07.

The standard uncertainties (for both the real and imaginary components) are 𝑢(Γs) = 0.025 and 𝑢(Γg) = 0.05.

To calculate the mismatch proceed as follows

6.4. RF and microwave problems 69

GUM Tree Calculator, Release 0.9.10

>>> G1 = ucomplex(0.01-0.02j,0.025,label='G1')
>>> G2 = ucomplex(0.04-0.07j,0.05,label='G2')
>>> M = mag_squared(1 - G1*G2)
>>> M.s
'1.0020, u=0.0046, df=inf'

The function reporting.budget displays the uncertainty budget

>>> for l,u in reporting.budget(M): print l,u
...
G1_im 0.0035065
G2_im 0.0020035
G1_re 0.00199675
G2_re 0.000998

Because 𝑀 is real-valued, the uncertainty budget is broken down in terms of the real and imaginary components
of the complex influence quantities.

Information about individual uncertainty components can be obtained with the function component, for example

>>> component(M,G1.imag)
0.0035065000000000001
>>> component(M,G2.imag)
0.0020035000000000001

Unknown phases

Often a mismatch term must be calculated without information about the phases of the reflection coefficients. In
that case the best estimate of the complex reflection coefficient is zero and the associated uncertainty depends on
what is known about the magnitudes of the reflection coefficients.

There are several possibilities:

1. the magnitude is known, |Γ| = 𝑎

2. there is an upper limit on the magnitude |Γ| ≤ 𝑎

Functions can be used to transform the information available in each of these cases into a standard uncertainty
(see: uniform_ring and uniform_disk).

In addition, the uncertainty associated with the product ΓsΓg in the mismatch calculation will not propagate when
the estimates are zero (a consequence of the linear approximation always made for uncertainty propagation).

For instance

>>> Gs = ucomplex(0,type_b.uniform_ring(0.07),label='Gs')
>>> Gg = ucomplex(0,type_b.uniform_ring(0.05),label='Gg')
>>> M = mag_squared(1 - Gs*Gg)
>>> M
ureal(1.0, 0.0, nan)

There are two ways of addressing this using GTC. One is to define an elementary uncertain number representing
the product 𝑋 = ΓsΓg

1. This can be done with unknown_phase_product, as follows

>>> us = type_b.uniform_ring(0.07)
>>> ug = type_b.uniform_ring(0.05)
>>> X = ucomplex(0, type_b.unknown_phase_product(us,ug),label = 'X')
>>> X
ucomplex(0j, [6.1250000000000015e-06,0.0,0.0,6.1250000000000015e-06], inf,
→˓label=X)

1 B D Hall, On the expression of measurement uncertainty for complex quantities with unknown phase, Metrologia, 48 (2011) 324-332,
on-line: http://mst.irl.cri.nz

70 Chapter 6. Examples

http://mst.irl.cri.nz/Publications/ComplexUncertainty/tabid/369/Default.aspx

GUM Tree Calculator, Release 0.9.10

>>> M = mag_squared(1 - X)
>>> M
ureal(1.0, 0.004949747468305833, inf)
>>> for cpt in rp.budget(M,trim=0):
... print " %s: %G" % cpt
...

X_re: 0.00494975
X_im: 0

Alternatively, function.mul2may be used. This implements a second-order extension of the basic uncertainty
propagation method

>>> X = fn.mul2(Gs,Gg)
>>> M = mag_squared(1 - X)
>>> M
ureal(1.0, 0.0049497474683058325, inf)
>>> for cpt in rp.budget(M,trim=0):
... print " %s: %G" % cpt
...

Gs_re: 0.00247487
Gs_im: 0.00247487
Gg_re: 0.00247487
Gg_im: 0.00247487

The second method has the advantage that uncertainty components associated with Gs and Gg are propagated into
M. However, the method is non-standard and goes beyond the usual linear approximation associated with uncertain
propagation.

Note there are restrictions on the arguments that can be used with mul2.

6.4.2 Equivalent reflection coefficient

• Direct calculation

• Using a function

• Using a class

Direct calculation

There is a well-known expression for the reflection coefficient seen looking back into a linear two-port network
when the far port is terminated by something with a reflection coefficient Γ,

Γ′ = 𝑆11 +
𝑆21𝑆12Γ

1 − 𝑆22Γ
,

where the 𝑆𝑖𝑗 are complex-valued S-parameters describing the two-port network.

If the values and uncertainty of the S-parameters and Γ are known, we can calculate Γ′.

For example

>>> S11 = ucomplex(0.05 - 0.03j, 0.02, label='S11')
>>> S21 = ucomplex(0.91 - 0.06j, 0.03, label='S21')
>>> S12 = ucomplex(0.95 - 0.02j, 0.03, label='S12')
>>> S22 = ucomplex(0.07 + 0.02j, 0.02, label='S22')

>>> Gamma = ucomplex(0.3+0.2j, (0.02,0.04), label = 'Gamma')

6.4. RF and microwave problems 71

GUM Tree Calculator, Release 0.9.10

the effective reflection coefficient Γ′ is

>>> G_eff = S11 + (S12 * S21 * Gamma)/ (1 - S22 * Gamma)
>>> value(G_eff)
(0.325548278712+0.128302101296j)
>>> uncertainty(G_eff)
standard_uncertainty(real=0.03064091238057904, imag=0.0435781566142131)

Using a function

A function that calculates the effective reflection coefficient could be used more conveniently when there is a
number of different sets of measurements. One possible implementation is

def gamma_equiv(Gamma,S11,S21,S12,S22):
"""Return the effective reflection coefficient
"""
num = S12 * S21 * Gamma
den = 1.0 - S22 * Gamma
return S11 + num/den

Here we use the S-parameters and Γ defined earlier and generate an uncertainty budget (the numbers displayed are
summary values, see reporting.u_bar)

>>> Gamma_prime = gamma_equiv(Gamma,S11,S21,S12,S22)
>>> print summary(Gamma_prime)
>>> for influence,u_cpt in reporting.budget(Gamma_prime):
... print influence,':',u_cpt

The output is

(0.326+0.128j), u=[0.031,0.044], r=0.033, df=inf
Gamma : 0.0283476068202
S11 : 0.02
S21 : 0.0104536840276
S12 : 0.0100330480747
S22 : 0.00233071809794

Using a class

If the reflection coefficient is to be calculated repeatedly, while the set of S-parameters remains unchanged, a class
is also a convenient option

class TwoPort(object):
def __init__(self,S11,S21,S12,S22):

self.S11 = S11
self.S12 = S12
self.S21 = S21
self.S22 = S22

def gamma_equiv(self,gamma):
num = self.S12 * self.S21 * gamma
den = 1 - self.S22 * gamma
return self.S11 + num/den

TwoPort objects calculate the effective reflection coefficient for different values of Γ

>>> two_port = TwoPort(S11,S12,S21,S22)
>>> G_eff = two_port.gamma_equiv(Gamma)
>>> value(G_eff)
(0.325548278712+0.128302101296j)
>>> uncertainty(G_eff)

72 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

standard_uncertainty(real=0.03064091238057904, imag=0.0435781566142131)

>>> Gamma2 = ucomplex(0.9+0.12j, (0.03,0.03), label = 'Gamma2')
>>> G_eff2 = two_port.gamma_equiv(Gamma2)
>>> print summary(G_eff2)
(0.885+0.032j), u=[0.055,0.055], r=0.0, df=inf

6.4.3 One-port vector network analyser calibration

• Theory

• Calibration software

– Explanation

• one_port_cal.py

– Explanation

This example involves a typical microwave measurement procedure that corrects for systematic errors in a vector
network analyser (VNA). This is commonly referred to as VNA ‘calibration’.

Theory

Calibration of one port of a VNA can be carried out by measuring three standards, each with a nominal value
(perhaps from a calibration report). The pairs of measured and nominal values are used to calculate terms that are
used to adjust raw VNA readings for systematic errors during VNA operation.

The correction terms can be found by solving for 𝐴, 𝐵 and 𝐶 in the following equations⎡⎣ Γ1 1 −Γm
1 Γ1

Γ2 1 −Γm
2 Γ2

Γ3 1 −Γm
3 Γ3

⎤⎦ ⎡⎣ 𝐴
𝐵
𝐶

⎤⎦ =

⎡⎣ Γm
1

Γm
2

Γm
3

⎤⎦
where Γ1, etc, are the nominal reflection coefficients of the standards and Γm

1 , etc, are the corresponding measured
values (all complex numbers).

𝐴, 𝐵 and 𝐶 can be found by standard methods of linear algebra. In one final step, the conventional VNA error
terms are obtained

𝐸D = 𝐵 ,

𝐸S = −𝐶 ,

𝐸R = 𝐴−𝐵𝐶 .

Calibration software

The calibration script makes use of the function osl, defined in one_port_cal.py 1.

"""
A one-port VNA calibration using uncertain numbers.

This script shows how uncertain number data for both measured
values and nominal values (e.g., from a calibration certificate)
can be used to evaluate the three error terms of a one-port
vector network analyser.

1 A special module one_port_cal.py, stored in the gtc/lib/rf folder of the installation, is used in this example. one_port_cal.py is an
example of a user-defined extension module for GTC.

6.4. RF and microwave problems 73

GUM Tree Calculator, Release 0.9.10

The script uses the function OSL(), defined in another module
(rf.one_port_cal), to evaluate the errors.

The module 'rf.one_port_cal' is the file
'.../gtc/lib/rf/one_port_cal.py', where '.../gtc' means
the folder where gtc has been installed (e.g. /Program Files/gtc).

"""
BEGIN_preamble
from rf.one_port_cal import osl
END_preamble

print "Example one-port Open-Short-Load calibration"
print "=="
print

BEGIN_inputs
#---
Measured data is a sequence of uncertain complex numbers
#
measured = (

ucomplex(-0.188 - 0.902j,0.05), # std 1
ucomplex(0.239 + 0.936j,0.05), # std 2
ucomplex(0.006 + 0.007j,0.05), # std 3

)

#---
Nominal data is a sequence of uncertain complex numbers
#
nominal = (

ucomplex(-1 + 0j,0.01), # std 1
ucomplex(1 + 0j,0.01), # std 2
ucomplex(0 + 0j,0.01), # std 3

)
END_inputs

#---
The errors are calculated by the OSL() function in
the module 'rf.one_port_cal'
#
BEGIN_calibration
errors = osl(measured,nominal)
END_calibration

BEGIN_error_terms
#---
Report the results
#
print "One-port errors"
print "---------------"
print 'E_D', summary(errors.E_D)
print 'E_S', summary(errors.E_S)
print 'E_R', summary(errors.E_R)
END_error_terms

print

BEGIN_correlations
#---
The errors are not independent. The most significant
correlation occurs between the directivity and the
source match terms.

74 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

#
q = get_correlation(errors.E_D,errors.E_S)

print "Correlation between components of E_S and E_D"
print "---"
print " E_S_re and E_D_re :" , q.rr
print " E_S_re and E_D_im :" , q.ri
print " E_S_im and E_D_re :" , q.ir
print " E_S_im and E_D_im :" , q.ii
END_correlations

Explanation

The function osl is imported from the user-defined library

from rf.one_port_cal import osl

Next, measured and nominal standards are defined, using ucomplex. When a single real number specifies the
uncertainty, it means that the standard uncertainties associated with the real and imaginary components are equal

#---
Measured data is a sequence of uncertain complex numbers
#
measured = (

ucomplex(-0.188 - 0.902j,0.05), # std 1
ucomplex(0.239 + 0.936j,0.05), # std 2
ucomplex(0.006 + 0.007j,0.05), # std 3

)

#---
Nominal data is a sequence of uncertain complex numbers
#
nominal = (

ucomplex(-1 + 0j,0.01), # std 1
ucomplex(1 + 0j,0.01), # std 2
ucomplex(0 + 0j,0.01), # std 3

)

The error-correction terms are calculated by osl

errors = osl(measured,nominal)

The results are returned in a namedtuple called errors.

#---
Report the results
#
print "One-port errors"
print "---------------"
print 'E_D', summary(errors.E_D)
print 'E_S', summary(errors.E_S)
print 'E_R', summary(errors.E_R)

Giving the following output:

One-port errors

E_D (0.0060+0.0070j), u=[0.051,0.051], r=0.00, df=inf
E_S (0.015-0.018j), u=[0.066,0.066], r=0.00, df=inf
E_R (0.213+0.919j), u=[0.036,0.036], r=0.00, df=inf

6.4. RF and microwave problems 75

GUM Tree Calculator, Release 0.9.10

There may be correlation between the components of different error terms (the function get_correlation
returns a namedtuple of four elements with attributes: .rr, .ri, etc.). The most significant correlation
coefficient, in this case, is between the directivity and the source-match.

We write

#---
The errors are not independent. The most significant
correlation occurs between the directivity and the
source match terms.
#
q = get_correlation(errors.E_D,errors.E_S)

print "Correlation between components of E_S and E_D"
print "---"
print " E_S_re and E_D_re :" , q.rr
print " E_S_re and E_D_im :" , q.ri
print " E_S_im and E_D_re :" , q.ir
print " E_S_im and E_D_im :" , q.ii

which produces the output:

Correlation between components of E_S and E_D

E_S_re and E_D_re : -0.184749680584
E_S_re and E_D_im : 0.795245697689
E_S_im and E_D_re : -0.795245697689
E_S_im and E_D_im : -0.184749680584

one_port_cal.py

The extension module one_port_cal.py defines osl, which was used to solve the set of simultaneous equa-
tions in the calibration procedure. Here we show the full module and discuss its structure.

"""
A module for one-port vector network analyser (VNA) calibration.

The function :func:`osl` evaluates the three error terms of
a one port: directivity, source match and reflection tracking.

The return type of :func:`osl` is a ``namedtuple``, which
allows the caller to access the error terms by name, e.g.::

nt = osl(m,n)
print nt.E_S

The class :class:`OnePort` can be used to store one-port errors
and apply corrections to raw VNA readings.

"""
BEGIN_preamble
from __future__ import division
from GTC import *

import collections

#---
A named tuple can be indexed by its element labels
#
OnePortErrors = collections.namedtuple('one_port_errors','E_D E_S E_R')

76 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

END_preamble

__all__ = (
'osl',
'OnePort',
'OnePortSimpleRandom',

)

BEGIN_osl
#--
def osl(measured,nominal):

"""
Return the 1-port errors in a sequence (E_D, E_S, E_R)

'measured', 'nominal' are 3-element sequences of complex numbers

The function solves a system of 3 simultaneous equations
to obtain the three complex reflectometer errors.

"""
H = [(nominal[0], unity, -nominal[0] * measured[0]),
etc
]
H = la.array([(n,1.0,-n * m) for m,n in zip(measured,nominal)])
b = la.array(measured)

ABC = la.solve(H,b)

E_D=ABC[1]
E_S=-ABC[2]
E_R=ABC[0] - ABC[1] * ABC[2]

return OnePortErrors(E_D,E_S,E_R)
END_osl

#--
BEGIN_OnePort
class OnePort(object):

"""
Corrects raw measurements for systematic one-port errors

OnePort objects are initialised with the three errors
normally associated with a VNA port (E_D : directivity,
E_S : source match, E_R : reflection tracking).

:method:`correct` is called to correct a raw VNA reading.
It returns the corresponding error-corrected reflection
coefficient.

:method:`correct` calls :method:`random`, which should
be over-ridden in base classes to include uncertainty
due to random influences.
"""

def __init__(self,E_D,E_S,E_R):
self.E_D = E_D
self.E_S = E_S
self.E_R = E_R

def correct(self,G_raw):
"""
Return error-corrected reflection coefficient

6.4. RF and microwave problems 77

GUM Tree Calculator, Release 0.9.10

"""
tmp = G_raw - self.E_D
G = tmp / (self.E_S * tmp + self.E_R)

return self.random(G)

Re-define this in derived classes
Here `random` does nothing
def random(self,g): return g

END_OnePort

Explanation

An extension module is similar to a script. However, the GTC modules must be imported 2. This is done by the
line from GTC import * in the preamble:

from __future__ import division
from GTC import *

import collections

#---
A named tuple can be indexed by its element labels
#
OnePortErrors = collections.namedtuple('one_port_errors','E_D E_S E_R')

The line

from __future__ import division

is also important. This statement must appear at the beginning of the preamble of any extension module. Without
it, integer division may result in unwanted truncation. For example,

>>> 2 / 4
0

but when __future__.division is imported, the quotient is a real number

>>> 2 / 4
0.5

The standard Python module collections is imported to get access to the namedtuple class, which pro-
vides a convenient way of returning several results from a function. In one_port_cal.py, the a named
tuple OnePortErrors can be accessed by the more meaningful attributes: E_D, E_S and E_R. Also, if a
OnePortErrors object is printed, the attributes are associated with the corresponding elements, which is eas-
ier to read.

6.5 Working with Files

6.5.1 Reading and Writing XLS files

2 When a script is executed, the GTC modules are automatically part of the environment. However, this not the case for code that is written
inside extension modules.

78 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

• Creating an XLS file

• Reading an XLS file

• Writing to an existing XLS file

The XLS file format is used by spreadsheet applications.

GTC includes third-party packages (xlrd, xlwt and xlutils) that support .xls files. These modules can be
used to read existing xls files or to create new files.

A good knowledge of Python is required. The package authors have prepared a useful guide, which is available
for download (http://www.simplistix.co.uk/presentations/python-excel.pdf).

This section gives some very simple examples.

Creating an XLS file

The following code creates a new spreadsheet called demo.xls, with one worksheet Test, and saves it in a
folder \tmp.

from xlwt import Workbook
from xlwt.Utils import cell_to_rowcol2, col_by_name

#--
def number_to_xls(z):

"""Converts complex to suitable XLS format
"""
if isinstance(z,complex):

return ns.to_string(z)
else:

return z
#--

Create an empty workbook
book = Workbook()

Create a sheet
sheet = book.add_sheet('Test')

Write to 3 cells on the top row
sheet.write(0,0, 'A1')
sheet.write(0,col_by_name('B'), 'B1')
r,c = cell_to_rowcol2('C1')
sheet.write(r, c, 'C1')

Write to 3 cells on row 6
row = sheet.row(5)
data = (1.1,200,3+7j)
for i,d in enumerate(data):

row.write(i, number_to_xls(d))

Save the file
path = r'C:\tmp\demo.xls' # Change this to suit
book.save(path)

When demo.xls is opened in a spreadsheet application we see

6.5. Working with Files 79

http://www.simplistix.co.uk/presentations/python-excel.pdf

GUM Tree Calculator, Release 0.9.10

There is a write function associated with sheet objects that can set cell contents.

The first two arguments to write are the row and column indices, respectively. These are integers starting from
0. As an alternative, there is a function col_by_name that takes a letter for the column and converts it into
an index. There is also a function cell_to_rowcol2 that converts a normal cell reference (a column letter
followed by a row number) into a pair of indices.

The third argument to write is the cell value. Strings (first row of the example) and ordinary numbers may be
stored directly. However, complex numbers need to be reformatted as strings.

The function number_to_xls, defined above, converts a complex number to a string, but leaves all other types
of argument unchanged. With this function, all three number types in row 6 of the spreadsheet (float, integer and
complex) can be treated the same way.

Reading an XLS file

The following code reads demo.xls and prints the numbers

from xlrd import open_workbook

Change this to suit
path = r'C:\tmp\demo.xls'

book = open_workbook(path)
sheet = book.sheet_by_name('Test')

print row 1
for c in range(3):

cell = sheet.cell(0,c)
print cell.value

Collect row 6 in a list and print it
row6 = [ns.to_numeric(sheet.cell(5,c).value) for c in range(3)]
print "Row 6: %s" % row6

The output is

A1
B1
C1
Row 6: [1.1, 200.0, (3+7j)]

The cell function addresses the cells in a sheet and the value attribute is accesses a cell’s contents.

80 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

Reading the first row, the column index ranges from 0 to 2 as the strings saved earlier are printed on successive
lines.

Reading row 6, a list of numbers is obtained. Again the column index ranges from 0 to 2. Each value is passed
to the function number_strings.to_numeric, which in this case converts the complex XLS format into a
Python complex number.

Writing to an existing XLS file

These third-party modules are primarily used for reading an existing file (xlrd) and creating new files (xlwt).
However, there may also be a need modify or add data to an existing file.

A function copy allows a workbook that has been opened for reading to be changed into a workbook that can be
modified and saved by xlwt. The following short example shows how.

from xlrd import open_workbook
from xlutils.copy import copy as copy_workbook

Change this to suit
path = r'C:\tmp\demo.xls'

#---
Simplify access to worksheets by name
#
def get_sheet(wb,name):

"""Return the worksheet called `name`
"""
try:

idx = wb._Workbook__worksheet_idx_from_name[name.lower()]
return wb._Workbook__worksheets[idx]

except KeyError:
print "sheet name %s not found" % repr(name)

#---

wb = open_workbook(path)
wb = copy_workbook(wb)

sheet = get_sheet(wb,'Test')

data = (1,12,2012)
r = 2
for c,datum in enumerate(data,3):

sheet.write(r,c,datum)

wb.save(path) # overwrites

The function get_sheet is a convenience, because there is no simple way to obtain a worksheet by name when
the workbook object is of the type that can be saved (this is also the case for a new workbook, as in Creating an
XLS file).

In this example, numbers are added to cells D3, E3 and F3.

6.5. Working with Files 81

GUM Tree Calculator, Release 0.9.10

Note: When the workbook is saved, the older file is replaced (without warning!).

Warning: Information about macros or user-defined functions is not copied!

6.5.2 Reading and Writing XLSX files

• Creating an XLSX file

• Reading an XLSX file

The XLSX file is a common in spreadsheet applications.

GTC includes a third-party package (openpyxl) that supports .XLSX files. It can be used to read and create new
.xlsx files.

A knowledge of Python is required. The package authors have prepared a useful guide, which is available on-line
at http://packages.python.org/openpyxl/tutorial.html.

This section shows some very simple examples.

Creating an XLSX file

The following code creates a new spreadsheet called demo.xlsx, with one worksheet Test, and saves it in a
folder tmp.

import os
import openpyxl

#--
def number_to_xlsx(z):

"""Converts complex to suitable XLSX format
"""
if isinstance(z,complex):

return ns.to_string(z)
else:

return z

Change this to suit
path = r'C:\tmp\demo.xlsx'

Create an empty workbook
book = openpyxl.Workbook()

82 Chapter 6. Examples

http://packages.python.org/openpyxl/tutorial.html

GUM Tree Calculator, Release 0.9.10

Get the only sheet
sheet = book.get_active_sheet()
sheet.title = 'Test'

Write to individual cells
cell_A1 = sheet.cell('A1')
cell_A1.value = 'a1'

the row and column assignments are needed
Note that indexing is base-1
cell_B1 = sheet.cell(row=1, column=2)
cell_B1.value = 'b1'

Write some numerical data
data = (1.1,200,3+7j)
rng = sheet.range('A6:C6')
for r in rng:

for cell, d in zip(r, data):
cell.value = number_to_xlsx(d)

book.save(path)

When demo.xlsx is opened in a spreadsheet application we see

This example shows that the cell contents can be set by assignment to the value attribute. Cells can be addressed
by the conventional letter-number coordinates, or row and column indices (integers).

Strings and ordinary numbers may be stored directly. However, complex numbers need to be formatted as strings.
The function number_to_xlsx, defined at the beginning of the example, converts a complex number into a
string but leaves all other types of number unchanged.

Reading an XLSX file

The following code reads the file demo.xlsx and prints the numbers saved

import os
import openpyxl

Change this to suit
path = r'C:\tmp\demo.xlsx'

book = openpyxl.load_workbook(path)
sheet = book.get_sheet_by_name('Test')

print row 1
Note that indexing is base-1
for c in range(1,3+1):

cell = sheet.cell(row=1,column=c)
print cell.value

6.5. Working with Files 83

GUM Tree Calculator, Release 0.9.10

Collect row 6 in a list and print it
row6 = [ns.to_numeric(sheet.cell(row=6,column=c).value) for c in range(1,3+1)]
print "Row 6: %s" % row6

The output is

A1
B1
None
Row 5: [1.1, 200.0, (3+7j)]

In this case the value attribute of a cell is used to look at the contents.

Reading row 6, a list of numbers is created. Again the column index ranges from 1 to 3. Each value is passed to the
function number_strings.to_numeric, which converts the complex-number text format back to complex
numbers.

6.5.3 Reading and Writing CSV files

• Creating a CSV file

• Reading an CSV file

The CSV file is used by spreadsheet applications and databases.

A standard Python module can be used to read existing csv files or to create new ones.

A good knowledge of Python is required.

This section shows some very simple examples.

Creating a CSV file

The following code creates a file called demo.csv, and saves it in a folder tmp.

import csv

Labels for columns
columns = ('A','B','C')

output_data = [
(0.01+0.03j,0.02+0.033j,-1),
(0.97E0-1.397E-7j,0.933333,0.975-0.005j),
(0.005+0.01j,0.0-0.01j,0.001+0.001j)

]

path = r'C:\tmp\demo.csv' # Change this to suit
file = open(path,mode='wb') # Must open in 'binary' mode

writer = csv.writer(file)

writer.writerow(columns)
writer.writerows(

number_strings.sequence_printer(output_data)
)
file.close()

84 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

When demo.csv is opened in a spreadsheet application we see

There is a writer class associated with csv file objects that can be used to set the contents of cells.

The class has a writerow function that takes a sequence of data and writes one row of the file. This is used
above to write the three column labels.

The writer class also has a writerows function that takes a sequence of sequences and stores
them as a series of lines. The output_data above are stored by this function. Note the use of
number_strings.sequence_printer to convert numbers into a suitable string format before saving
them. This ensures that numerical precision is not lost.

Reading an CSV file

The following code reads demo.csv and prints the numbers saved earlier.

import csv

path = r'C:\tmp\demo.csv' # Change this to suit

file = open(path,mode='rb') # Open in 'binary' mode
reader = csv.reader(file)

header = reader.next()
table = number_strings.sequence_parser(reader)
file.close()

Display the data.
#
Nr = len(table)
Nc = len(header)
print "columns: %s" % str(header)
for r in range(Nr):

for c in range(Nc):
print table[r][c],

print

The output is

>>> columns: ['A', 'B', 'C']
(0.01+0.03j) (0.02+0.033j) -1
(0.97-1.397e-07j) 0.933333 (0.975-0.005j)
(0.005+0.01j) -0.01j (0.001+0.001j)

There is a reader class associated with csv file objects that can be used to get the contents a file.

The reader.next() function returns a sequence corresponding to the next row of data in the file.

The number_strings.sequence_parser takes a reader object and returns a sequence of sequences
(rows) of data stored in the file. This quietly converts numbers back from the string format used in the csv file.

6.5.4 Archive to a file

6.5. Working with Files 85

GUM Tree Calculator, Release 0.9.10

• Calibration

• Using the calibration

The example Linear Calibration Equations is used again here to demonstrate archiving.

In this simple scenario, a pressure sensor is calibrated in a laboratory and then returned to the owner with calibra-
tion data stored in an archive and a calibration equation defined in GTC code.

There are two parts to the example. First, the coefficients of a calibration line are determined and archived. This
is the calibration phase, performed by a calibration laboratory. Then, in a second phase, the sensor is returned to
the owner with a report that includes the calibration equation and archived data. This can be used later to convert
raw sensor readings into pressures with full uncertainty propagation.

Calibration

The calibration process is carried out

y_data = (0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0)
x_data = (

0.0000,0.2039,0.4080,0.6120,0.8160,1.0201,
1.2242,1.4283,1.6325,1.8367,2.0410

)

u_ycal_rel = 0.000115
u_res = type_b.uniform(0.00005)

x_0 = x_data[0] - ureal(0,u_res,label='e_res_0')
x_10 = x_data[10] - ureal(0,u_res,label='e_res_10')

y_0 = ureal(y_data[0],y_data[0]*u_ycal_rel,label='y_0')
y_10 = ureal(y_data[10],y_data[10]*u_ycal_rel,label='y_10')

b = (y_10 - y_0)/(x_10 - x_0)
a = y_10 - b * x_10

An archive is created and the results saved

sensor_archive = archive.Archive()
sensor_archive.add(a=a,b=b)

file = open('sensor_cal.gar','wb')
archive.dump(file,sensor_archive)
file.close()

Using the calibration

Now the sensor has been returned to its owner, with calibration data stored in a file and a calibration equation has
been provied in a short GTC script:

#--------- Uncertainties
u_lin = type_b.uniform(0.005)
u_res = type_b.uniform(0.00005)

#--------- Calibration equation
def cal_fn(x):

"""-> pressure estimate

:arg x: sensor reading (a number)
:returns: an uncertain number representing the

86 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

applied pressure
"""
e_res_i = ureal(0,u_res,label='e_res_i')
e_lin_i = ureal(0,u_lin,label='e_lin_i')

return a + b * (x + e_res_i) + e_lin_i

file = open('sensor_cal.gar','rb')
sensor_archive = archive.load(file)
file.close()

This code defines the equation, as well as two sensor uncertainty values (as in Linear Calibration Equations). It
then loads the archive from the file.

Executing this script with the GTC command line option -i 1, we may interrogate the sensor_archive. There
are a number of functions available. For instance,

>>> print sensor_archive.keys()
['a', 'b']

>>> print sensor_archive.items()
[('a', ureal(9.0, 0.00015558189517603834, inf)),

('b', ureal(5.3895149436550716, 0.0011320432435879308, inf))]

If some data is collected, we may apply the calibration function as follows

>>> data = [0.4080,0.6120,0.8160,1.0201,1.2242,1.4283]
>>> pressure = [cal_fn(x) for x in data]
>>> for p in pressure: print summary(p)
11.1989, u=0.0029, df=inf
12.2984, u=0.0030, df=inf
13.3978, u=0.0030, df=inf
14.4978, u=0.0031, df=inf
15.5978, u=0.0032, df=inf
16.6978, u=0.0033, df=inf

We could also manipulate the results of pressure measurements, such as taking the ratio of readings

>>> p1_p4 = cal_fn(data[1]) / cal_fn(data[4])
>>> p1_p4
ureal(0.7884668542996432, 0.00023743756188459778, inf)

Note that the uncertainty in the ratio is rather smaller than the uncertainty of a single pressure measurement. This
is because uncertainty components of the calibration coefficients a and b are common to both observations 2. The
contribution from these components is nearly canceled in a ratio.

6.5.5 Text File Input and Output

• Simple GTC files

– Operating system commands

– Data

– Writing

– Reading

1 After all script files have been processed, the -i option places GTC in interactive mode
2 These common components originate in the pairs of (x,y) data that were used to estimate the slope and intercept of the calibration line.

6.5. Working with Files 87

GUM Tree Calculator, Release 0.9.10

• Text files

– Writing

– Reading

This section presents two examples that read and write numeric data using text files. A small table of numerical
data is stored and retrieved.

• The first example uses a GTC class to handle numeric values. Simple Python commands that navigate the
Windows file structure are also explained.

• The second example shows how GTC functions can convert between numbers and text strings.

Note: Most aspects of reading and writing data from files is described very well by introductory material about
Python.

Simple GTC files

This example illustrates how to use number_strings.File to work with a file containing numeric data, to
make sure that numerical precision is conserved.

The script is included in the GTC install directory as examples\simple_file.py.

Operating system commands

We first select a file directory using commands from the Python operating system module os.

• os.getcwd : returns the current working directory

• os.chdir : sets the current working directory

• os.path.normpath : normalises the path

• os.path.exists : makes sure that the path exists

We display the current directory, prompt for a different path (the current directory is the default) and ensure that
any alternative path entered by the user is in fact a valid directory.

import os

cwd = os.getcwd()
path = os.path.normpath(raw_input("path [default: %s]: " % cwd))
assert os.path.exists(path), "'%s' does not exist" % path

os.chdir(path)
print("writing to: %s\\%s" % (os.getcwd(),'data.txt'))

Note: the assert statement raises an exception if os.path.exists(path) is False.

Data

A 3-by-3 array of numbers is to be saved. The rows of data are entered in a list, where each element is a
sequence of three numbers. A sequence of column labels is also defined:

output_data = [
(0.01+0.03j,0.02+0.033j,-1),
(0.97E0-1.397E-7j,0.933333,0.975-0.005j),
(0.005+0.01j,0.0-0.01j,0.001+0.001j)

88 Chapter 6. Examples

http://docs.python.org/release/2.7/library/os.html#module-os

GUM Tree Calculator, Release 0.9.10

]
columns = ('A','B','C')

Writing

We open a file called data.txt, write one line containing column labels, then write three more lines of numerical
data, separated by commas.

with ns.File('data.txt',mode='w',delim=',') as file:
file.write(columns)
file.newline()

Write each line of data with numbers separated by commas.
#
for row in output_data:

file.write(row)
file.newline()

Reading

This code opens data.txt, reads the column headers (first line) and then reads the remaining data.

with ns.File('data.txt',mode='r',delim=',') as file:
cols = file.readline()

Read the remaining lines.
#
table = file.readlines()

The data is displayed by:

print('columns:'),
for column in header:

print(column),
print

for line in table:
for element in line:

print(element),
print

The output will look something like:

path [default: C:\Users\user.name\AppData\Local\GTC\examples]
writing to: C:\Users\user.name\AppData\Local\GTC\examples\data.txt
columns: A B C
(0.01+0.03j) (0.02+0.033j) -1
(0.97-1.397e-07j) 0.933333 (0.975-0.005j)
(0.005+0.01j) -0.01j (0.001+0.001j)

Text files

Standard Python commands are used to read and write strings in a text file. Functions from number_strings
are used to convert between number and string formats while maintaining numerical precision.

The script is included in the GTC install directory as examples\simple_text_file.py.

6.5. Working with Files 89

GUM Tree Calculator, Release 0.9.10

Writing

We use the same Data as above. To save this data in a text file, the numbers must be converted to a suitable string
format.

A file called data.txt is created and the line of column labels is saved, followed by three more lines of numer-
ical data, separated by commas:

file = open('data.txt',mode='w')
columns_str = ", ".join(columns)
file.write(columns_str + '\n')

for row in output_data:
line_str = ", ".join(number_strings.sequence_printer(row))
file.write(line_str + '\n')

file.close()

Note: To form a string by joining the elements of sequence we used the Python idiom

string = sep.join(sequence)

in which the sequence elements will be separated by sep. The GTC function
number_strings.sequence_printer converts a sequence of numbers into a sequence of strings.

Reading

The file data.txt is opened and the column headers (first line) are read. Then the remaining lines that contain
the data are read:

file = open('data.txt',mode='r')
header = file.readline().strip().split(',')

lines = file.read().splitlines()
file.close()

lines is a list of strings containing the numbers separated by commas.

The data structure table assembled the numeric data. Each row in table is a list of numbers converted from
the string representation

table = []
for s in lines:

line = s.split(',')
numbers = number_strings.sequence_parser(line)
table.append(numbers)

Note: split breaks a string into a sequence of smaller strings, using the argument as a delimiter. Here, it uses
commas to locate the substrings.

number_strings.sequence_parser transforms a sequence of strings representing numbers into a se-
quence of numbers.

The data is displayed by:

print('columns:'),
for column in header:

90 Chapter 6. Examples

GUM Tree Calculator, Release 0.9.10

print(column),
print

for line in table:
for element in line:

print(element),
print

The output is:

path [default: C:\Users\user.name\AppData\Local\GTC\examples]
writing to: C:\Users\user.name\AppData\Local\GTC\examples\data.txt
columns: A B C
(0.01+0.03j) (0.02+0.033j) -1
(0.97-1.397e-07j) 0.933333 (0.975-0.005j)
(0.005+0.01j) -0.01j (0.001+0.001j)

6.5. Working with Files 91

GUM Tree Calculator, Release 0.9.10

92 Chapter 6. Examples

CHAPTER

SEVEN

FREQUENTLY ASKED QUESTIONS

• What is GTC?

• What does that funny symbol mean?

• How do I report a bug in GTC?

• Can I do a type-A analysis on a set of uncertain numbers?

• Can I use CSV (comma-separated value) files?

• Can I use .XLS spreadsheet files?

• Can I use .XLSX spreadsheet files?

• Can I use RTF (rich text format) files?

• How do I define an uncertain number with relative uncertainty?

• Is there a simple way to chain GTC calculations?

• Why does the GTC window close before I can read anything?

7.1 What is GTC?

International guidelines on how to calculate measurement uncertainty and report results are readily available 1.
The guidelines are excellent and have been widely adopted.

The GUM Tree Calculator (GTC) is a software tool designed to simplify the application of these guidelines. It
also extends the approach recommended for real-valued quantities so that problems involving complex-valued
quantities can be handled.

GTC is developed at the Measurement Standards Laboratory of New Zealand (MSL) 3, the national metrology
institute in New Zealand.

GTC can be used as an interactive calculator, or as a batch processing tool. It is self-contained (requiring no
supporting software), programmable (using the Python language 2) and can be configured for specific applications.

We think that GTC will appeal to a wide range of users, from students of engineering and physical sciences
needing to process experimental data, to professional metrologists working in calibration laboratories that have
strict requirements for quality standards.

Being a stand-alone application, GTC is resilient to changes elsewhere in a computer system. This is important
in the context of quality standards such as ISO 17025 4 (which many calibration laboratories adhere to, including

1 BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum

3 http://msl.irl.cri.nz/
2 http://www.python.org/
4 ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories (see http://en.wikipedia.org/wiki/

ISO/IEC_17025)

93

http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461
http://msl.irl.cri.nz/
http://www.python.org/
http://en.wikipedia.org/wiki/ISO/IEC_17025
http://en.wikipedia.org/wiki/ISO/IEC_17025

GUM Tree Calculator, Release 0.9.10

MSL).

GTC runs on Windows operating systems 5. It is a simple console application (i.e. command prompt) without a
graphical user interface.

7.2 What does that funny symbol mean?

Python defines symbols for a variety of operations. For example, ** represents ‘to the power of’, e.g.

>>> 2**3
8

If you encounter a symbol and want to find out what it means, use the Python Help file. Type in the symbol at the
index search tab on the left. Here is an example using the % symbol

The information available may be a little terse. If so, choose a few key words from the Help file and then do an
internet search on them.

For example, suppose we need information about %. We select the % formatting entry in the Help, which
is the right topic, but find the information there difficult to follow. Nevertheless, from what we see, the topic of
interest is something like ‘string formatting’. So, then an internet search on “Python string formatting tutorial”
brings up a range of helpful material.

7.3 How do I report a bug in GTC?

Please send us a short example that demonstrates the problem.

5 GTC is a ‘win32 console’ application. To date, it has been used successfully with Windows XP, Windows Vista, Windows 7 and Windows
10.

94 Chapter 7. Frequently Asked Questions

GUM Tree Calculator, Release 0.9.10

7.4 Can I do a type-A analysis on a set of uncertain numbers?

There will be situations where data is subject to some errors that are accounted for by type-B uncertainty compo-
nents, while other sources of error cause the observations to fluctuate, so a type-A analysis would be appropriate.

For example, an instrument readout is subject to an unknown offset error, due to imperfect adjustment, in addition
to noise that changes from one reading to the next. The offset error estimate is zero, but there is uncertainty
associated with this estimate.

Suppose five readings are observed when the input stimulus is fixed

1.2090047238650097, 1.1920239005254694, 1.2023705451450373,
1.1999502398020352, 1.2120802857623008

and the type-B standard uncertainty associated with the offset error is 0.01.

We first create a sequence of uncertain-number data in which each element is influenced by the same offset error

>>> x = [1.2090047238650097, 1.1920239005254694, 1.2023705451450373,
... 1.1999502398020352, 1.2120802857623008]
>>> e_offset = ureal(0,0.01,label='offset')
>>> data = [x_i + e_offset for x_i in x]

A type-A analysis of this data can be done using estimate, which looks only at the values of the elements in
data

>>> data_a = type_a.estimate(data, label='type-A')
>>> data_a
ureal(1.2030859390199704, 0.003525928111849485, 4, label=type-A)

This is a conventional type-A evaluation of the sample mean, based on the five observations.

Independently, we may do a calculation with propagation of uncertainty using function.mean

>>> data_b = function.mean(data)
>>> data_b
ureal(1.2030859390199704, 0.010000000000000002, inf)

In that case the uncertainty associated with the mean is the same as the uncertainty of a single reading, because
the adjustment error is systematic and is not reduced by averaging.

In one last step, these two results can be combined to obtain an uncertain number that allows for both the influence
of random noise and the offset error

>>> mu = type_a.merge_components(data_a,data_b)
>>> mu
ureal(1.2030859390199704, 0.01060340365401273, 327.15032481132585)
>>> for cpt in rp.budget(mu,trim=0):
... print " %s: %G" % cpt
...

offset: 0.01
type-A: 0.00352593

Note: Several function names are deliberately paired in the type_a and function modules, to suggest that
this type of analysis can be carried out. Various types of linear regression may be used in this way, as well as the
calculation of a mean, as shown here.

7.4. Can I do a type-A analysis on a set of uncertain numbers? 95

GUM Tree Calculator, Release 0.9.10

7.5 Can I use CSV (comma-separated value) files?

It is possible to read and write comma-separated value (CSV) files. There is a standard Python module available
for this.

Some knowledge of Python is required.

A simple example is given in Reading and Writing CSV files.

7.6 Can I use .XLS spreadsheet files?

Three third-party packages (xlrd, xlwt and xlutils) that support .xls files are included in the installation
directory (usually C:\Users\user.name\AppData\Local\GTC\lib). With these modules it is possible
to read and write .xls files.

A useful guide is available http://www.simplistix.co.uk/presentations/python-excel.pdf.

Some knowledge of Python is required.

A simple example with GTC is given in Reading and Writing XLS files.

7.7 Can I use .XLSX spreadsheet files?

A third-party package (openpyxl) that supports .xlsx files is included in GTC. With this module it is possible
to read and write .xlsx files, although not while they are open in a spreadsheet application.

A useful guide is available at http://packages.python.org/openpyxl/tutorial.html.

Some knowledge of Python is required.

A simple example is given in Reading and Writing XLSX files.

7.8 Can I use RTF (rich text format) files?

A third-party package called PyRTF is included in the installation directory (usually
C:\Users\user.name\AppData\Local\GTC\lib).

See http://pyrtf.sourceforge.net/ for further details.

7.9 How do I define an uncertain number with relative uncertainty?

Suppose that measurement of a quantity 𝐴 yields 𝑎 = 125.56 with a relative uncertainty of 𝑢(𝑎)/𝑎 = 0.05. We
can define an uncertain number e_rel for the relative error

>>> a = 125.56
>>> e_rel = ureal(1,0.05)

then an uncertain number representing 𝐴 is

>>> A = a * e_rel
>>> A
ureal(125.56, 6.2780000000000005, inf)

96 Chapter 7. Frequently Asked Questions

http://www.simplistix.co.uk/presentations/python-excel.pdf
http://packages.python.org/openpyxl/tutorial.html
http://pyrtf.sourceforge.net/

GUM Tree Calculator, Release 0.9.10

7.10 Is there a simple way to chain GTC calculations?

Often a calculation proceeds in distinct stages and it is convenient to separate these in different files.

If the first part of a calculation is contained in one file but the remaining steps are in another. The results of the
first calculation can be passed to the second.

Multiple files can be processed in GTC by putting their names together on the command line. For example,

C:\my work>gtc first_file.py second_file.py

would process first_file.py and then second_file.py, as if they were just one big file.

If this method is not suitable, then Storing uncertain numbers and restoring them in a later calculation is another
possibility.

7.11 Why does the GTC window close before I can read anything?

If an error occurs running GTC, the GTC command window closes before the error message can be read.

Try running the same script using The SciTE editor, which will show error messages in the output window. Alter-
natively, open a Command Prompt window and then run the script (see The Command Prompt). The Command
Prompt window should stay open and display any error messages.

7.10. Is there a simple way to chain GTC calculations? 97

GUM Tree Calculator, Release 0.9.10

98 Chapter 7. Frequently Asked Questions

Part IV

Reference

99

CHAPTER

EIGHT

GTC MODULES

The functions and classes that make up GTC.

8.1 Core Functions and Classes

• Uncertain Number Types

– Uncertain Real Numbers

– Uncertain Complex Numbers

• Core Functions

– Basic functions for uncertainty calculations

* Creation of uncertain numbers

* Uncertain number attributes

* Relationships between uncertain numbers

* Uncertain number math functions

The functions and classes defined in the core module are automatically available.

Note: In user-defined extension modules, the GTC modules must be imported. For example, from core
import * must added at the top of extension module files that use core functions or classes.

8.1.1 Uncertain Number Types

There are two types of uncertain number, one for real quantities and one for complex quantities.

Uncertain Real Numbers

The class UncertainReal represents uncertain real numbers.

The function ureal creates elementary UncertainReal objects, for example

>>> x = ureal(1.414141,0.01)
>>> x
ureal(1.414141, 0.01, inf)

All logical comparison operations (e.g., <, >, ==, etc) are applied to the value of an uncertain number.
For example,

101

GUM Tree Calculator, Release 0.9.10

>>> un = ureal(2.5,1)
>>> un > 3
False
>>> un == 2.5
True

An UncertainReal may be converted to a real number using the Python function float.

>>> un = ureal(1,1)
>>> math.asin(float(un))
1.5707963267948966

When an UncertainReal is converted to a string (e.g., by the str function, or by using the %s
string-conversion format specifier), the value is embedded between ?‘s. The precision depends on the
uncertainty. For example,

>>> x = ureal(1.414141,0.01)
>>> print str(x)
?1.41?
>>> print "%s" % x
?1.41?

When an UncertainReal is converted to its Python representation (e.g., by repr or by using
the %r string-conversion format specifier), a string is returned showing the full internal precision of
numbers. For example,

>>> x = ureal(1.414141,0.01,5,label='x')
>>> print repr(x)
ureal(1.4141410000000001, 0.01, 5, label=x)
>>> print "%r" % x
ureal(1.4141410000000001, 0.01, 5, label=x)

UncertainReal objects have the attributes x, u, v, df, and s, which obtain the value, uncertainty,
variance, degrees-of-freedom and a summary string for the uncertain number, respectively.

The documentation for UncertainReal follows.

class UncertainReal(x, u_comp, i_comp, node, c)
The class implementing uncertain real numbers

df
The degrees of freedom attribute

Returns float

Example::

>>> ur = ureal(2.5,0.5,3)
>>> ur.df
3

Note: un.df is equivalent to dof(un)

label
The label attribute

A label may be set by assignment.

Note: un.label is equivalent to label(un)

102 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

Example::

>>> x = ureal(2.5,0.5,label='x')
>>> x.label
'x'

>>> y = 5 * x
>>> y.label = 'y'
>>> y.label
'y'

>>> label(y)
'y'

s
A summary string

The format consists of the label (if defined) and three numbers: the value, standard uncertainty and
degrees-of-freedom.

The uncertainty is reported to two significant figures and the value uses the same precision. The
degrees-of-freedom are rounded down to the nearest integer.

Returns string

Example::

>>> ur = ureal(2.5,0.5,3,label='x')
>>> ur.s
'x: 2.50, u=0.50, df=3'

>>> ur = ureal(2.5,0.5,3)
>>> ur.s
' 2.50, u=0.50, df=3'

Note: un.s is equivalent to summary(un)

df=nan indicates that the degrees-of-freedom calculation is invalid.

df=inf indicates that the of degrees-of-freedom is greater than 1E6.

u
The standard uncertainty attribute

Returns float

Example::

>>> ur = ureal(2.5,0.5)
>>> ur.u
0.5

Note: un.u is equivalent to uncertainty(un)

v
The standard variance attribute

Returns float

8.1. Core Functions and Classes 103

GUM Tree Calculator, Release 0.9.10

Example::

>>> ur = ureal(2.5,0.5)
>>> ur.v
0.25

Note: un.v is equivalent to variance(un)

x
The value attribute

Returns float

Example::

>>> ur = ureal(2.5,0.5)
>>> ur.x
2.5

Note: un.x is equivalent to value(un)

Uncertain Complex Numbers

The class UncertainComplex represents uncertain complex numbers.

The function ucomplex creates elementary UncertainComplex objects, for example

>>> z = ucomplex(1.333-0.121212j,(0.01,0.01))

Equality comparison operations (== and !=) are applied to the value of uncertain complex numbers.
For example,

>>> uc = ucomplex(3+3j,(1,1))
>>> uc == 3+3j
True

The built-in function abs returns the magnitude of the value of the uncertain number (use
magnitude if uncertainty propagation is required). For example,

>>> uc = ucomplex(1+1j,(1,1))
>>> abs(uc)
1.4142135623730951

>>> magnitude(uc)
ureal(1.4142135623730951, 0.99999999999999989, inf)

An UncertainComplex may be converted to a complex number using the Python function
complex.

>>> uc = ucomplex(4j,(1,1))
>>> math.sqrt(complex(uc))
(1.4142135623730951+1.4142135623730949j)

When an UncertainComplex is converted to a string (e.g., by the str function or by using the
%s string-conversion format specifier), the value is embedded between ?‘s. The precision depends
on the uncertainty. For example,

104 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> z = ucomplex(1.333-0.121212j,(0.01,0.01))
>>> print(str(z))
?(1.33-0.12j)?
>>> print("%s" % z)
?(1.33-0.12j)?

When an UncertainComplex is converted to its Python representation (e.g., by repr or by using
the %r string-conversion format specifier), a string is returned in which the full internal precision of
numbers is displayed. For example,

>>> z = ucomplex(1.333-0.121212j,(0.01,0.01),7,label='z')
>>> print(repr(z))
ucomplex((1.333-0.121212j), [0.0001,0.0,0.0,0.0001], 7, label=z)
>>> print("%r" % z)
ucomplex((1.333-0.121212j), [0.0001,0.0,0.0,0.0001], 7, label=z)

Note that the variance-covariance matrix is shown as a 4-element list.

UncertainComplex objects have attributes x, u, v, df, and s, which obtain the value, uncer-
tainty, variance-covariance matrix, degrees-of-freedom and summary string of the uncertain number,
respectively.

The documentation of UncertainComplex follows.

class UncertainComplex(r, i)
A class representing uncertain complex numbers

df
The degrees-of-freedom attribute

When the object is not an elementary uncertain number, the effective degrees-of-freedom is calculated
by the function willink_hall.

Returns float

Example::

>>> uc = ucomplex(1+2j,(.3,.2),3)
>>> uc.df
3

Note: uc.df is equivalent to dof(uc)

label
The label attribute

A label may be set by assignment.

Note: un.label is equivalent to label(un)

Example::

>>> z = ucomplex(2.5+.3j,(1,1),label='z')
>>> z.label
'z'

>>> zz = z * z.conjugate()
>>> zz.label = 'zz'

8.1. Core Functions and Classes 105

GUM Tree Calculator, Release 0.9.10

>>> label(zz)
'zz'

s
A summary string

The summary string is composed of the label (when defined), the value, the standard uncertainties, the
correlation coefficient and the degrees-of-freedom.

Returns string

Example ::

>>> uc = ucomplex(1+2j,(.3,.2),3,label='x')
>>> uc.s
'x: (1.00,2.00), u=[0.30,0.20], r=0.00, df=3'

>>> uc = ucomplex(1+2j,(.3,.2),3)
>>> uc.s
'(1.00,2.00), u=[0.30,0.20], r=0.00, df=3'

Note: uc.s is equivalent to summary(uc)

The calculation of degrees-of-freedom is invalid if df=nan.

When df=inf is indicated, the of degrees-of-freedom is greater than 1E6.

u
The standard uncertainty attribute (real and imaginary components)

Returns 2-element sequence of float

Example::

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.u
standard_uncertainty(real=0.5, imag=0.5)

Note: uc.u is equivalent to uncertainty(uc)

v
The variance-covariance attribute

The uncertainty of an uncertain complex number can be associated with a 4-element variance-
covariance matrix.

Returns 4-element sequence of float

Example::

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.v
variance_covariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)

Note: uc.v is equivalent to variance(uc)

106 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

x
The value attribute

Returns complex

Example::

>>> uc = ucomplex(1+2j,(.3,.2))
>>> uc.x
(1+2j)

Note: uc.x is equivalent to value(uc)

8.1.2 Core Functions

A set of mathematical functions is defined in the core module, together with functions that create elementary
uncertain numbers and functions that access uncertain number attributes.

Basic functions for uncertainty calculations

Creation of uncertain numbers

• ureal : creates an elementary uncertain real number

• ucomplex : creates an elementary uncertain complex number

• result : creates an intermediate uncertain number

• constant : creates a constant uncertain number (with no uncertainty)

• multiple_ureal : creates a set of related elementary uncertain real numbers

• multiple_ucomplex : creates a set of related elementary uncertain complex numbers

Uncertain number attributes

• value : the value

• uncertainty : the standard uncertainty

• variance : the standard variance

• dof : the degrees-of-freedom

• label : the label

• summary : the summary string

Relationships between uncertain numbers

• component : a component of uncertainty

• set_correlation : assign a correlation coefficient

• get_correlation : evaluate a correlation coefficient

• get_covariance : evaluate covariance

8.1. Core Functions and Classes 107

GUM Tree Calculator, Release 0.9.10

Uncertain number math functions

• cos

• sin

• tan

• acos

• asin

• atan

• atan2

• exp

• log

• log10

• sqrt

• sinh

• cosh

• tanh

• asinh

• acosh

• atanh

• mag_squared

• magnitude

• phase

ureal(x, u, df=inf, label=None, dependent=False)
Create an elementary uncertain real number

Parameters

• x (float) – the value (estimate)

• u (float) – the standard uncertainty

• df (float) – the degrees-of-freedom

• label (string) – a string label

• dependent (Boolean) – allows setting a correlation coefficient

Return type UncertainReal

Example:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> ur
ureal(2.5,0.5,3,label='x')

multiple_ureal(x_seq, u_seq, df, label_seq=None)
Return a sequence of related elementary uncertain real numbers

Parameters

• x_seq – a sequence of values (estimates)

• u_seq – a sequence of standard uncertainties

108 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

• df – the degrees-of-freedom

• label_seq – a sequence of labels

Return type a sequence of UncertainReal

Defines an set of related uncertain real numbers with the same number of degrees-of-freedom.

Correlation between any pairs of the uncertain numbers defined does not invalidate degrees-of-freedom
calculations. (see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

Example from GUM-H2
>>> x = [4.999,19.661E-3,1.04446]
>>> u = [3.2E-3,9.5E-6,7.5E-4]
>>> labels = ['V','I','phi']
>>> v,i,phi = multiple_ureal(x,u,4,labels)

>>> set_correlation(-0.36,v,i)
>>> set_correlation(0.86,v,phi)
>>> set_correlation(-0.65,i,phi)

>>> r = v/i*cos(phi)
>>> summary(r)
'127.732, u=0.070, df=4'
>>> reporting.uncertainty_interval(r)
expanded_uncertainty(lower=127.53788813535775, upper=127.92645172084642)

ucomplex(z, u, df=inf, label=None, dependent=False)
Create an elementary uncertain complex number

Parameters

• z (complex) – the value (estimate)

• u (a float, 2-element or 4-element sequence) – the standard uncer-
tainty or variance

• df (float) – the degrees-of-freedom

• label (string) – a string label

• dependent (Boolean) – allows setting a correlation coefficient

Return type UncertainComplex

u can be a float, a 2-element or 4-element sequence.

If u is a float, the standard uncertainty in both the real and imaginary components is equal to u.

If u is a 2-element sequence, the first element is the standard uncertainty in the real component and the
second element is the standard uncertainty in the imaginary.

If u is a 4-element sequence, it is associated with a variance-covariance matrix.

A RuntimeError is raised if df or u have illegal values.

Examples:

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uc
ucomplex((1+2j), u=[0.5,0.5], r=0, df=3, label='x')

>>> cv = (1.2,0.7,0.7,2.2)
>>> uc = ucomplex(0.2-.5j, cv)
>>> variance(uc)
variance_covariance(rr=1.1999999999999997, ri=0.7, ir=0.7, ii=2.2)

8.1. Core Functions and Classes 109

GUM Tree Calculator, Release 0.9.10

multiple_ucomplex(x_seq, u_seq, df, label_seq=None)
Return a sequence of uncertain complex numbers

Parameters

• x_seq – a sequence of complex values (estimates)

• u_seq – a sequence of standard uncertainties or covariances

• df – the degrees-of-freedom

• label_seq – a sequence of labels for the uncertain numbers

Return type a sequence of UncertainComplex

This function defines an set of related uncertain complex numbers with the same number of degrees-of-
freedom.

Correlation between pairs of these uncertain numbers does not invalidate degrees-of-freedom calculations.
(see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

GUM Appendix H2
>>> values = [4.999+0j,0.019661+0j,1.04446j]
>>> uncert = [(0.0032,0.0),(0.0000095,0.0),(0.0,0.00075)]
>>> v,i,phi = multiple_ucomplex(values,uncert,5)

>>> set_correlation(-0.36,v.real,i.real)
>>> set_correlation(0.86,v.real,phi.imag)
>>> set_correlation(-0.65,i.real,phi.imag)

>>> z = v * exp(phi)/ i
>>> z
ucomplex(

(127.73216992810208+219.84651191263839j),
u=[0.069978727988371722,0.29571682684612355],
r=-0.59099999999999997,
df=5

)
>>> reporting.uncertainty_interval(z.real)
expanded_uncertainty(lower=127.55228662093492, upper=127.91205323526924)

result(un, label=None)
Declare un as an intermediate uncertain number ‘result’

un - an uncertain number label - a label can be assigned

The dependence of other uncertain numbers on this result can be stored in an archive.

Call this function other uncertain numbers are created that depend on it.

Example:

The dependence of `P` on `V`
can be archived

V = result(I*R)
P = V**2/R

constant(x, label=None)
Create a constant uncertain number (with no uncertainty)

Parameters x (float or complex) – a number

Return type UncertainReal or UncertainComplex

110 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

If x is complex, return an uncertain complex number.

If x is real, return an uncertain real number.

Example:

>>> e = constant(math.e,label='Euler')
>>> e
ureal(2.71828,0,inf,label='Euler')

value(x)
Return the value

Returns a complex number if x is an uncertain complex number

Returns a real number if x is an uncertain real number

Returns x otherwise.

Example:

>>> un = ureal(3,1)
>>> value(un)
3.0
>>> un.x
3.0

uncertainty(x)
Return the standard uncertainty

If x is an uncertain complex number, return a 2-element sequence containing the standard uncertainties of
the real and imaginary components.

If x is an uncertain real number, return the standard uncertainty.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> uncertainty(ur)
0.5
>>> ur.u
0.5

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uncertainty(uc)
standard_uncertainty(real=0.5, imag=0.5)

variance(x)
Return the standard variance

If x is an uncertain real number, return the standard variance.

If x is an uncertain complex number, return a 4-element sequence containing elements of the variance-
covariance matrix.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> variance(ur)
0.25
>>> ur.v
0.25

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')

8.1. Core Functions and Classes 111

GUM Tree Calculator, Release 0.9.10

>>> variance(uc)
variance_covariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)

dof(x)
Return the degrees-of-freedom

Returns inf when the degrees of freedom is greater than 1E6

Returns nan when the calculation is invalid

Note: This function calls reporting.variance_and_dof, which evaluates both the variance and
the degrees-of-freedom. It may be more efficient to call that function directly in some situations.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> dof(ur)
3.0
>>> ur.df
3.0

>>> uc = ucomplex(1+2j,(.3,.2),3,label='x')
>>> dof(uc)
3.0

label(x)
Return the label

Returns None when no label has been assigned

Example:

>>> x1 = ureal(2,1,label='x1')
>>> label(x1)
'x1'
>>> x1.label
'x1'

summary(x)
Return a summary string

The string format is

label : value, uncertainty, dof

or, if no label is defined,

value, uncertainty, dof

The precision used to display the value depends on the uncertainty

For an uncertain real, the standard uncertainty is shown.

For an uncertain complex, a pair of standard uncertainties for the real and imaginary components is shown.

When df=inf the degrees of freedom is greater than 1E6.

If x is not an uncertain number, the Python representation is returned.

Examples:

>>> x1 = ureal(2.1213,0.5,label='x1')
>>> summary(x1)
'x1: 2.12, u=0.50, df=inf'

112 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> z1 = ucomplex(1.24242-3.14141j,(0.1,0.1),5,label='z1')
>>> summary(z1)
'z1: (1.24-3.14j), u=[0.10,0.10], r=0.00, df=5'

component(y, x)
Return the magnitude of the component of uncertainty in y due to x.

Parameters

• y (UncertainReal or UncertainComplex) – an uncertain number

• x (UncertainReal or UncertainComplex) – an uncertain number

Return type float

If x and y are uncertain real, the magnitude of reporting.u_component is returned.

If either x or y is uncertain complex, the returned value represents the magnitude of the component of
uncertainty matrix (see also: reporting.u_component and reporting.u_bar).

If either x or y is a number, zero is returned.

Examples:

>>> x1 = ureal(2,1)
>>> x2 = ureal(5,1)
>>> y = x1/x2
>>> reporting.u_component(y,x2)
-0.08
>>> component(y,x2)
0.08

>>> z1 = ucomplex(1+2j,1)
>>> z2 = ucomplex(3-2j,1)
>>> y = z1 - z2
>>> reporting.u_component(y,z2)
u_components(rr=-1.0, ri=0.0, ir=0.0, ii=-1.0)
>>> component(y,z2)
1.0

get_covariance(arg1, arg2=None)
Return the covariance

The arguments arg1 and arg2 may be:

•a pair of uncertain real numbers,

•a single uncertain complex number

•a pair of uncertain complex numbers.

The return value may be a real number or a sequence of four real numbers.

When a pair of uncertain real numbers are given, return the covariance between them.

When a single uncertain complex number is given, return the covariance between the real and imaginary
components.

When there are two arguments and at least one is a complex number, or an uncertain complex number, a
4-element sequence is returned.

When two uncertain complex arguments are given, the 4-element sequence representing the covariance
between the real and imaginary components is returned.

If a numerical argument is used, zero, or a 4-element sequence of zeros, is returned.

Raises RuntimeError when illegal arguments types are used

8.1. Core Functions and Classes 113

GUM Tree Calculator, Release 0.9.10

Example:

>>> x1 = ureal(2,0.5)
>>> x2 = ureal(5,2.1)
>>> x3 = ureal(5,0.75)
>>> x4 = x1 + x2
>>> x5 = x2 + x3
>>> get_covariance(x4,x5)
4.41

>>> x1 = ucomplex(1,(0.5,1.2),dependent=True)
>>> x2 = ucomplex(1,(1.3,1.9),dependent=True)
>>> correlation_mat = (0.25,0.5,0.75,0.5)
>>> set_correlation(correlation_mat,x1,x2)
>>> get_covariance(x1,x2)
covariance_matrix(rr=0.1625, ri=0.475, ir=1.17, ii=1.14)

get_correlation(arg1, arg2=None)
Return the correlation coefficient

arg1 and arg2 may be:

•a pair of uncertain real numbers,

•a single uncertain complex number

•a pair of uncertain complex numbers.

The return value may be a real number or a sequence of four real numbers.

When a pair of uncertain real numbers are used, return the correlation between them.

When a single uncertain complex number is used, return the correlation between the real and imaginary
components.

When there are two arguments and at least one is a complex number, or an uncertain complex number,
return a 4-element sequence.

When two uncertain complex number are given, a 4-element sequence representing the correlation coeffi-
cients between the real and imaginary components is returned.

If a number is given as an argument, zero, or a sequence of zeros, is returned.

Raises RuntimeError when illegal arguments types are used

Example:

>>> x1 = ureal(2,1)
>>> x2 = ureal(5,1)
>>> x3 = ureal(5,1)
>>> x4 = x1 + x2
>>> x5 = x2 + x3
>>> get_correlation(x4,x5)
0.5

>>> x1 = ucomplex(1,(1,1),dependent=True)
>>> x2 = ucomplex(1,(1,1),dependent=True)
>>> correlation_mat = (0.25,0.5,0.75,0.5)
>>> set_correlation(correlation_mat,x1,x2)
>>> get_correlation(x1,x2)
correlation_matrix(rr=0.25, ri=0.5, ir=0.75, ii=0.5)

set_correlation(r, arg1, arg2=None)
Set the correlation between elementary uncertain numbers

The input arguments may be a pair of uncertain numbers (the same type, real or complex), or a single
uncertain complex number.

114 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

The uncertain number arguments must be elementary.

When a pair of uncertain real numbers is used, r is the correlation between them.

When a pair of uncertain complex number arguments is used r must be a 4-element sequence of correlation
coefficients between the components of the complex quantities.

RuntimeError is raised when illegal arguments are used

A warning will be issued if the uncertain number arguments have not been declared as dependent.

Examples:

>>> x1 = ureal(2,1,dependent=True)
>>> x2 = ureal(5,1,dependent=True)
>>> set_correlation(.3,x1,x2)
>>> get_correlation(x1,x2)
0.3

>>> z = ucomplex(1+0j,(1,1),dependent=True)
>>> z
ucomplex((1+0j), u=[1,1], r=0, df=inf)
>>> set_correlation(0.5,z)
>>> z
ucomplex((1+0j), u=[1,1], r=0.5, df=inf)

>>> x1 = ucomplex(1,(1,1),dependent=True)
>>> x2 = ucomplex(1,(1,1),dependent=True)
>>> correlation_mat = (0.25,0.5,0.75,0.5)
>>> set_correlation(correlation_mat,x1,x2)
>>> get_correlation(x1,x2)
correlation_matrix(rr=0.25, ri=0.5, ir=0.75, ii=0.5)

cos(x)
Uncertain number cosine function

sin(x)
Uncertain number sine function

tan(x)
Uncertain number tangent function

acos(x)
Uncertain number arc-cosine function

Note: In the complex case there are two branch cuts: one extends right, from 1 along the real axis to ∞,
continuous from below; the other extends left, from -1 along the real axis to −∞, continuous from above.

asin(x)
Uncertain number arcsine function

Note: In the complex case there are two branch cuts: one extends right, from 1 along the real axis to ∞,
continuous from below; the other extends left, from -1 along the real axis to −∞, continuous from above.

atan(x)
Uncertain number arctangent function

Note: In the complex case there are two branch cuts: One extends from j along the imaginary axis to j∞,
continuous from the right. The other extends from −j along the imaginary axis to −j∞, continuous from
the left.

8.1. Core Functions and Classes 115

GUM Tree Calculator, Release 0.9.10

atan2(y, x)
Two-argument uncertain number arctangent function

Parameters

• x (UncertainReal) – abscissa

• y (UncertainReal) – ordinate

Note: this function is not defined for uncertain complex numbers (use phase)

Example:

>>> x = ureal(math.sqrt(3)/2,1)
>>> y = ureal(0.5,1)
>>> theta = atan2(y,x)
>>> theta
ureal(0.523598775598299,1,inf)
>>> math.degrees(theta.x)
30.000000000000004

exp(x)
Uncertain number exponential function

pow(x, y)
Uncertain number power function

Raises x to the power of y

log(x)
Uncertain number natural logarithm

Note: In the complex case there is one branch cut, from 0 along the negative real axis to −∞, continuous
from above.

log10(x)
Uncertain number common logarithm (base-10)

Note: In the complex case there is one branch cut, from 0 along the negative real axis to −∞, continuous
from above.

sqrt(x)
Uncertain number square root function

Note: In the complex case there is one branch cut, from 0 along the negative real axis to −∞, continuous
from above.

sinh(x)
Uncertain number hyperbolic sine function

cosh(x)
Uncertain number hyperbolic cosine function

tanh(x)
Uncertain number hyperbolic tangent function

acosh(x)
Uncertain number hyperbolic arc-cosine function

116 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

Note: In the complex case there is one branch cut, extending left from 1 along the real axis to −∞,
continuous from above.

asinh(x)
Uncertain number hyperbolic arcsine function

Note: In the complex case there are two branch cuts: one extends from j along the imaginary axis to j∞,
continuous from the right; the other extends from −j along the imaginary axis to −j∞, continuous from the
left.

atanh(x)
Uncertain number hyperbolic arctangent function

Note: In the complex case there are two branch cuts: one extends from 1 along the real axis to ∞,
continuous from below; the other extends from -1 along the real axis to −∞, continuous from above.

mag_squared(x)
Return the squared magnitude of x.

Note: If x is an uncertain number, the magnitude squared is returned as an uncertain real number, otherwise
:func:abs(x)**2 is returned.

magnitude(x)
Return the magnitude of x

Note: If x is not an uncertain number type, returns abs(x).

phase(z)
Return an uncertain real number for the phase

Parameters z (UncertainComplex) – an uncertain complex number

Returns the phase in radians

Return type UncertainReal

8.2 Evaluating type-A uncertainty

A type-A evaluation of uncertainty involves statistical analysis of data. In contrast, type-B uncertainty is obtained
without statistical analysis.

The prefix type_a (or the alias ta) is needed as to resolve the names of objects defined in this module.

8.2.1 Sample estimates

• estimate returns an uncertain number defined from the statistics of a sample of data.

• multi_estimate_real returns a sequence of related uncertain real numbers defined from the multi-
variate statistics calculated from a sample of data.

• multi_estimate_complex returns a sequence of related uncertain complex numbers defined from the
multivariate statistics of a sample of data.

• estimate_digitized returns an uncertain number for the mean of a sample of digitized data.

8.2. Evaluating type-A uncertainty 117

GUM Tree Calculator, Release 0.9.10

• mean returns the mean of a sample of data.

• standard_uncertainty evaluates the standard uncertainty associated with the sample mean.

• standard_deviation evaluates the standard deviation of a sample of data.

• variance_covariance_complex evaluates the variance and covariance associated with the mean
real component and mean imaginary component of the data.

8.2.2 Correcting indications

• BiasedIndication is a class of objects that can be used to correct future indications for bias using a
type-A estimate of required the correction term.

8.2.3 Least squares regression

• line_fit performs an ordinary least-squares straight line fit to a sample of data.

• line_fit_wls performs a weighted least-squares straight line fit to a sample of data.

• line_fit_rwls performs a weighted least-squares straight line fit to a sample of data. In this case, the
weights are used to normalise the variability of observations.

• line_fit_wtls performs a weighted total least-squares straight line fit to a sample of data.

• chisq_p and chisq_q evaluate the Chi-square probability functions P(nu,x) and Q(nu,x) = 1
-P(nu,x).

8.2.4 Merging uncertain components

• merge_components combines the results from type-A and type-B analyses.

Note: Many functions in type_a treat the data as pure numbers. Sequences of uncertain numbers can be passed
to these functions, but only the values of the uncertain numbers will be used. This allows type-B uncertainty
components to be associated with observational data (e.g., the type-B uncertainty due to a systematic error) before
a type-A analysis is performed, which is often convenient.

merge_components is provided so that the results of type-A and type-B analyses on the same data sequence
can be combined. Note, however, that doing so may over-emphasize uncertainty components that contribute to
variability in the observations.

8.2.5 Module contents

estimate(seq, label=None)
Obtain an uncertain number by type-A evaluation

Parameters

• seq – a sequence representing a sample of data

• label – a label for the returned uncertain number

Returns an uncertain real number, or an uncertain complex number

The elements of seq may be real numbers, complex numbers, or uncertain real or complex numbers. Note
that if uncertain numbers are used, only the value attribute is used.

The sample mean is an estimate of the quantity of interest. The uncertainty in this estimate is the standard
deviation of the sample mean (or the sample covariance of the mean, for the complex case).

118 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

Returns an uncertain real number when the mean of seq is real, or an uncertain complex number when the
mean is complex.

Examples:

>>> data = range(15)
>>> type_a.estimate(data)
ureal(7,1.15470053837925,14)

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]

>>> type_a.estimate(data)
ucomplex(

(1.059187840567141+0.9574410497332931j),
u=[0.2888166531024181,0.2655555630050262],
r=-0.314,
df=9

)

multi_estimate_real(seq_of_seq, labels=None)
Return a sequence of related uncertain real numbers

Parameters

• seq_of_seq – a sequence of real-valued sequences

• labels – a sequence of labels

Returns a sequence of uncertain real numbers

The sequences in seq_of_seq must all be the same length.

Defines uncertain numbers using the sample statistics from the data sequences, including the sample covari-
ance.

The uncertain numbers returned are considered related, so that a degrees-of-freedom calculation can be
performed even if there is correlation between them.

Example:

From Appendix H2 in the GUM

>>> V = [5.007,4.994,5.005,4.990,4.999]
>>> I = [19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-3]
>>> phi = [1.0456,1.0438,1.0468,1.0428,1.0433]
>>> v,i,p = type_a.multi_estimate_real((V,I,phi),labels=('V','I','phi'))
>>> v
ureal(4.99899999999999967,0.00320936130717617944,4,label='V')
>>> i
ureal(0.019661000000000001392,9.47100839404133456689e-06,4,label='I')
>>> p
ureal(1.044459999999999944,0.0007520638270785368149,4,label='phi')

>>> r = v/i*cos(p)
>>> r
ureal(127.73216992810208,0.071071407396995398,4)

8.2. Evaluating type-A uncertainty 119

GUM Tree Calculator, Release 0.9.10

multi_estimate_complex(seq_of_seq, labels=None)
Return a sequence of related uncertain complex numbers

Parameters

• seq_of_seq – a sequence of complex number sequences

• labels – a sequence of labels for the uncertain numbers

Returns a sequence of uncertain complex numbers

The sequences in seq_of_seq must all be the same length.

Defines uncertain numbers using the sample statistics, including the sample covariance.

The uncertain complex numbers returned are considered related, so they may be used in a degrees-of-
freedom calculation even if there is correlation between them.

Example:

From Appendix H2 in the GUM

>>> I = [complex(x) for x in (19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-
→˓3)]
>>> V = [complex(x) for x in (5.007,4.994,5.005,4.990,4.999)]
>>> P = [complex(0,p) for p in (1.0456,1.0438,1.0468,1.0428,1.0433)]

>>> v,i,p = type_a.multi_estimate_complex((V,I,P))

>>> get_correlation(v.real,i.real)
-0.355311219817512

>>> z = v/i*exp(p)
>>> z.real
ureal(127.73216992810208,0.071071407396995398,4)
>>> get_correlation(z.real,z.imag)
-0.5884297844235157

estimate_digitized(seq, delta, label=None, truncate=False)
Return an uncertain number for the mean of a sample of digitized data

Parameters

• seq – a sequence of real numbers or uncertain real numbers

• delta – a real number for the digitization step size

• label – a label for the returned uncertain number

• truncate – if True, truncation is assumed

When an instrument rounds, or truncates, readings to a finite resolution delta, the uncertainty in an esti-
mate of the mean of a sequence of readings depends on the amount of scatter in the data and on the number
of points in the sample.

The argument truncate should be set True if an instrument truncates readings instead of rounding them.

See reference: R Willink, Metrologia, 44 (2007) 73-81

Examples:

LSD = 0.0001, data varies between -0.0055 and -0.0057
>>> seq = (-0.0056,-0.0055,-0.0056,-0.0056,-0.0056,
... -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056272727272727272874,1.9497827808661157478e-05,10)

LSD = 0.0001, data varies between -0.0056 and -0.0057
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,

120 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

... -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056363636363636364021,1.5212000482437778871e-05,10)

LSD = 0.0001, no spread in data values
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,
... -0.0056,-0.0056,-0.0056,-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0055999999999999999431,2.8867513459481289171e-05,10)

LSD = 0.0001, no spread in data values, fewer points
>>> seq = (-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0055999999999999999431,3.2914029430219170322e-05,2)

mean(seq)
Return the arithmetic mean of data in seq

If seq contains real or uncertain real numbers, a real number is returned.

If seq contains complex or uncertain complex numbers, a complex number is returned.

Example:

>>> data = range(15)
>>> type_a.mean(data)
7.0

standard_deviation(seq, mu=None)
Return the sample standard deviation

Parameters

• seq – sequence of numbers

• mu – the arithmetic mean of seq

If seq contains complex or uncertain complex numbers, the standard deviation in the real and imaginary
components is evaluated, as well as the sample correlation coefficient.

Otherwise the sample standard deviation is returned.

The calculation only uses the value attribute of uncertain numbers.

Examples:

>>> data = range(15)
>>> type_a.standard_deviation(data)
4.47213595499958

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> sd,r = type_a.standard_deviation(data)
>>> sd
standard_deviation(real=0.913318449990377, imag=0.8397604244242309)
>>> r
-0.31374045124595246

8.2. Evaluating type-A uncertainty 121

GUM Tree Calculator, Release 0.9.10

standard_uncertainty(seq, mu=None)
Return the standard uncertainty of the sample mean

Parameters

• seq – sequence of numbers

• mu – the arithmetic mean of seq

Return type float

If seq contains complex or uncertain complex numbers, the standard uncertainties of the real and imaginary
components are evaluated, as well as the sample correlation coefficient.

Otherwise the standard uncertainty of the sample mean is returned.

The calculation only uses the value attribute of uncertain numbers.

Example:

>>> data = range(15)
>>> type_a.standard_uncertainty(data)
1.1547005383792515

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> u,r = type_a.standard_uncertainty(data)
>>> u
standard_uncertainty(real=0.28881665310241805, imag=0.2655555630050262)
>>> u.real
0.28881665310241805
>>> r
-0.31374045124595246

variance_covariance_complex(seq, mu=None)
Return the sample variance-covariance matrix

Parameters

• seq – sequence of numbers

• mu – the arithmetic mean of seq

Returns a 4-element sequence

If mu is not provided it will be evaluated (see mean).

seq may contain numbers or uncertain numbers. However, the calculation only uses the value of uncertain
numbers.

Example:

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),

122 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

... (2.0122536479379196-0.23283009302603963j),

... (1.6770229536619197+0.77195994890476838j)]
>>> type_a.variance_covariance_complex(data)
variance_covariance(rr=0.8341505910928249, ri=-0.24062910264062262,

ir=-0.24062910264062262, ii=0.7051975704291644)

>>> v = type_a.variance_covariance_complex(data)
>>> v[0]
0.8341505910928249
>>> v.rr
0.8341505910928249
>>> v.ii
0.7051975704291644

line_fit(x, y, label=None)
Return a least-squares straight-line fit to the data

Parameters

• x – sequence of stimulus data (independent-variable)

• y – sequence of response data (dependent-variable)

• label – suffix to label the uncertain numbers a and b

Returns an object containing regression results

Return type LineFitOLS

Performs an ordinary least-squares regression of y to x.

Example:

>>> x = [1,2,3,4,5,6,7,8,9]
>>> y = [15.6,17.5,36.6,43.8,58.2,61.6,64.2,70.4,98.8]
>>> result = type_a.line_fit(x,y)
>>> a,b = result.a_b
>>> a
ureal(4.81388888888888,4.88620631218336,7)
>>> b
ureal(9.408333333333335,0.868301647656361,7)

>>> y_p = a + b*5.5
>>> dof(y_p)
7.0

line_fit_wls(x, y, u_y, label=None)
Return a weighted least-squares straight-line fit

Parameters

• x – sequence of stimulus data (independent-variable)

• y – sequence of response data (dependent-variable)

• u_y – sequence of uncertainties in the response data

• label – suffix to label the uncertain numbers a and b

Returns an object containing regression results

Return type LineFitWLS

Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
>>> u_y = [0.5,0.5,0.5,1.0,1.0,1.0]

8.2. Evaluating type-A uncertainty 123

GUM Tree Calculator, Release 0.9.10

>>> fit = type_a.line_fit_wls(x,y,u_y)
>>> fit.a_b
intercept_slope(

a=ureal(0.8852320675105488,0.5297081435088364,inf),
b=ureal(2.056962025316456,0.177892016741205,inf)

)

line_fit_rwls(x, y, s_y, label=None)
Return a relative weighted least-squares straight-line fit

The s_y values are used to scale variability in the y data. It is assumed that the standard deviation of
each y value is proportional to the corresponding s_y scale factor. The unknown common factor in the
uncertainties is estimated from the residuals.

Parameters

• x – sequence of stimulus data (independent-variable)

• y – sequence of response data (dependent-variable)

• s_y – sequence of scale factors

• label – suffix to label the uncertain numbers a and b

Returns an object containing regression results

Return type LineFitRWLS

Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.014,5.225,7.004,9.061,11.201,12.762]
>>> s_y = [0.2,0.2,0.2,0.4,0.4,0.4]
>>> fit = type_a.line_fit_rwls(x,y,s_y)
>>> a, b = fit.a_b
>>>
>>> print fit

Relative Weighted Least-Squares Results:

Number of points: 6
Intercept: 1.14, u=0.12, df=4
Slope: 1.973, u=0.041, df=4
Correlation: -0.87
Sum of the squared residuals: 1.33952

line_fit_wtls(a0_b0, x, y, u_x, u_y, r_xy=None, label=None)
Return a total least-squares straight-line fit

Parameters

• a0_b0 – initial line intercept and slope

• x – sequence of independent-variable data

• y – sequence of dependent-variable data

• u_x – sequence of uncertainties in x

• u_y – sequence of uncertainties in y

• r_xy – correlation between x-y pairs

• label – suffix labeling the uncertain numbers a and b

Returns an object containing the fitting results

Return type LineFitWTLS

124 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

Based on paper by M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)

Example:

Pearson-York test data see, e.g.,
Lybanon, M. in Am. J. Phys 52 (1) 1984
>>> x=[0.0,0.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4]
>>> wx=[1000.0,1000.0,500.0,800.0,200.0,80.0,60.0,20.0,1.8,1.0]

>>> y=[5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5]
>>> wy=[1.0,1.8,4.0,8.0,20.0,20.0,70.0,70.0,100.0,500.0]

initial estimates are needed
>>> a0_b0 = type_a.line_fit(x,y).a_b

standard uncertainties required for weighting
>>> ux=[1./math.sqrt(wx_i) for wx_i in wx]
>>> uy=[1./math.sqrt(wy_i) for wy_i in wy]

>>> result = type_a.line_fit_wtls(a0_b0,x,y,ux,uy)
>>> result.a_b
intercept_slope(

a=ureal(5.479910183283027,0.2919334989452106,8),
b=ureal(-0.48053339910867754,0.057616740759399841,8)

)

class LineFitOLS(a, b, ssr, N)
This object holds the results of an ordinary least-squares regression to data.

It can also be used to apply the results of a regression analysis.

N
The number of points in the sample

a_b
Return the intercept and slope as uncertain numbers

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

x_from_y(yseq, label=None)
Estimate the stimulus x that caused the response yseq.

Parameters

• yseq – a sequence of further observations of y

• label – a label for the estimate of y based on yseq

Example

>>> x_data = [0.1, 0.1, 0.1, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5,
... 0.7, 0.7, 0.7, 0.9, 0.9, 0.9]
>>> y_data = [0.028, 0.029, 0.029, 0.084, 0.083, 0.081, 0.135, 0.131,
... 0.133, 0.180, 0.181, 0.183, 0.215, 0.230, 0.216]

>>> fit = type_a.line_fit(x_data,y_data)

>>> x0 = fit.x_from_y([0.0712, 0.0716])
>>> summary(x0)
'0.260, u=0.018, df=13'

8.2. Evaluating type-A uncertainty 125

GUM Tree Calculator, Release 0.9.10

y_from_x(x, label=None)
Return an uncertain number y for the response to x

Parameters x – a real number, or an uncertain real number

Estimates the response y that might be observed for a stimulus x

An uncertain real number can be used for x, in which case the associated uncertainty is also propagated
into y.

class LineFitWLS(a, b, ssr, N)
This object holds results from a weighted LS linear regression to data.

N
The number of points in the sample

a_b
Return the intercept and slope as uncertain numbers

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

class LineFitRWLS(a, b, ssr, N)
This object holds the results of a relative weighted least-squares regression. The weight factors provided
normalise the variability of observations.

N
The number of points in the sample

a_b
Return the intercept and slope as uncertain numbers

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

x_from_y(yseq, s_y, label=None)
Estimates the stimulus x that generated the response sequence yseq

Parameters

• yseq – a sequence of further observations of y

• s_y – a scale factor for the uncertainty of the yseq

• label – a label for the estimate of y based on yseq

y_from_x(x, s_y, label=None)
Return an uncertain number y for the response to x

Parameters

• x – a real number, or an uncertain real number

• s_y – a scale factor for the response uncertainty

Estimates the response y that might be generated by a stimulus x.

Because there is different variability in the response to different stimuli, the scale factor s_y is re-
quired. It is assumed that the standard deviation in the y value is proportional to s_y.

An uncertain real number can be used for x, in which case the associated uncertainty is also propagated
into y.

126 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

class LineFitWTLS(a, b, ssr, N)
This object holds results from a TLS linear regression to data.

N
The number of points in the sample

a_b
Return the intercept and slope as uncertain numbers

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

merge_components(a, b)
Combine the uncertainty components of a and b

Parameters

• a – an uncertain real or complex number

• b – an uncertain real or complex number

Returns an uncertain number that combines the uncertainty components of a and b

The values of a and b must be equal and the components of uncertainty associated with a and b must be
distinct, otherwise a RuntimeError will be raised.

Use this function to combine results from type-A and type-B uncertainty analyses performed on a common
sequence of data.

Note: Some judgement will be required as to when it is appropriate to merge uncertainty components.

There is a risk of ‘double-counting’ uncertainty if type-B components are contributing to the variability
observed in the data, and therefore assessed in a type-A analysis.

Example:

From Appendix H3 in the GUM

Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,

23.999,24.513,25.002,25.503,26.010,26.511)

Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,

-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

Arbitrary offset temperature (degrees C)
t_0 = 20.0

Calculate the temperature relative to t_0
t_rel = [t_k - t_0 for t_k in t]

A common systematic error in all differences
e_sys = ureal(0,0.01)

b_type_b = [b_k + e_sys for b_k in b]

Type-A least-squares regression
y_1_a, y_2_a = type_a.line_fit(t_rel,b_type_b).a_b

Type-B least-squares regression
y_1_b, y_2_b = function.line_fit(t_rel,b_type_b)

8.2. Evaluating type-A uncertainty 127

GUM Tree Calculator, Release 0.9.10

`y_1` and `y_2` have uncertainty components
related to the type-A analysis as well as the
type-B systematic error
y_1 = type_a.merge_components(y_1_a,y_1_b)
y_2 = type_a.merge_components(y_2_a,y_2_b)

chisq_p(nu, x)
Return the propability that chi-squared could be less than x

Parameters

• nu – the number of degrees of freedom

• x – sum of squared residuals

Returns the incomplete gamma function P(nu,x)

P(nu,x) is the probability that any random set of N points would give a value of chi-squared less than the
observed value x

See: P R Bevington, Data reduction and error analysis for the physical sciences (McGraw-Hill)

Example:

>>> type_a.chisq_p(10,3.94)
0.049986909209909315

chisq_q(nu, x)
Return the propability that chi-squared could exceed x

Parameters

• nu – the number of degrees of freedom

• x – sum of squared residuals

Returns the incomplete gamma function Q(nu,x) = 1 -P(nu,x)

Q(nu,x) = 1 -P(nu,x) is the probability that any random set of N points would give a value of chi-
squared greater than or equal to the observed value x

See: P R Bevington, Data reduction and error analysis for the physical sciences (McGraw-Hill)

Example:

>>> type_a.chisq_q(10,3.94)
0.9500130907900907

This function might be used after a weighted least-squares regression has been performed, to assess the
goodness of fit. chisq_q can calculate the probability that a value of sum-squared-residuals could be
exceeded by chance. (See Numerical Recipes in C: The Art of Scientific Computing, Section 15.1).

class BiasedIndication(correction)
An object to correct single observations using a type-A estimate of bias. The corrected result is an uncertain
number with uncertainty components that depend on the variability of observations and the uncertainty of
the bias estimate.

In statistical parlance, the uncertain numbers produced by this object can be used to calculate a prediction
interval for future observations.

offset(x, label=None)
Return an uncertain number for the offset-corrected indication

Parameters

• x – a real number

• label – a label for the indication uncertainty

128 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

Returns an uncertain number

The uncertainty of a corrected indication has a component due to the reading variability and a compo-
nent due to the uncertainty of the estimated additive correction.

In statistical terminology, the uncertain number can be used to calculate a ‘prediction interval’ for a
future indication.

Example:

`sample` is a sequence of `N` indications
First estimate the bias (offset)
x_bar = type_a.estimate(sample)

Then create an object to process
other indications
processor = type_a.BiasedIndication(x_bar)

x_i is another indication and
x_corr_i is an uncertain number for
the offset-corrected indication.
x_corr_i = processor.offset(x_i)

8.3 Evaluating type-B uncertainty

The prefix type_b (or the alias tb) is needed as to resolve the names of objects defined in this module.

8.3.1 Real-valued problems

The following functions convert the half-width of a one-dimensional distribution to a standard uncer-
tainty:

• uniform

• triangular

• u_shaped

• arcsine

8.3.2 Complex-valued problems

The following functions convert information about two-dimensional error distributions into standard
uncertainties:

• uniform_ring

• uniform_disk

• unknown_phase_product

8.3.3 A table of distributions

The mapping distribution allows the functions above to be selected by name. For example,

>>> a = 1.5
>>> ureal(1, type_b.distribution['gaussian'](a))
ureal(1,1.5,inf)
>>> ureal(1, type_b.distribution['uniform'](a))
ureal(1,0.8660254037844387,inf)

8.3. Evaluating type-B uncertainty 129

GUM Tree Calculator, Release 0.9.10

>>> ureal(1, type_b.distribution['arcsine'](a))
ureal(1,1.06066017177982,inf)

The names are (case-sensitive):

• ‘gaussian’

• ‘uniform’

• ‘triangular’

• ‘arcsine’ or ‘u_shaped’

• ‘uniform_ring’

• ‘uniform_disk’

8.3.4 Module contents

uniform(a)
Return the standard uncertainty for a uniform distribution.

Parameters a – the half-width

Example:

>>> x = ureal(1,type_b.uniform(1))
>>> summary(x)
'1.00, u=0.58, df=inf'

triangular(a)
Return the standard uncertainty for a triangular distribution.

Parameters a – the half-width

Example:

>>> x = ureal(1,type_b.triangular(1))
>>> summary(x)
'1.00, u=0.41, df=inf'

u_shaped(a)
Return the standard uncertainty for an arcsine distribution.

Parameters a – the half-width

Note: arcsine and u_shaped are equivalent

Example:

>>> x = ureal(1,type_b.arcsine(1))
>>> summary(x)
'1.00, u=0.71, df=inf'

arcsine(a)
Return the standard uncertainty for an arcsine distribution.

Parameters a – the half-width

Note: arcsine and u_shaped are equivalent

Example:

130 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> x = ureal(1,type_b.arcsine(1))
>>> summary(x)
'1.00, u=0.71, df=inf'

uniform_ring(a)
Return the standard uncertainty for a uniform ring

Parameters a – the radius

Convert the radius a of a uniform ring distribution (in the complex plane) to a standard uncertainty

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex(0, type_b.uniform_ring(1))
>>> summary(z)
'(0.00+0.00j), u=[0.71,0.71], r=0.00, df=inf'

uniform_disk(a)
Return the standard uncertainty for a uniform disk

Parameters a – the radius

Convert the radius a of a uniform disk distribution (in the complex plane) to a standard uncertainty.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex(0, type_b.uniform_disk(1))
>>> summary(z)
'(0.00+0.00j), u=[0.50,0.50], r=0.00, df=inf'

unknown_phase_product(u1, u2)
Return the standard uncertainty for a product when phases are unknown

Parameters

• u1 – the standard uncertainty of the first multiplicand

• u2 – the standard uncertainty of the second multiplicand

Obtains the standard uncertainty associated with a complex product when estimates have unknown phase.

The arguments u1 and u2 are the standard uncertainties associated with each multiplicand.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

X = Gamma1 * Gamma2
>>> X = ucomplex(0, type_b.unknown_phase_product(.1,.1))
>>> summary(X)
'(0.000+0.000j), u=[0.014,0.014], r=0.000, df=inf'

8.4 Reporting functions

This module provides functions that facilitate the reporting of information about GTC results.

The prefix reporting (or the alias rp) is needed to resolve objects defined in this module.

8.4. Reporting functions 131

GUM Tree Calculator, Release 0.9.10

8.4.1 Reporting functions

• The function budget generates an uncertainty budget.

• The function round rounds values according to the level of uncertainty. It facilitates string formatting for
uncertain numbers.

• The function uncertainty_interval calculates the upper and lower bounds of an uncertainty interval.

• The function uncertainty_region calculates a set of points located on the perimeter of an elliptical
uncertainty region.

• The function eigenv evaluates the eigenvalues and eigenvectors of a 2-by-2 variance-covariance matrix.

• The function k_factor returns the coverage factor used for real-valued problems.

• The function k_to_dof returns the degrees of freedom corresponding to a given coverage factor and
coverage probability.

• The function k2_factor_sq returns coverage factor squared for the complex-valued problem.

• The function k2_to_dof returns the degrees of freedom corresponding to a given coverage factor and
coverage probability.

• Functions u_bar and v_bar return summary values for matrices associated with two-dimensional uncer-
tainty.

• The function mahalanobis_sq evaluates the squared Mahalanobis distance.

8.4.2 Coordinate changes

• Functions u_polar_to_rect and u_rect_to_polar transform statements of uncertainty from one
system of coordinates to the other (polar and rectangular).

• Functions u_rect_to_tangent and u_tangent_to_rect transform statements of uncertainty be-
tween rectangular coordinates and tangential coordinates (in-phase / quadrature).

• The function rotate_cv_coordinates applies a rotation to the coordinate axes associated with a
particular variance-covariance matrix.

8.4.3 Uncertainty functions

• The function u_component returns the component of uncertainty in one uncertain number due to uncer-
tainty in another.

• The function variance_and_dof evaluates the variance and the degrees-of-freedom for both real and
complex uncertain numbers.

8.4.4 Type functions

• The function is_ureal can be used to identify uncertain real numbers.

• The function is_ucomplex can be used to identify uncertain complex numbers.

8.4.5 Module contents

budget(x, influences=None, key=’u’, reverse=True, trim=0.01, max_number=None)
Return a sequence of label-component of uncertainty pairs

Parameters

• x (UncertainReal or UncertainComplex) – the measurand estimate

132 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

• influences – a sequence of uncertain numbers

• key – the list sorting key

• reverse (Boolean) – determines sorting order (forward or reverse)

• trim – remove components of uncertainty that are less than trim times the largest
component

• max_number – return no more than max_number components

A sequence of namedtuple pairs is returned, with the attributes label and u.

Each element is a pair: a label and the magnitude of the component of uncertainty (see component).

The sequence influences can be used to select the influences are that reported.

The argument key can be used to order the sequence by the component of uncertainty or the label (u or
label).

The argument reverse controls the sense of ordering.

The argument trim can be used to set a minimum relative magnitude of components returned. Set trim=0
for a complete list.

The argument max_number can be used to restrict the number of components returned.

Example:

>>> x1 = ureal(1,1,label='x1')
>>> x2 = ureal(2,0.5,label='x2')
>>> x3 = ureal(3,0.1,label='x3')
>>> y = (x1 - x2) / x3
>>> for l,u in reporting.budget(y):
... print "%s: %G" % (l,u)
...
x1: 0.333333
x2: 0.166667
x3: 0.0111111

>>> for l,u in reporting.budget(y,reverse=False):
... print "%s: %G" % (l,u)
...
x3: 0.0111111
x2: 0.166667
x1: 0.333333

u_component(y, x)
Return the component of uncertainty in y due to x.

Note:

•If x and y are uncertain real numbers, return a float.

•If one of y or x is an uncertain complex number, return a 4-element sequence of float, containing
the components of the uncertainty matrix.

•Otherwise, return 0.

Example:

>>> x = ureal(3,1)
>>> y = 3 * x
>>> reporting.u_component(y,x)
3.0

>>> q = ucomplex(2,1)

8.4. Reporting functions 133

GUM Tree Calculator, Release 0.9.10

>>> r = ucomplex(3,1)
>>> z = q * r
>>> reporting.u_component(z,q)
u_components(rr=3.0, ri=-0.0, ir=0.0, ii=3.0)

>>> q = ucomplex(2,1)
>>> z = magnitude(q) # uncertain real numbers
>>> reporting.u_component(z,q)
u_components(rr=1.0, ri=0.0, ir=0.0, ii=0.0)

round(un, digits=2, df_decimals=0)
Round the value of attributes of un ready for printing

If un is uncertain real, an RoundedUncertainReal object is returned with attributes x, u, df, label
and precision.

The first four attributes correspond to the attributes of un. The values of x and u have been rounded to give
digits significant figures in the uncertainty.

The degrees-of-freedom is rounded down to df_decimals decimal places.

precision is the number of decimal places needed to represent x and u in fixed-point format. It is
intended for use when formatting a Python string.

Example

>>> un = ureal(10.2523,1.51,3.2,label='x')
>>> un_ = reporting.round(un)
>>> "{0.label!s}: {0.x:.{0.precision}f}, ... u={0.u:.{0.precision}f},
→˓df={0.df:.0f}".format(un_)
x: 10.3, u=1.5, df=3

sensitivity(y, x)
Return the partial derivative of y with respect to x.

Note:

•If x and y are uncertain real numbers, return a float.

•If one of y or x is an uncertain complex number, return a 4-element sequence of float, containing
the elements of the Jacobian matrix.

•Otherwise, return 0.

Example:

>>> x = ureal(3,1)
>>> y = 3 * x
>>> reporting.sensitivity(y,x)
3.0

>>> q = ucomplex(2,1)
>>> r = ucomplex(3,1)
>>> z = q * r
>>> reporting.sensitivity(z,q)
jacobian_matrix(rr=3.0, ri=0.0, ir=0.0, ii=3.0)

>>> q = ucomplex(2,1)
>>> z = magnitude(q) # uncertain real numbers
>>> reporting.sensitivity(z,q)
jacobian_matrix(rr=1.0, ri=0.0, ir=0.0, ii=0.0)

134 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

k_factor(df=inf, p=95, quick=True)
Return the univariate coverage factor

Parameters

• df (float) – the degrees-of-freedom (>1)

• p (integer) – the coverage probability (%)

• quick (bool) – use faster algorithm

Evaluates the coverage factor for an uncertainty interval with coverage probability p and degrees-of-freedom
df based on Student’s t-distribution.

Accuracy is reduced when using the quick option, for example:

>>> reporting.k_factor(3)
3.181632923406346
>>> reporting.k_factor(3,quick=False)
3.1824463052837175

k_to_dof(k, p=95)
Return the dof for k a univariate coverage factor

Parameters

• k – coverage factor (>0)

• p – coverage probability (%)

Evaluates the degrees-of-freedom given a coverage factor for an uncertainty interval with coverage proba-
bility p based on Student’s t-distribution.

Returns infinity for degrees-of-freedom values above 1E8.

Example:

>>> reporting.k_to_dof(2.0,95)
60.437564504892904

uncertainty_interval(x, p=95, quick=True)
Return the upper and lower bounds of a p% uncertainty interval.

Parameters

• x (UncertainReal) – the value (estimate)

• p (integer) – coverage probability in percent

• quick (bool) – use the faster coverage factor algorithm

Returns a 2-element sequence

Example:

>>> x = ureal(1.5,1,50)
>>> reporting.uncertainty_interval(x)
expanded_uncertainty(lower=-0.5085590722581137, upper=3.5085590722581137)

is_ureal(x)
Return True if x is an uncertain real number

Example:

>>> x = ureal(1,1)
>>> reporting.is_ureal(x)
True

8.4. Reporting functions 135

GUM Tree Calculator, Release 0.9.10

is_ucomplex(z)
Return True if z is an uncertain complex number

Example:

>>> z = ucomplex(1+2j,(0.1,0.2))
>>> reporting.is_ucomplex(z)
True

variance_and_dof(x)
Return the variance and degrees-of-freedom.

If x is an uncertain real number, a pair of real numbers is returned (v,df), where v is the standard variance
and df is the degrees-of-freedom calculated using the Welch-Satterthwaite formula.

If x is an uncertain complex number, a sequence and a float is returned (cv,df), where cv is a 4-element
sequence representing the variance-covariance matrix and df is the degrees-of-freedom, calculated using
the Willink-Hall total-variance method.

Otherwise, returns (0.0,inf).

Example:

>>> x1 = ureal(1.1,1,5)
>>> x2 = ureal(2.3,1,15)
>>> x3 = ureal(-3.5,1,50)
>>> y = (x1 + x2) / x3
>>> v,df = reporting.variance_and_dof(y)
>>> v
0.24029987505206163
>>> df
30.460148613530492

u_to_cv(u_re_im, r=0)
Convert standard uncertainties to a covariance matrix

Parameters

• u_re_im (a 2-element sequence of float, or a float) – standard
uncertainties for the real and imaginary components

• r (float) – correlation coefficient between the real and imaginary components

Returns (v_rr,v_ri,v_ir,v_ii) : the four elements of the covariance matrix

Example:

>>> reporting.u_to_cv((0.1,0.1) ,0.5)
variance_covariance(rr=0.010000000000000002, ri=0.005000000000000001,
ir=0.005000000000000001, ii=0.010000000000000002)

>>> reporting.u_to_cv(3)
variance_covariance(rr=9, ri=0, ir=0, ii=9)

cv_to_u(cv)
Return standard uncertainties and a correlation coefficient

Parameters cv (4-element sequence of float) – covariance matrix

Returns (u_re,u_im), r : the standard uncertainties and a correlation coefficient

A pair of standard uncertainties in the real and imaginary components and a correlation coefficient are
obtained from the variance-covariance matrix cv.

Example:

136 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> reporting.cv_to_u((0.01,0.005,0.005,0.01))
(standard_uncertainty(real=0.1, imag=0.1), 0.4999999999999999)

v_bar(cv)
Return the trace of cv divided by 2

Parameters cv (a 4-element sequence of float) – a variance-covariance matrix

Returns float

Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,(1,.2))
>>> z2 = ucomplex(x2,(.2,1))
>>> y = z1 * z2
>>> y.v
variance_covariance(rr=2.3464, ri=1.8432, ir=1.8432, ii=51.4216)
>>> reporting.v_bar(y.v)
26.884

u_bar(ucpt)
Return the magnitude of a component of uncertainty.

Parameters ucpt (float or 4-element sequence of float) – a component of
uncertainty

If ucpt is a sequence, return the root sum square of the elements divided by
√

2

If ucpt is a number, return the magnitude.

Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,1)
>>> z2 = ucomplex(x2,1)
>>> y = z1 * z2
>>> dy_dz1 = reporting.u_component(y,z1)
>>> dy_dz1
u_components(rr=0.2, ri=-7.1, ir=7.1, ii=0.2)
>>> reporting.u_bar(dy_dz1)
7.102816342831905

fn_bar(ucpt)
Deprecated function name: use u_bar instead

tv_bar(cv)
Deprecated function name: use v_bar instead

k2_factor_sq(df=inf, p=95, quick=True)
Return the bivariate coverage factor squared

Parameters

• df (float) – the degrees-of-freedom (>=2)

• quick (bool) – use faster algorithm

Arg p: the coverage probability (%)

Evaluates the square of the coverage factor for an elliptical uncertainty region with coverage probability p
and df degrees of freedom based on the F-distribution.

The quick option is not available for df less than 3

Accuracy is reduced when using the quick option, for example:

8.4. Reporting functions 137

GUM Tree Calculator, Release 0.9.10

>>> reporting.k2_factor_sq(3)
57.35717041567613
>>> reporting.k2_factor_sq(3,quick=False)
56.99999999936168

k2_to_dof(k2, p=95)
Return the dof for k2 a bivariate coverage factor

Parameters

• k2 – coverage factor (>0)

• p – coverage probability (%)

Evaluates a number of degrees-of-freedom given a coverage factor for an elliptical uncertainty region with
coverage probability p based on the F-distribution.

Returns infinity for degrees-of-freedom values above 1E8.

Example:

>>> reporting.k2_to_dof(2.6,95)
34.357884313812384

mahalanobis_sq(x, y, cv, inverted=False)
Return the squared Mahalanobis distance between x and y

Parameters

• x – complex number

• y – complex number

• cv (4-element sequence of float) – variance-covariance matrix

• inverted (Boolean) – True if cv is inverted

If inverted is True, the matrix inverse of cv is not calculated.

Example:

>>> cv = reporting.u_to_cv((2,4))
>>> x1 = complex(1,3)
>>> x2 = complex(3,1)
>>> y = complex(1,1)
>>> reporting.mahalanobis_sq(x1,y,cv)
0.25
>>> reporting.mahalanobis_sq(x2,y,cv)
1.0

uncertainty_region(N, z, p=95, quick=True)
Return a sequence of N (x,y) points on a p% uncertainty ellipse

Parameters

• N (int or long) – number of coordinates required

• z (UncertainComplex) – the value (estimate)

• p (integer) – coverage probability in percent

• quick (bool) – use the faster coverage factor algorithm

This function generates N points on the perimeter of an elliptical uncertainty region.

Example:

138 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> z = ucomplex(0,1,50)
>>> reporting.uncertainty_region(10,z)
[(2.53924593344018+0j),
(1.9451752370243123+1.6321958239622785j),
(0.44093542899005095+2.50066908205661j),
(-1.2696229667200893+2.199051484815526j),
(-2.3861106660143627+0.8684732580943322j),
(-2.386110666014363-0.8684732580943316j),
(-1.2696229667200911-2.199051484815525j),
(0.44093542899004984-2.5006690820566106j),
(1.9451752370243116-1.6321958239622794j),
(2.53924593344018-6.219358809270899e-16j)]

eigenv(cv)
Return the eigenvalues and eigenvectors of cv

Parameters cv (a 4-element sequence of float) – variance-covariance matrix

Returns a pair of eigenvalues and a pair of eigenvectors

The function raises a RuntimeError exception if the off-diagonal elements differ by more than 1E-10,
or if either diagonal element is negative.

Calculates the eigenvalues and eigenvectors of a variance-covariance matrix cv.

Returns a pair of eigenvalues (ordered) and a pair of eigenvectors (2-element sequences). The eigenvectors
have unit magnitude.

Examples:

>>> z = ucomplex(1+1j,(.2,.4))
>>> L,V = reporting.eigenv(z.v)
>>> L
(0.16000000000000003, 0.04000000000000001)
>>> V
((0, 1), (1, 0))

>>> m = linear_algebra.matrix([[.8,.3],[.3,.7]])
>>> L,V = reporting.eigenv(m.flat)
>>> L
(1.054138126514911, 0.445861873485089)
>>> V[0]
(0.7630199824727258, 0.6463748961301957)
>>> V[1]
(-0.6463748961301957, 0.7630199824727257)

u_polar_to_rect(z, u_r_phi, r=0)
Return standard uncertainties, and correlation, in rectangular coordinates

Parameters

• z (complex) – the value (estimate)

• u_r_phi (2-element sequence of float) – a pair of standard uncertainties
in polar coordinates (angle uncertainty in radians)

• r (float) – correlation between the radial and azimuthal components

Returns (u_re,u_im), r : a pair of standard uncertainties and a correlation coefficient in rectan-
gular coordinates

Transform a pair of standard uncertainties in polar coordinates into a pair of standard uncertainties in rect-
angular coordinates.

8.4. Reporting functions 139

GUM Tree Calculator, Release 0.9.10

Note: If u/abs(z)< 5 the polar to rectangular conversion is not recommended.

Example:

>>> z = complex(0.93,-0.03)
>>> u_r_phi = (0.01,math.radians(.5))
>>> u,r = reporting.u_polar_to_rect(z,u_r_phi)
>>> u
standard_uncertainty(real=0.009998229284003339, imag=0.008122182692929972)
>>> r
-0.013517808883928624

u_rect_to_polar(z, u_re_im, r=0)
Return standard uncertainties, and correlation, in polar coordinates

Parameters

• z (complex) – the value (estimate)

• u_re_im (2-element sequence of float) – a pair of standard uncertainties
in rectangular coordinates

• r (float) – correlation between the real and imaginary components

Returns (u_r,u_phi), r : a pair of standard uncertainties and a correlation coefficient in polar
coordinates (angle uncertainty in radians)

Transform a pair of standard uncertainties in rectangular coordinates into a pair of standard uncertainties in
polar coordinates.

Note: If u/abs(z)< 5 the rectangular to polar conversion is not recommended.

Example:

>>> z = complex(0.93,-0.03)
>>> u_re_im = (0.05,0.05)
>>> u_p,r = reporting.u_rect_to_polar(z,u_re_im)
>>> u_p
(0.05000000000000001, 0.05373549001826343)
>>> r
0

u_rect_to_tangent(z, u_re_im, r=0)
Return standard uncertainties and correlation in tangential coordinates

Parameters

• z (complex) – the value (estimate)

• u_re_im (2-element sequence of float) – a pair of standard uncertainties
for the real and imaginary components of z

• r (float) – correlation between components

Returns (u_r,u_t), r_t : a pair of uncertainties expressed in coordinates aligned with the polar
axes and a correlation coefficient

Transform a pair of standard uncertainties in rectangular coordinates into a pair of uncertainties expressed
in rotated rectangular coordinates (tangential coordinates) aligned with the polar axes at the point z.

Example:

140 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> z = complex(1,1)
>>> u = (1,2)
>>> u_rt, r = reporting.u_rect_to_tangent(z, u)
>>> u_rt
rt_uncertainty(radial=1.5811388300841895, tangent=1.5811388300841898)
>>> u_rt.radial
1.5811388300841895
>>> u_rt.tangent
1.5811388300841898
>>> r
0.6

Note: Raises a RuntimeError if abs(z) == 0

u_tangent_to_rect(z, u_rt, r=0)
Return standard uncertainties and the correlation coefficient

Parameters

• z (complex) – the value (estimate)

• u_rt (2-element sequence of float) – a pair of standard uncertainties given
in tangential coordinates

• r (float) – correlation between the radial and tangential components

Returns (u_re,u_im), r : a pair of standard uncertainties and a correlation coefficient in rectan-
gular coordinates

Transform a pair of standard uncertainties and a correlation coefficient in tangential coordinates (aligned to
the polar axes at the point z) to a pair of standard uncertainties and a correlation coefficient expressed in
rectangular coordinates.

Example:

>>> z = complex(.3,.4)
>>> u_rt = (.5,1)
>>> u,r = reporting.u_tangent_to_rect(z, u_rt)
>>> u
standard_uncertainty(real=0.8544003745317532, imag=0.7211102550927979)
>>> u.real
0.8544003745317532
>>> u.imag
0.7211102550927979
>>> r
-0.5843047258450758

rotate_cv_coordinates(cv, phi)
Return the covariance matrix in a rotated coordinate system.

Parameters

• cv (4-element sequence of float) – initial covariance matrix

• phi (float) – angle of rotation (radians)

Returns covariance matrix in rotated coordinate system

The coordinate axes associated with the covariance matrix cv are rotated counter-clockwise through an
angle phi.

Example:

8.4. Reporting functions 141

GUM Tree Calculator, Release 0.9.10

>>> z = ucomplex(1,(2,1))
>>> reporting.rotate_cv_coordinates(z.v,math.pi/4)
variance_covariance(rr=2.5000000000000004, ri=1.5, ir=1.5, ii=2.
→˓4999999999999996)

8.5 Linear algebra

This module supports array and matrix operations.

The prefix linear_algebra (or the alias la) is needed as to resolve the names of objects defined in this
module.

8.5.1 Classes

• array

• matrix

8.5.2 Arithmetic operations

Arithmetic operations are defined for both arrays and matrices (unary + and -, and binary +, - and
*). The multiplication operator * is implemented element-wise for arrays, but performs the matrix
product for matrices.

When one argument is a scalar, it is applied to each element of the array, or matrix, in turn.

array and matrix define attributes as short-hand for some operations:

• the array , or matrix, attribute T transposes the object

• the matrix attribute I evaluates the matrix inverse

8.5.3 Functions

The functions inverse, transpose, solve and det implement the usual linear algebra opera-
tions.

Functions asmatrix and asarray change the type of object. The function aslist turns an array
or matrix into a (possibly nested) list.

The functions identity , empty , zeros and ones create simple arrays.

8.5.4 Array broadcasting

When binary arithmetic operations are used on arrays, the shape of the array may be changed for the
purposes of the calculation. The rules are as follows:

• If arrays do not have the same number of dimensions, then dimensions of size 1 are prepended
to the smaller array’s shape

Following this, the size of array dimensions are compared and checked for compatibility. Array
dimensions are compatible when

• dimension sizes are equal, or

• one of the dimension sizes is 1

Finally, if either of the compared dimension sizes is 1, the larger dimension size is used. For example:

142 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> x = la.array([1,2])
>>> y = la.array([[1],[2]])
>>> print x.shape,y.shape
(2,) (2, 1)
>>> x + y
array([[2, 3],
[3, 4]])

8.5.5 Module contents

class array(obj, copy=True)
An array object stores a regular array of elements

Parameters

• obj – an array, a matrix, a sequence or an iterable object

• copy – Boolean

An array can be constructed from another array or matrix, a sequence or an iterator. Nested se-
quences or iterators create multidimensional arrays.

When copy is True and obj is an array or, matrix, data is shared, not copied.

Examples:

>>> x = la.array(range(4))
>>> x
array([0, 1, 2, 3])
>>> x.shape = (2,2)
>>> x
array([[0, 1],
[2, 3]])

>>> x = la.array([[0, 1],[2, 3]])
>>> x
array([[0, 1],
[2, 3]])

T
The transpose

(see also transpose)

Example:

>>> x = la.array(range(8))
>>> x.shape = 2,4
>>> xt = x.T
>>> xt.shape
(4, 2)
>>> print x
[[0 1 2 3]
[4 5 6 7]]
>>> print xt
[[0 4]
[1 5]
[2 6]
[3 7]]

copy()
Return a copy

Example:

8.5. Linear algebra 143

GUM Tree Calculator, Release 0.9.10

>>> a = array([1,2])
>>> a_copy = a.copy()
>>> a_copy
array([1, 2])
>>> a
array([1, 2])
>>> a[1] = 3
>>> a_copy
array([1, 2])
>>> a
array([1, 3])

flat
An iterator for all elements

Example:

>>> x = la.array([[1,2],[3,4]])
>>> print x
[[1 2]
[3 4]]
>>> xf = la.array(x.flat)
>>> print xf
[1 2 3 4]

shape
a tuple of dimension sizes

class matrix(obj, copy=True)
A matrix stores a 2-by-2 array of objects

Parameters

• obj – an array, a matrix, a sequence or an iterable

• copy – Boolean

A matrix may be constructed from an array or matrix, a sequence or an iterator.

When copy is True and obj is an array , or matrix, data is shared, not copied.

Examples:

>>> x = la.matrix(range(4))
>>> x
matrix([[0, 1, 2, 3]])
>>> x.shape = (2,2)
>>> x
matrix([[0, 1],
[2, 3]])

>>> x = la.matrix([[0, 1],[2, 3]])
>>> x
matrix([[0, 1],
[2, 3]])

I
The matrix inverse

(see also inverse)

Example:

>>> x = la.matrix([[1,2],[3,4]])
>>> x * x.I

144 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

matrix([[0.9999999999999998, 1.1102230246251565e-16],
[0.0, 1.0000000000000002]])

T
The transpose

(see also transpose)

Example:

>>> x = la.array(range(8))
>>> x.shape = 2,4
>>> xt = x.T
>>> xt.shape
(4, 2)
>>> print x
[[0 1 2 3]
[4 5 6 7]]
>>> print xt
[[0 4]
[1 5]
[2 6]
[3 7]]

copy()
Return a copy

Example:

>>> a = array([1,2])
>>> a_copy = a.copy()
>>> a_copy
array([1, 2])
>>> a
array([1, 2])
>>> a[1] = 3
>>> a_copy
array([1, 2])
>>> a
array([1, 3])

flat
An iterator for all elements

Example:

>>> x = la.array([[1,2],[3,4]])
>>> print x
[[1 2]
[3 4]]
>>> xf = la.array(x.flat)
>>> print xf
[1 2 3 4]

shape
a tuple of dimension sizes

det(a)
Return the matrix determinant

Example:

>>> x = la.matrix(range(4))
>>> x.shape = 2,2

8.5. Linear algebra 145

GUM Tree Calculator, Release 0.9.10

>>> print x
[[0 1]
[2 3]]
>>> la.det(x)
-2.0

inverse(a)
Return the matrix inverse

Example:

>>> x = la.matrix([[2,1],[3,4]])
>>> x * la.inverse(x)
matrix([[1.0, 0.0],
[4.440892098500626e-16, 1.0]])

transpose(a, axes=None)
Return the transpose of a.

Parameters

• a – an array, or matrix

• axes – a sequence of axis indices

Returns an array, or matrix (the same type as a).

Note:

•A new object is created (ie, a is not affected).

•By default, the function will reverse the dimensions of a.

•axes may contain a sequence of integers indexing the dimensions of a. The axes of a will then be
permuted according to the contents of axes.

Examples:

>>> x = la.array(range(4))
>>> x.shape = 2,2
>>> la.transpose(x)
array([[0, 2],
[1, 3]])

>>> x = la.array(range(12))
>>> x.shape = 2,3,2
>>> print x
[[[0 1]
[2 3]
[4 5]]
[[6 7]
[8 9]
[10 11]]]
>>> la.transpose(x,(0,2,1))
array([[[0, 2, 4],
[1, 3, 5]],
[[6, 8, 10],
[7, 9, 11]]])

identity(ndim)
Return an identity array with ndim dimensions

Example:

146 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> la.identity(3)
array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])

ones(shape)
Return an array of shape shape containing 1‘s

Example:

>>> la.ones((2,3))
array([[1, 1, 1],
[1, 1, 1]])

empty(shape)
Return an array of shape shape containing None elements

Example:

>>> la.empty((2,3))
array([[None, None, None],
[None, None, None]])

zeros(shape)
Return an array of shape shape containing 0‘s

Example:

>>> la.zeros((2,3))
array([[0, 0, 0],
[0, 0, 0]])

solve(a, b)
Return 𝑥, the solution of 𝑎 · 𝑥 = 𝑏

Parameters

• a – an array or matrix

• b – an array or matrix

Return type array or matrix

The type of object returned depends on the type of arguments. A matrix is returned if a or b is a matrix,
otherwise an array is returned.

Example:

>>> a = la.matrix([[-2,3],[-4,1]])
>>> b = la.array([4,-2])
>>> la.solve(a,b)
matrix([[1.0, 2.0]])

asarray(a)
Return a as an array without copying

Example:

>>> x = la.array((1,2,3))
>>> x
array([1, 2, 3])
>>> la.asmatrix(x)
matrix([[1, 2, 3]])

8.5. Linear algebra 147

GUM Tree Calculator, Release 0.9.10

asmatrix(a)
Return a as a matrix without copying

Example:

>>> x = la.array(range(4))
>>> la.asmatrix(x)
matrix([[0, 1, 2, 3]])

aslist(a)
Return a list of the data in a

A list is constructed by iterating over the elements of a. If the elements of a are iterable, a nested list is
created.

Parameters a – an iterable object

8.6 Conversion between numbers and strings

The prefix number_strings (or the alias ns) is needed as to resolve the names of objects defined in this
module.

8.6.1 Loss of precision

Problems can arise when converting between numbers and strings. Python conversions can truncate the number
of floating-point digits, which introduces errors.

The functions in this module can be used to avoid unintended numerical errors.

8.6.2 Functions

• to_string(x) : converts x to a string

• sequence_printer(seq) : uses to_string(x) to convert the elements of a sequence

• to_numeric(x) : converts x to a number

• sequence_parser(seq) : uses to_numeric(x) to convert the elements of a sequence

8.6.3 Module contents

class File(filename, mode, delim=None)
Provides methods for reading and writing numeric data

Numbers are converted to, or from, text without loss of precision.

Other functionality defaults to standard Python file behaviour.

Examples:

read a file
with ns.File('my_file','r',delim=',') as file:

for line in file: print line

or ...
file = ns.File('my_file','r',delim=',')
for line in file: print line

newline()
Put a newline character in the file

148 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

read(delim=None)
Return file contents as a sequence

All strings are converted to numbers, if possible

delim separates elements in the line (delim is set when opening the file [default: whitespace])

readline(delim=None)
Return one line as a sequence

All strings are converted to numbers, if possible

delim separates elements in the line [default: whitespace] (delim can also be set when opening the
file)

readlines(delim=None)
Return file as a sequence of line sequences

All strings are converted to numbers, if possible

delim separates elements in the line [default: whitespace] (delim can also be set when opening the
file)

write(seq, delim=None)
Write seq to the file

Numbers in seq are converted to strings without loss of precision.

write does not add a line separator at the end of the write sequence (use newline).

to_string(x)
Return a string representing x

Parameters x – anything

Returns a string representation of x

The string format generated for complex numbers is recognised by spreadsheet applications.

For non-numeric types repr is used to generate a string.

Examples:

>>> z = 1.0/3.0 - 0.3134j
>>> ns.to_string(z)
'0.3333333333333333-0.3134j'

>>> x = float(3.141414E-21)
>>> ns.to_string(x)
'3.141414e-21'

sequence_printer(seq)
Return a list of strings

Parameters seq – a sequence, or nested sequences

Returns a list of strings corresponding to of the elements in seq

Numeric elements in seq retain the internal floating point precision (see to_string).

If seq contains nested sequences, the elements will be converted recursively and the lists returned will also
be nested.

Example:

>>> x = la.array([0.123 * i for i in range(12)])
>>> x.shape = 2,2,3
>>> print x # Python string conversion limits precision
[[[0.0 0.123 0.246]
[0.369 0.492 0.615]]

8.6. Conversion between numbers and strings 149

GUM Tree Calculator, Release 0.9.10

[[0.738 0.861 0.984]
[1.107 1.23 1.353]]]
>>> ns.sequence_printer(x) # precision conserved
[[['0.0', '0.123', '0.246'],
['0.369', '0.492', '0.615']],
[['0.738', '0.861', '0.984'],
['1.107', '1.23', '1.353']]
]

to_numeric(x)
Return x as a number, if possible

Parameters x – string

Returns a number, if possible, otherwise x

Examples:

>>> x = '3.141413999999999e-21'
>>> ns.to_numeric(x)
3.141413999999999e-21

>>> z = '0.3333333333333333-0.3134j'
>>> ns.to_numeric(z)
(0.3333333333333333-0.3134j)

sequence_parser(seq)
Return a list of numbers

Parameters seq – a sequence of strings

Returns a list of strings and numbers

Elements in seq are converted to numbers where possible, otherwise the original is returned (see
to_numeric).

If seq contains nested sequences, elements will be converted recursively and nested sequences are returned.

Example:

>>> x = [['0.0', '0.123', '0.246'],
... ['0.3689999999999999', '0.4919999999999999', '0.6149999999999999']]
>>> ns.sequence_parser(x)
[[0.0, 0.123, 0.246], [0.3689999999999999, 0.4919999999999999, 0.
→˓6149999999999999]]

open(filename, mode=None, delim=None)
Return a File object for handling numeric data

Parameters

• filename – file name

• mode – opening mode

• delim – file delimiting character

Note: This function is deprecated. Use File instead, or use use File in a with ... as statement.

Example:

open CVS file and print contents
>>> file = ns.open('my_file','r',delim=',')
>>> for line in file:

150 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

... print line

...

8.7 Additional functions

The prefix function (or the alias fn) is needed as to resolve the names of objects defined in this module.

8.7.1 Coordinate transformation

Functions polar and rect provide polar and rectangular coordinate transformations for uncertain numbers.

8.7.2 Implicit problems

The function implicit solves problems of the form:

fn(x) = 0

obtaining the solution x as an uncertain real number.

8.7.3 Utility functions

The functions complex_to_seq and seq_to_complex support a matrix representation of complex num-
bers.

The function mul2 can be used when a product of a pair of uncertain numbers is close to zero. The evaluation of
uncertainty components includes a second-order contribution to the uncertainty.

8.7.4 Least-squares regression

line_fit implements an ordinary least-squares straight-line regression calculation that accepts uncertain real
numbers for the independent and dependent variables.

line_fit_wls implements a weighted least-squares straight-line regression calculation. It accepts uncertain
real numbers for the independent and dependent variables. It is also possible to specify weights for the regression.

line_fit_wtls implements a total least-squares algorithm for a straight-line fitting that can perform a
weighted least-squares regression when both y and x data are uncertain real numbers, it also handles correlation
between (x,y) data pairs.

8.7.5 Module contents

polar(z)
Return a pair of uncertain real numbers for magnitude and phase.

Parameters z (UncertainComplex) – an uncertain complex number

Returns uncertain real numbers for magnitude and phase, a 2-element sequence of
UncertainReal

Example:

>>> z = ucomplex(0.95+0.02j,0.01)
>>> z
ucomplex((0.94999999999999996+0.02j), u=[0.01,0.01], r=0, df=inf)
>>> m,p = function.polar(z)
>>> m

8.7. Additional functions 151

GUM Tree Calculator, Release 0.9.10

ureal(0.95021050299394183,0.01,inf)
>>> p
ureal(0.021049522137046431,0.010523983863040671,inf)

>>> z_mp = function.polar(z)
>>> z_mp.magnitude
ureal(0.95021050299394183,0.01,inf)
>>> z_mp.phase
ureal(0.021049522137046431,0.010523983863040671,inf)

rect(mag_phase)
Return an uncertain complex number in rectangular coordinates.

Parameters mag_phase (2-element sequence of UncertainReal) – a sequence containing
the magnitude and phase (radians)

Returns UncertainComplex

Example:

>>> phi = ureal(math.radians(87), math.radians(.5))
>>> mag = ureal(0.87, 0.07)
>>> z = function.rect((mag,phi))
>>> z.s
'(0.0455+0.8688j), u=[0.0084,0.0699], r=0.4300, df=inf'

complex_to_seq(z)
Transform a complex number into a 4-element sequence

Parameters z – a number

If z = x + yj, then matrix([[x,-y],[y,x]]) can be used to represent z in matrix computations.

Examples:

>>> z = 1 + 2j
>>> function.complex_to_seq(z)
(1.0, -2.0, 2.0, 1.0)

>>> m = linear_algebra.matrix(function.complex_to_seq(z))
>>> m.shape = (2,2)
>>> print(m)
[[1.0 -2.0]
[2.0 1.0]]

seq_to_complex(seq)
Transform a 4-element sequence, or array, into a complex number

Parameters seq – a 4-element sequence, array or matrix

A RuntimeError will be raised if seq is ill-conditioned.

If z = x + yj, then matrix([[x,-y],[y,x]]) can be used to represent z in matrix computations.

Examples:

>>> seq = (1,-2,2,1)
>>> z = function.seq_to_complex(seq)
>>> print(z)
(1+2j)

>>> a = linear_algebra.array((1,-2,2,1))
>>> a.shape = 2,2
>>> print(a)
[[1 -2]
[2 1]]

152 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> z = function.seq_to_complex(a)
>>> print(z)
(1+2j)

mean(seq)
Return the arithmetic mean of elements in seq

seq - an iterable object

If the elements of seq are uncertain numbers, an uncertain number is returned.

Example

>>> seq = [ureal(1,1), ureal(2,1), ureal(3,1)]
>>> fn.mean(seq)
ureal(2,0.5773502691896257,inf)

line_fit(x, y)
-> Least-squares linear intercept and slope

Parameters

• x – sequence of independent variable data

• y – sequence of dependent variable data

Returns a LineFitOLS object

y must be a sequence of uncertain real numbers.

Performs an ordinary least-squares regression.

Note: Uncertainty in the parameter estimates is found by propagating uncertainty through the regression
formulae. This does not take account of the residuals.

The function type_a.line_fit can be used to carry out a regression analysis that obtains uncertainty
in the parameter estimates due to the residuals.

If necessary, the results of both type-A and type-B analyses can be merged (see
type_a.merge_components).

Example:

>>> a0 =10
>>> b0 = -3
>>> u0 = .2

>>> x = [float(x_i) for x_i in xrange(10)]
>>> y = [ureal(b0*x_i + a0,u0) for x_i in x]

>>> a,b = fn.line_fit(x,y).a_b
>>> a
ureal(10,0.1175507627290518,inf)
>>> b
ureal(-3,0.022019275302527213,inf)

line_fit_wls(x, y, u_y=None)
-> Weighted least-squares linear regression

Parameters

• x – sequence of independent variable data

• y – sequence of dependent variable data

• u_y – sequence of uncertainties in y

8.7. Additional functions 153

GUM Tree Calculator, Release 0.9.10

Returns a LineFitWLS object

y must be a sequence of uncertain real numbers.

Performs a weighted least-squares regression.

Weights are calculated from the uncertainty of the y elements unless the sequence u_y is provided.

Note: The uncertainty in the parameter estimates is found by propagation of uncertainty through the
regression formulae. This does not take account of the residuals.

The function type_a.line_fit_wls can be used to carry out a regression analysis that obtains uncer-
tainty in the parameter estimates due to the residuals.

If necessary, the results of both type-A and type-B analyses can be merged (see
type_a.merge_components).

Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
>>> u_y = [0.5,0.5,0.5,1.0,1.0,1.0]
>>> y = [ureal(y_i,u_y_i) for y_i, u_y_i in zip(y,u_y)]

>>> fit = function.line_fit_wls(x,y)
>>> a, b = fit.a_b
>>> a
ureal(0.8852320675105498,0.5297081435088364,inf)
>>> b
ureal(2.056962025316455,0.177892016741205,inf)

line_fit_wtls(a_b, x, y, u_x=None, u_y=None, r_xy=None)
Perform straight-line regression with uncertainty in x and y

Parameters

• a_b – a pair of initial estimates for a and b

• x – list of uncertain real numbers for the independent variable

• y – list of uncertain real numbers for the dependent variable

• u_x – a sequence of uncertainties for the x data

• u_y – a sequence of uncertainties for the y data

• r_xy – correlation between x-y pairs [default: 0]

Returns a LineFitWTLS object

The elements of x and y must be uncertain numbers with non-zero uncertainties. The uncertainties of the
x and y sequences are used to calculate weights for the regression unless the optional arguments u_x and
u_y are not specified.

Implements a Weighted Total Least Squares algorithm that allows for correlation between x-y pairs. See
reference:

M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)

Example:

Pearson-York test data
see, e.g., Lybanon, M. in Am. J. Phys 52 (1), January 1984
xin=[0.0,0.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4]
wx=[1000.0,1000.0,500.0,800.0,200.0,80.0,60.0,20.0,1.8,1.0]

yin=[5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5]

154 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

wy=[1.0,1.8,4.0,8.0,20.0,20.0,70.0,70.0,100.0,500.0]

Convert weights to standard uncertainties
uxin=[1./math.sqrt(wx_i) for wx_i in wx]
uyin=[1./math.sqrt(wy_i) for wy_i in wy]

Define uncertain numbers
x = [ureal(xin_i,uxin_i) for xin_i,uxin_i in itertools.izip(xin,uxin)]
y = [ureal(yin_i,uyin_i) for yin_i,uyin_i in itertools.izip(yin,uyin)]

initial estimate
a_b = function.line_fit(x,y).a_b

TLS returns uncertain numbers
a,b = function.line_fit_wtls(a_b,x,y).a_b

class LineFitOLS(a, b, ssr, N)
This object holds results from an ordinary linear regression to data.

N
The number of points in the sample

a_b
Return the intercept and slope as uncertain numbers

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

class LineFitWLS(a, b, ssr, N)
This object holds results from a weighted LS linear regression to data.

N
The number of points in the sample

a_b
Return the intercept and slope as uncertain numbers

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

class LineFitWTLS(a, b, ssr, N)
This object holds results from a TLS linear regression to data.

N
The number of points in the sample

a_b
Return the intercept and slope as uncertain numbers

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

mul2(arg1, arg2, estimated=False)
Return the product of arg1 and arg2

Extends the usual calculation of a product, by using second-order contributions to uncertainty.

8.7. Additional functions 155

GUM Tree Calculator, Release 0.9.10

Parameters

• arg1 – uncertain real or complex number

• arg2 – uncertain real or complex number

• estimated – Boolean

When both arguments are uncertain numbers that always have the same fixed values then estimated
should be set False. For instance, residual errors are often associated with the value 0, or 1, which is not
measured, in that case estimated=False is appropriate. However, if either or both arguments are based
on measured values set estimated=True.

Note: When estimated is True, and the product is close to zero, the result of a second-order uncertainty
calculation is smaller than the uncertainty calculated by the usual first-order method. In some cases, an
uncertainty of zero will be obtained.

There are fairly strict limitations on the use of this function, especially for uncertain complex numbers:

1) Arguments must be independent (have no common influence quantities) and there can be no correlation
between any of the quantities that influence arg1 or arg2.

2) If either argument is uncertain complex, the real and imaginary components must have equal uncertainties
(i.e., the covariance matrix must be diagonal with equal elements along the diagonal) and be independent
(no common influences).

A RuntimeError exception is raised if these conditions are not met.

Note: This function has been developed to improve the accuracy of uncertainty calculations where one or
both multiplicands are zero. In such cases, the usual method of uncertainty propagation fails.

For example

>>> x1 = ureal(0,1,label='x1')
>>> x2 = ureal(0,1,label='x2')
>>> y = x1 * x2
>>> y
ureal(0,0,inf)
>>> for cpt in rp.budget(y,trim=0):
... print " %s: %G" % cpt
...
x1: 0
x2: 0

so none of the uncertainty in x1 or x2 is propagated to y. However, we may calculate the second-order
contribution

>>> y = fn.mul2(x1,x2)
>>> y
ureal(0,1,inf)
>>> for cpt in rp.budget(y,trim=0):
... print " %s: %G" % cpt
...
x1: 0.707107
x2: 0.707107

The product now has a standard uncertainty of unity.

Warning: mul2 departs from the first-order linear calculation of uncertainty in the GUM.

156 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

In particular, the strict proportionality between components of uncertainty and first-order partial deriva-
tives no longer holds.

implicit(fn, x_min, x_max, epsilon=2.220446049250313e-16)
Return the solution to 𝑓(𝑥) = 0

Parameters

• fn – a user-defined function

• x_min (float) – lower limit of search range

• x_max (float) – upper limit of search range

• epsilon (float) – tolerance for algorithm convergence

The user-defined function fn takes a single uncertain real number argument.

x_min and x_max delimit a range containing a single root (ie, the function must cross the x-axis just once
inside the range).

Note:

•A RuntimeError is raised if the search algorithm fails to converge.

•An AssertionError is raised if preconditions are not satisfied.

Example:

>>> near_unity = ureal(1,0.05)
>>> fn = lambda x: x**2 - near_unity
>>> function.implicit(fn,0,2)
ureal(1,0.025000000000000001,inf)

8.8 Storing uncertain numbers

Archiving allows uncertain numbers to be saved and restored (for further calculation).

The archiving process preserves the identity of uncertain numbers. For example, if a particular reference standard
has been used in a number of different measurements, the dependence on common influences is recorded.

Note: Archives created with GTC version 0.9.7 are not compatible with this version.

The prefix archive (or the alias ar) must be used to resolve the names of objects defined in this module.

8.8.1 Class

An Archive object marshals a set of uncertain numbers for storage and recreates uncertain numbers,
when restoring an archive.

8.8.2 Functions

An archive can be stored as a computer file, or in a string.

Functions for storing and retrieving an archive file are

• load

8.8. Storing uncertain numbers 157

GUM Tree Calculator, Release 0.9.10

• dump

Functions for storing and retrieving string archives are

• dumps

• loads

8.8.3 Module contents

class Archive
Defines objects used to store and recover uncertain numbers

add(**kwargs)
Add entries name = uncertain-number to the archive

Example:

>>> a = ar.Archive()
>>> x = ureal(1,1)
>>> y = ureal(2,1)
>>> a.add(x=x,fred=y)

extract(*args)
Extract one or more uncertain numbers

Parameters args – archived names of the uncertain numbers

If just one name is given a single uncertain number is returned, otherwise a sequence of uncertain
numbers is returned.

Example:

>>> x, fred = a.extract('x','fred')
>>> harry = a.extract('harry')

items()
Return a list of pairs of name-tags and uncertain-numbers

iteritems()
Return an iterator for pairs of name-tags and uncertain-numbers

iterkeys()
Return an iterator for name-tags

itervalues()
Return an iterator for uncertain numbers

keys()
Return a list of name-tags

values()
Return a list of uncertain numbers

load(file)
Load an archive from a file

Parameters file – a file object opened in binary read mode (with ‘rb’)

Several archives can be extracted from one file by repeatedly calling this function.

dump(file, ar)
Save an archive in a file

Parameters

• file – a file object opened in binary write mode (with ‘wb’)

158 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

• ar – an Archive object

Several archives can be saved in a file by repeated use of this function.

Note: This function can only be called once on a particular archive.

dumps(ar, protocol=-1)
Return a string representation of the archive

Parameters

• ar – an Archive object

• protocol – encoding type

Possible values for protocol are described in the Python documentation for the ‘pickle’ module.

protocol=0 creates an ASCII string, but note that many (special) linefeed characters are embedded.

Note: This function can only be called once on a particular archive.

loads(s)
Return an archive object restored from a string representation

Parameters s – a string created by dumps

8.9 Tools for validating uncertainty calculations

Functions in this module can be used to validate uncertainty calculations by a simulation method.

If an uncertainty calculation preforms well on simulated data, it can be expected to perform well with real data
too.

What does ‘perform well’ mean? Coverage probability (level of confidence) can be understood as the success-rate
when a procedure is applied many times to independent data sets. That is, calculated uncertainty statements, for
different sets of experimental data, should cover the measurand on roughly 95 out of 100 occasions when the
nominal level of confidence is 95%. A simulation should represent the main features of the data generated in
actual measurements.

The functions in this module fall into two groups: those that simulate random effects and those that test whether
the measurand is covered by the uncertainty statement. Both real and complex-valued measurands can be handled.

There are two groups of function that simulate random effects. One group generates random errors drawn from a
particular error distribution. The other group generates a triplet of numbers needed to define uncertain numbers:
the estimate, the uncertainty of the estimate and the degrees of freedom associated with the uncertainty.

A suffix in the function names distinguishes between the two types: _err indicates a simple random error gener-
ator (e.g., gaussian_err), _est indicates a generator of estimates (e.g., gaussian_est)

Generators of estimates are used to create independent inputs for an uncertainty calculation that varies from one
measurement to the next.

The prefix sim is needed to resolve the names of objects defined in this module.

8.9.1 Functions that create simple random error generators (real-valued)

• gaussian_err - a Gaussian random error generator

• uniform_err - a uniform random error generator

• triangular_err - a triangular random error generator

8.9. Tools for validating uncertainty calculations 159

GUM Tree Calculator, Release 0.9.10

• arcsine_err - an arcsine random error generator

In the case of correlated errors, the function mv_gaussian_err, which is associated with a multi-
variate Gaussian distribution, can be used.

8.9.2 Functions that generate estimates (real-valued)

• gaussian_est - an input associated with a Gaussian distribution

• uniform_est - an input associated with a uniform distribution

• triangular_est - an input associated with a triangular distribution

• arcsine_est - an input associated with an arcsine distribution

The generators created by these functions produce data triplets (x, u, df), which are convenient for
direct input into GTC calculations.

In the case of correlated inputs the function mv_gaussian_est, which is associated with a multi-
variate Gaussian distribution, can be used.

8.9.3 Functions that create random error generators (complex-valued)

• bi_gaussian_err - a bivariate Gaussian error generator

• uniform_ring_err - a ring distribution generator

• uniform_disk_err - a disk distribution generator

8.9.4 Functions that generate estimates (complex-valued)

• bi_gaussian_est - an input associated with a bivariate Gaussian distribution

8.9.5 Utility functions

The mapping error selects random error generator functions by name (without the _err suffix).

The mapping estimate selects estimate generators functions by name (without the _est suffix).

The function seed gives access to the seed function of the Python random module.

The functions:

• interval_OK

• circle_OK

• ellipse_OK

return True when the measurand is contained by the uncertainty statement

Summing the number of successes provides an estimate of the coverage probability for a procedure.
The standard deviation of this estimate is calculated by success_rate_sd.

8.9.6 Module contents

gaussian_err(x, u)
Return a generator of Gaussian errors

Parameters

• x – the mean

160 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

• u – the standard deviation

Example:

>>> gen = sim.gaussian_err(1,.5)
>>> gen.next()
1.2333329637100736
>>> gen.next()
-0.26827031760393716

uniform_err(x, a)
Return a generator of uniformly distributed errors

Parameters

• x – the mean

• a – half-width

The standard deviation of the simulated distribution is u = a/sqrt(3).

Example:

>>> gen = sim.uniform_err(1,.5)
>>> gen.next()
0.7138525970522182
>>> gen.next()
1.115028001086297

triangular_err(x, a)
Return a generator of triangular distribution errors

Parameters

• x – the mean

• a – half-width

The standard deviation of the simulated distribution is u = a/sqrt(6).

Example:

>>> gen = sim.triangular_err(1,.5)
>>> gen.next()
0.8490224542656288
>>> gen.next()
1.0586618711505276

arcsine_err(x, a)
Return a generator of arcsine distributed errors

Parameters

• x – the mean

• a – half-width

The standard deviation of the simulated distribution is u = a/sqrt(2).

Example:

>>> gen = sim.arcsine_err(1,.5)
>>> gen.next()
1.285842415423328
>>> gen.next()
0.5577409002191889

gaussian_est(x, u, df=inf)
Return a generator of Gaussian input estimates

8.9. Tools for validating uncertainty calculations 161

GUM Tree Calculator, Release 0.9.10

Parameters

• x – best estimate, used as the mean in simulations

• u – standard uncertainty, used as standard deviation in simulations

• df – degrees-of-freedom

The generator produces namedtuples with attributes x, u, df

A chi-squared random number generator provides different estimates of the standard uncertainty when the
degrees-of-freedom df is finite.

Example:

>>> gen = sim.gaussian_est(1,.5,10)
>>> gen.next()
simulated_input(x=1.7995, u=0.5191, df=10)
>>> gen.next()
simulated_input(x=0.6995, u=0.6150, df=10)

uniform_est(x, a, df=inf)
Return a generator ofa uniformly distributed input estimates

Parameters

• x – best estimate, used as the mean for simulations

• a – half-width, used to calculate a standard deviation for simulations

• df – degrees-of-freedom

The generator produces namedtuples with attributes x, u, df

The mean of the simulated distribution is x and the standard deviation u = a/sqrt(3).

A chi-squared random number generator provides different estimates of the standard uncertainty when the
degrees-of-freedom df is finite.

Example:

>>> gen = sim.uniform_est(1,.5,10)
>>> gen.next()
simulated_input(x=0.7496, u=0.2880, df=10)
>>> gen.next()
simulated_input(x=0.7080, u=0.3367, df=10)

triangular_est(x, a, df=inf)
Return a generator of triangular input estimates

Parameters

• x – best estimate, used as the mean for simulations

• a – half-width, used to calculate a standard deviation for simulations

• df – degrees-of-freedom

The generator produces namedtuples with attributes x, u, df

The mean of the simulated distribution is x and the standard deviation u = a/sqrt(6).

A chi-squared random number generator provides different estimates of the standard uncertainty when the
degrees-of-freedom df is finite.

Example:

>>> gen = sim.triangular_est(1,.5,10)
>>> gen.next()
simulated_input(x=0.8494, u=0.1831, df=10)

162 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

>>> gen.next()
simulated_input(x=1.4484, u=0.1783, df=10)

arcsine_est(x, a, df=inf)
Return a generator of arcsine input estimates

Parameters

• x – best estimate, used as the mean for simulations

• a – half-width, used to calculate a standard deviation for simulations

• df – degrees-of-freedom

The generator produces namedtuples with attributes x, u, df

The mean of the simulated distribution is x and the standard deviation u = a/sqrt(2).

A chi-squared random number generator provides different estimates of the standard uncertainty when the
degrees-of-freedom df is finite.

Example:

>>> gen = sim.arcsine_est(1,.5,10)
>>> gen.next()
simulated_input(x=1.171, u=0.317, df=10)
>>> gen.next()
simulated_input(x=1.236, u=0.437, df=10)

mv_gaussian_err(x, cv)
Return a generator of multivariate Gaussian errors

Parameters

• x – the mean

• cv – the variance-covariance matrix

Example:

>>> z = (1.0,0.5)
>>> cv = la.array([[0.4,0],[0,0.2]])
>>> gen = sim.mv_gaussian_err(z,cv)
>>> gen.next()
[1.4171563857707223, 0.8272576411959041]
>>> gen.next()
[1.6483724628734273, 0.2507518428675501]

bi_gaussian_err(z, cv)
Return a generator of bivariate Gaussian errors

Parameters

• z – the mean

• cv – the covariance matrix

Example:

>>> z = 1+0.5j
>>> cv = la.array([0.4,0,0,0.2])
>>> gen = sim.bi_gaussian_err(z,cv)
>>> gen.next()
(0.4011898661840365+0.2985638387342745j)
>>> gen.next()
(0.15916435129849904-0.23052895672783447j)

8.9. Tools for validating uncertainty calculations 163

GUM Tree Calculator, Release 0.9.10

uniform_ring_err(z, r)
Return a generator of random points on a circle

The generator function produces random points distributed on a circle of radius r, centre z, in the complex
plane.

Example:

>>> z,r = (0.34-6j), 1.5
>>> rv = sim.uniform_ring_err(z,r)
>>> rv.next()
(1.7951618239337341-6.3640110797295169j)

uniform_disk_err(z, r)
Return a generator of points in and on a disk

The generator function produces random points distributed uniformly on a disk of radius r, centre z, in the
complex plane.

Example:

>>> z,r = (12.34-6j), 5.5
>>> rv = sim.uniform_disk_err(z,r)
>>> rv.next()
(13.680838228974434-1.7635650558700604j)

mv_gaussian_est(x, cv, df=inf)
Return a generator of multivariate Gaussian input estimates

Parameters

• x – best estimate, used as the mean for simulations

• cv – standard variance-covariance matrix

• df – degrees-of-freedom

The generator produces simulated_vector_input namedtuples with attributes x, cv, df.

A multivariate Gaussian distribution is used to to simulate the observations x.

A Wishart random number generator is used to provide different covariance matrices when the degrees-of-
freedom df is finite.

Example:

>>> z = (1.0,0.5)
>>> cv = la.array([[0.4,0],[0,0.2]])
>>> gen = sim.mv_gaussian_est(z,cv)
>>> gen.next().x
[0.7746525731799878, 0.926462098877803]
>>> gen.next().cv
array([[0.4, 0],
[0, 0.2]])
>>> gen.next()
simulated_vector_input(

x=[0.4064169945628521, 0.1324584259774531],
cv=array([[0.4, 0],[0, 0.2]]),
df=inf)

bi_gaussian_est(z, cv, df=inf)
Return a generator of bivariate Gaussian input estimates

Parameters

• z – best estimate, used as the mean for simulations

• cv – a 4-element sequence representing the covariance

164 Chapter 8. GTC Modules

GUM Tree Calculator, Release 0.9.10

• df – degrees-of-freedom

The generator produces simulated_complex_input namedtuples, with attributes z, cv, df.

A bivariate Gaussian distribution is used to to simulate observations z.

A Wishart random number generator is used to provide different covariance matrices when the degrees-of-
freedom df is finite.

Example:

>>> z = 1+0.5j
>>> cv = la.array([0.4,0,0,0.2])
>>> gen = sim.bi_gaussian_est(z,cv)
>>> gen.next().z
(1.1791619306909931+0.56658874952748051j)
>>> gen.next().cv
(0.40, 0, 0, 0.20)
>>> gen.next()
simulated_complex_input(

z=(1.5483928415509403+2.4126670838378645j),
cv=(0.40, 0, 0, 0.20),
df=inf

)

interval_OK(measurand, x, U)
Return True if the measurand lies inside [x-U,x+U]

Parameters

• measurand – the true value (float)

• x – the estimate (float)

• U – the expanded uncertainty (float)

Example:

>>> mu, sd = 1.0, 0.1
>>> k = reporting.k_factor()
>>> _OK = lambda m,rv: sim.interval_OK(m,rv.x,k*rv.u)
>>> rv = sim.gaussian_est(mu,sd)
>>> N = 10000
>>> success = sum(
... _OK(mu, rv.next()) for i in xrange(N)
...)
>>> success
9523

circle_OK(measurand, z, U)
True if measurand is inside a circle

Parameters

• measurand – the true value (complex)

• z – the estimate (complex)

• U – radius of the expanded uncertainty circle (float)

The circle around z with radius U is an uncertainty statement for an estimate of the measurand.

Example:

>>> k2_sq = reporting.k2_factor_sq()
>>> def _OK(m,rv):
... U = math.sqrt(k2_sq * rv.cv[0])
... return sim.circle_OK(mu,rv.z,U)

8.9. Tools for validating uncertainty calculations 165

GUM Tree Calculator, Release 0.9.10

...
>>> mu = 1.0+0.3j
>>> cv = [1.0,0.0,0.0,1.0]
>>> rv = sim.bi_gaussian_est(mu,cv)
>>> N = 10000
>>> success = sum(
... _OK(mu, rv.next()) for i in xrange(N)
...)
>>> success
9468

ellipse_OK(measurand, z, cv, k2_sq, inverted=False)
True when measurand lies inside the uncertainty region

Parameters

• measurand – the true value (complex)

• z – the estimate (complex)

• cv – 4-element sequence representing the covariance matrix, or its inverse

• k2_sq – bivariate elliptical coverage factor squared (float)

• inverted – True if cv is inverted (Boolean)

The shape of the elliptical uncertainty region around z is determined by the covariance matrix cv.

When the Mahalanobis Distance squared between measurand and z is less than the two-dimensional cov-
erage factor squared k2_sq, the measurand is within the region.

When inverted == True, the inverse of cv is not calculated.

Example:

>>> k2_sq = reporting.k2_factor_sq()
>>> def _OK(m,rv):
... return sim.ellipse_OK(mu,rv.z,rv.cv,k2_sq)
...
>>> mu = 1.0+0.3j
>>> cv = [1.0,0.0,0.0,1.0]
>>> rv = sim.bi_gaussian_est(mu,cv)
>>> N = 10000
>>> success = sum(
... _OK(mu, rv.next()) for i in xrange(N)
...)
>>> success
9496

success_rate_sd(N, p=95)
Return the standard deviation of the expected number of successes

Parameters

• N – the number of trials (integer)

• p – the nominal coverage probability (in %)

Assuming a binomial process with probability p % of success, when N trials are carried out the standard
deviation is sqrt(N*p*(1-p)).

Example:

>>> sim.success_rate_sd(1000)
6.8920243760451143

166 Chapter 8. GTC Modules

CHAPTER

NINE

OTHER TOPICS

9.1 Windows command prompt syntax

9.1.1 Interactive mode

GTC can be started in interactive mode by typing GTC at the command prompt.

To stop the interpreter, type quit(), or CTRL-Z.

Script processing

The syntax when running GTC at the command prompt is:

GTC [-i | --interact] [drive:][path][file]

where

• [] indicates an optional element

• -i or --interact : cause GTC to remain in interactive mode after processing input file(s)

• [drive:][path][file] : the drive, path and filename(s) of script files (including file extension)

When there are no command line arguments, the calculator starts an interactive interpreter.

Files passed to the calculator will be executed in the order that they appear on the command line.

Other options

GTC has several other command line options:

--version show the version number
-h, --help show a brief message about command-line options
-p, --plain suppress the ``GTC`` banner output at the start of interactive mode

9.2 Windows environment variables

• The Windows user environment variable PATH

• The user’s environment variable GTC_LIB

• The user’s environment variable GTC_SCRIPTS

• Extension modules and packages

167

GUM Tree Calculator, Release 0.9.10

9.2.1 The Windows user environment variable PATH

During installation, the location of the folder containing gtc.exe is added to the Windows environment variable
for the user’s PATH.

9.2.2 The user’s environment variable GTC_LIB

During installation, an environment variable GTC_LIB is created for the current user (if it does not exist already).

The paths in GTC_LIB identify folders that GTC will search when an import statement is executed.

The lib folder in the installation directory (e.g.: C:\Users\user.name\AppData\Local\gtc\lib) is
added to GTC_LIB during installation, as is the user’s My GTC\lib folder.

If other paths are added to GTC_LIB, they will not be removed when GTC is uninstalled, so software updates will
not affect user-defined extensions.

9.2.3 The user’s environment variable GTC_SCRIPTS

During installation, there is an option to create a My GTC folder in the user’s home directory. When this option is
selected (by default) an environment variable GTC_SCRIPTS is created for the current user (if it does not exist
already). A folder My GTC\scripts is created and the path is added to GTC_SCRIPTS.

The GTC_SCRIPTS variable is used to identify folders of user defined scripts. When GTC runs, it first tries
to find a script in the current folder, but if this fails it will search the folders in the order that they appear in
GTC_SCRIPTS.

9.2.4 Extension modules and packages

Python uses structures called a module and a package.

• a module is a file containing Python definitions and statements

• a package is a collection of modules in a folder or folders.

If a GTC script contains an import statement of the form:

import my_module

the paths in the environment variable GTC_LIB, plus the current working directory, will be searched for
my_module.py (in addition to a search of the modules included with GTC).

If a GTC script contains an import statement of the form:

import my_package.my_module

or

from my_package import my_module

a search for the folder my_package is carried out by looking in the paths defined in GTC_LIB. When found,
my_package is then searched for my_module.py.

The Python documentation should be consulted for more information about modules and packages.

9.3 Some comments about GTC regression functions

168 Chapter 9. Other Topics

GUM Tree Calculator, Release 0.9.10

• Overview

• The type_a module regression functions

– Ordinary least-squares

– Weighted least-squares

– Relative weighted least-squares

– Weighted total least-squares

• The function module regression functions

– Ordinary least-squares

– Weighted least-squares

– Weighted total least-squares

9.3.1 Overview

GTC has straight-line regression functions in both the type_a and function modules.

Functions in type_a implement a variety of regression algorithms that provide results in the form of uncertain
numbers. When used, the input data (the sequences x and y) are treated as pure numbers (if sequences of uncertain
numbers are provided, only the values are used in calculations).

Functions defined in function, on the other hand, expect input sequences of uncertain numbers. These functions
estimate the slope and intercept of a line by applying the same type of regression, but uncertainties are propagated
through the regression equations. The residuals are not used.

The distinction between functions that evaluate the uncertainty of estimates from residuals (type_a) and func-
tions that evaluate uncertainty using uncertain numbers (function) is useful. There will be circumstances that
require the use of a function in function, such as when systematic errors contribute to uncertainty but cannot
be estimated properly using conventional regression. Without the methods available in function, such compo-
nents of uncertainty could not be propagated. On the other hand, functions in type_a implement conventional
regression methods.

Discretion will be needed if it is believed that variability in a sample of data is due, in part, to errors not fully
accounted for in an uncertain-number description of the data. The question is then: just how much of that vari-
ability can be explained by components of uncertainty already defined as uncertain number influences? If the
answer is ‘very little’ then it will be appropriate to use a function from type_a to estimate the additional con-
tribution to uncertainty from the sample variability. At the same time, components of uncertainty associated with
the uncertain-number data should be propagated using a function from function that performs the same type
of regression. The two result values will be identical (the estimates of the slope and intercept will be the same)
but the uncertainties will differ. type_a.merge_components can then be used to merge the results.

Clearly, this approach could potentially over-estimate the effect of some influences and inflate the combined
uncertainty of results. It is a matter of judgement as to whether to merge type-A and type-B results in a particular
procedure.

9.3.2 The type_a module regression functions

Ordinary least-squares

type_a.line_fit implements a conventional ordinary least-squares straight-line regression. The residuals
are used to estimate the underlying variance of the y data. The resulting uncertain numbers for the slope and
intercept have finite degrees of freedom and are generally correlated.

9.3. Some comments about GTC regression functions 169

GUM Tree Calculator, Release 0.9.10

Weighted least-squares

type_a.line_fit_wls implements a so-called weighted least-squares straight-line regression. This assumes
that a sequence of uncertainties provided with the input data are known, exactly (i.e., with infinite degrees of
freedom). The uncertainty in the slope and intercept is calculated without considering the residuals.

This approach to linear regression is described in two well-known references 1 2 , but it may not be what many
statisticians associate with the term ‘weighted least-squares’.

Relative weighted least-squares

type_a.line_fit_rwls implements a form of weighted least-squares straight-line regression that we refer
to here as ‘relative weighted least-squares’. (Statisticians may regard this as conventional weighted least-squares.)

type_a.line_fit_rwls accepts a sequence of scale factors associated with the observations y, which are
used as weighting factors. For an observation 𝑦, it is assumed that the uncertainty 𝑢(𝑦) = 𝜎𝑠𝑦 , where 𝜎 is an
unknown factor common to all the y data and 𝑠𝑦 is the weight factor provided.

The procedure estimates 𝜎 from the residuals, so the uncertain numbers returned for the slope and intercept have
finite degrees of freedom.

Note, because the scale factors describe the relative weighting of different observations, the ordinary least-squares
function type_a.line_fit and type_a.line_fit_rwls would return equivalent results if all y obser-
vations are given the same weighting.

Weighted total least-squares

type_a.line_fit_wtls implements a form of least-squares straight-line regression that takes account of
errors in both the x and y data 3.

As in the case of type_a.line_fit_wls, the uncertainties provided for the x and y data are assumed exact.
When calculating the uncertainty in the slope and intercept, the residuals are ignored and the uncertain numbers
returned have infinite degrees of freedom.

9.3.3 The function module regression functions

Ordinary least-squares

function.line_fit implements the conventional ordinary least-squares straight-line regression to obtain
estimates of the slope and intercept of a line through the data. The y data is a sequence of uncertain numbers. The
uncertainty of the slope and intercept is found by propagating uncertainty from the input data. The residuals are
ignored.

Weighted least-squares

function.line_fit_wls implements a weighted least-squares straight-line regression to estimate the slope
and intercept of a line through the data. The y data is a sequence of uncertain numbers. An explicit sequence
of uncertainties for the data points may also be provided. If so, these uncertainties are used as weights in the
algorithm when estimating the slope and intercept. Otherwise, the uncertainty of each uncertain number for y is
used. In either case, uncertainty in the estimates of slope and intercept is obtained by propagating the uncertainty
associated with the input data through the estimate equations (the residuals are ignored).

1 Philip Bevington and D. Keith Robinson, Data Reduction and Error Analysis for the Physical Sciences
2 William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing
3 M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)

170 Chapter 9. Other Topics

GUM Tree Calculator, Release 0.9.10

Note: type_a.line_fit_wls and function.line_fit_wls will yield the same results when a se-
quence of elementary uncertain numbers is defined for y and used with type_a.line_fit_wls and the values
and uncertainties of that sequence are used with type_a.line_fit_wls.

Note: There is no need for a ‘relative weighted least-squares’ function in the function module. Using a
sequence of u_y values with function.line_fit_wls will perform the required calculation.

Weighted total least-squares

function.line_fit_wtls implements a form of least-squares straight-line regression that takes account of
errors in both the x and y data. 3.

As with function.line_fit_wls, sequences of uncertainties for the x and y data may be supplied in addition
to sequences of the x and y data. When the optional uncertainty sequences are provided, estimates of the slope
and intercept use those uncertainties as weights in the regression process. Otherwise, the input data uncertainties
are used as weights in the regression process. In either case, uncertainty in the estimates of slope and intercept is
calculated by propagating uncertainty from the input data through the regression equations (residuals are ignored).

9.4 Change History

• Version 0.9.10

– New functions and classes

– Changes to existing functions and classes

• Version 0.9.9

• Version 0.9.8

• Version 0.9.7

– New functions and classes

– Changes to existing functions and classes

• Version 0.9.6

– Changes affecting the GTC interpreter

– New functions

– Changes affecting user-defined modules

• Version 0.9.5

9.4.1 Version 0.9.10

New functions and classes

• The class type_a.BiasedIndication as been added. This can be used to correct simple instrument
indications for bias using a type-A estimate of the correction term required. In statistical terminology, the
uncertain number represents a ‘prediction interval’ for a future indication.

9.4. Change History 171

GUM Tree Calculator, Release 0.9.10

Changes to existing functions and classes

• A flag dependent is provided when calling core.ureal and core.ucomplex. This should be set
True if the uncertain number may be correlated with others.

• core.set_correlation will issue a warning if used with uncertain number arguments that were not
created with the dependent flag set True. In future releases, this will be a requirement.

• core.result is an alias for archive:result.

• reporting.sensitivity is deprecated. This function will not be available in future and there is no
equivalent functionality.

• core.component and reporting.u_component issue warnings when asked for a component of
uncertainty with respect to an uncertain number that is not elementary and has not been declared using
core.result.

• Uncertain numbers can now be used in Boolean expressions. Uncertain numbers are True when the value
is non-zero

• A bug in the function linear_algebra.transpose and the associated object attribute T has been
corrected.

• The function reporting.budget now returns an empty sequence if the object passed to it has no com-
ponents of uncertainty (previously a RuntimeError was raised).

• A bug has been corrected in the evaluation of degrees of freedom for complex quantities.

9.4.2 Version 0.9.9

This release is mainly concerned with fixing issues.

• Windows Administrator permission is not needed to install GTC.

• The installation process can create a My GTC folder under the users home folder (e.g.,
C:\Users\jane.user\My GTC). This folder contains an examples folder, a lib folder and a
scripts folder. The lib folder path is added to the environment variable GTC_LIB. The scripts
folder path is added to the environment variable GTC_SCRIPTS. The folders in GTC_SCRIPTS will be
searched by GTC to locate script files.

• The method archive.Archive.intermediates, introduced in 0.9.8, has been removed (however,
archives created using GTC version 0.9.8 can still be read in 0.9.9).

• The function archive.result is now used to declare intermediate results that can be archived.

• reporting.k_factor and reporting.k2_factor_sq now have quicker, but less accurate, im-
plementations available as an option.

• core.multiple_ureal and core.multiple_ucomplex can now handle some elements that have
zero uncertainty (i.e., by creating constant uncertain numbers)

• Fixed a problem with function.line_fit, which did not work properly when the x data contained
integers (truncation during integer division would occur)

• Fixed a problem with function.line_fit_wtls, which did not converge to a solution in certain cases
(this bug also affected type_a.line_fit_wtls)

• Fixed a problem with reporting.k_factor, which was unstable for very large values of df

• The Windows Explorer context menu ‘SendTo’ GTC item now passes the target folder to GTC, allowing the
script to import modules in that folder.

• function.mean now accepts an iterable object. Previously a sequence was required, but it now accepts
generator objects as well.

172 Chapter 9. Other Topics

GUM Tree Calculator, Release 0.9.10

9.4.3 Version 0.9.8

This release is mainly concerned with fixing problems identified in the previous versions.

In particular, the Archive class has been redesigned.

When an archive is created, the default behaviour now ignores the relationships between any archived interme-
diate uncertain numbers. When it is necessary to save information about these relationships, the new method
intermediates should be used to identify those intermediate uncertain numbers of interest.

Note: Archives created using GTC version 0.9.7 are incompatible with 0.9.8. The older format archives need to
be recreated using the new version.

• The core function get_covariance has been added

• Uncertain real numbers now have the attributes .real and .imag

• GTC import now finds modules located in the current working directory

• The sign of the angle returned by u_rect_to_tangent has been corrected

• mag_squared now handles uncertain real numbers correctly

• Complex division when the numerator value was zero has been fixed

• get_correlation now returns zero, or zero seq, when real or complex numbers are given

• The degrees of freedom calculation for the imaginary component of an uncertain complex number has been
fixed

9.4.4 Version 0.9.7

New functions and classes

• function

– line_fit_wls

– mean

– intermediate

– mul2

• type_a

– line_fit_wls

– line_fit_rwls

– merge_components

• archive

– Archive

– load

– dump

– loads

– dumps

• reporting

– sensitivity

– k_to_dof

9.4. Change History 173

GUM Tree Calculator, Release 0.9.10

– k2_to_dof

Changes to existing functions and classes

• function.line_fit

The function signature has changed. The optional a_b parameter has been removed.

• function.line_fit_wtls

Name changed from line_fit_TLS.

The function signature has changed. The initial estimates of slope and intercept are no longer the
first argument.

• function.LineFitOLS, function.LineFitWLS and function.LineFitWTLS

These are refinements of the LineFit in the previous release. They are specific to the type of
regression that has been performed.

• type_a.line_fit

A label can be assigned to the uncertain number parameters a and b.

A different type of object is returned.

• type_a.line_fit_wtls

Name changed from line_fit_TLS.

The function signature has changed. The initial estimates of slope and intercept are not the first
argument.

A label can be assigned to the uncertain number parameters a and b.

A different type of object is returned.

• type_a.LineFitOLS, type_a.LineFitWLS, type_a.LineFitRWLS

These are refinements of LineFit. They are specific to the type of regression that has been
performed.

The chi_square attribute is now called ssr and the attribute N has been added.

• type_a.LineFitWTLS

As above for type_a.LineFitOLS and type_a.LineFitWLS.

This class has additional functions x_from_y and y_from_x. These, can be used to predict
the independent variable from observations of the dependent variable and predict the dependent
variable from a value of the independent variable.

• type_a.mean

Although the elements of the data sequence may be uncertain numbers, only the value attribute
is used to calculate the mean and only a pure number (float or complex) is returned.

To evaluate the uncertain-number mean of a sequence use function.mean.

• sim

A number of changes have been made to the sim module.

A suffix has been added to the functions gaussian, uniform, triangular and arcsine.
They are now gaussian_est, uniform_est, triangular_est and arcsine_est.

A suffix has also been added to bi_gaussian and mv_gaussian. These functions are now
bi_gaussian_est and mv_gaussian_est.

The mapping distribution has been replaced by a mapping estimate in which the names
(without the _est suffix) are keys to the functions above.

174 Chapter 9. Other Topics

GUM Tree Calculator, Release 0.9.10

A suffix has been added to uniform_ring and uniform_disk. These are now named
uniform_ring_err and uniform_disk_err.

New functions gaussian_err, uniform_err, triangular_err, arcsine_err,
bi_gaussian_err and mv_gaussian_err have been added.

A mapping error is provided in which the names (without the _err suffix) are keys to the
functions above.

9.4.5 Version 0.9.6

Changes affecting the GTC interpreter

• The standard Python modules math and cmath are now imported into the GTC environment. So there is
no need to use import math or import cmath, unless writing extension modules.

• Integer division no longer truncates a quotient that is not exactly an integer. So now

>>> 2/3
0.6666666666666666

New functions

New functions have been added to modules: core, function, type_a, reporting and
number_strings.

• core

– multiple_ureal

– multiple_ucomplex

• function

– line_fit

– line_fit_TLS

• type_a

– standard_deviation

– standard_uncertainty

the previously separate functions standard_uncertainty_real and
standard_uncertainty_complex have been combined

– estimate

now returns an uncertain number, instead of a tuple of sample statistics

– multi_estimate_real

– multi_estimate_complex

– estimate_digitized

– line_fit

– line_fit_TLS

– chisq_p

– chisq_q

• reporting

– u_bar

9.4. Change History 175

GUM Tree Calculator, Release 0.9.10

name changed: was called fn_bar

– v_bar

name changed: was called tv_bar

– budget

added an option to display only the more significant uncertainty components

• number_strings

– open

– File

The open creates a File object that converts numbers to and from their text representation without
loss of internal precision.

Changes affecting user-defined modules

• User-defined extension modules can now use the Python option

from __future__ import division

to ensure that integer division no longer truncates a quotient that is not exactly an integer.

9.4.6 Version 0.9.5

The first release of GTC.

176 Chapter 9. Other Topics

INDEX

A
a_b (LineFitOLS attribute), 125, 155
a_b (LineFitRWLS attribute), 126
a_b (LineFitWLS attribute), 126, 155
a_b (LineFitWTLS attribute), 127, 155
acos() (in module core), 115
acosh() (in module core), 116
add() (Archive method), 158
Archive (class in archive), 158
archive (module), 157
arcsine() (in module type_b), 130
arcsine_err() (in module sim), 161
arcsine_est() (in module sim), 163
array (class in linear_algebra), 143
asarray() (in module linear_algebra), 147
asin() (in module core), 115
asinh() (in module core), 117
aslist() (in module linear_algebra), 148
asmatrix() (in module linear_algebra), 147
atan() (in module core), 115
atan2() (in module core), 115
atanh() (in module core), 117

B
bi_gaussian_err() (in module sim), 163
bi_gaussian_est() (in module sim), 164
BiasedIndication (class in type_a), 128
budget() (in module reporting), 132

C
chisq_p() (in module type_a), 128
chisq_q() (in module type_a), 128
circle_OK() (in module sim), 165
complex_to_seq() (in module function), 152
component() (in module core), 113
constant() (in module core), 110
copy() (array method), 143
copy() (matrix method), 145
core (module), 107
cos() (in module core), 115
cosh() (in module core), 116
cv_to_u() (in module reporting), 136

D
det() (in module linear_algebra), 145
df (UncertainComplex attribute), 105

df (UncertainReal attribute), 102
dof() (in module core), 112
dump() (in module archive), 158
dumps() (in module archive), 159

E
eigenv() (in module reporting), 139
ellipse_OK() (in module sim), 166
empty() (in module linear_algebra), 147
estimate() (in module type_a), 118
estimate_digitized() (in module type_a), 120
exp() (in module core), 116
extract() (Archive method), 158

F
File (class in number_strings), 148
flat (array attribute), 144
flat (matrix attribute), 145
fn_bar() (in module reporting), 137
function (module), 151

G
gaussian_err() (in module sim), 160
gaussian_est() (in module sim), 161
get_correlation() (in module core), 114
get_covariance() (in module core), 113

I
I (matrix attribute), 144
identity() (in module linear_algebra), 146
implicit() (in module function), 157
interval_OK() (in module sim), 165
inverse() (in module linear_algebra), 146
is_ucomplex() (in module reporting), 135
is_ureal() (in module reporting), 135
items() (Archive method), 158
iteritems() (Archive method), 158
iterkeys() (Archive method), 158
itervalues() (Archive method), 158

K
k2_factor_sq() (in module reporting), 137
k2_to_dof() (in module reporting), 138
k_factor() (in module reporting), 134
k_to_dof() (in module reporting), 135
keys() (Archive method), 158

177

GUM Tree Calculator, Release 0.9.10

L
label (UncertainComplex attribute), 105
label (UncertainReal attribute), 102
label() (in module core), 112
line_fit() (in module function), 153
line_fit() (in module type_a), 123
line_fit_rwls() (in module type_a), 124
line_fit_wls() (in module function), 153
line_fit_wls() (in module type_a), 123
line_fit_wtls() (in module function), 154
line_fit_wtls() (in module type_a), 124
linear_algebra (module), 142
LineFitOLS (class in function), 155
LineFitOLS (class in type_a), 125
LineFitRWLS (class in type_a), 126
LineFitWLS (class in function), 155
LineFitWLS (class in type_a), 126
LineFitWTLS (class in function), 155
LineFitWTLS (class in type_a), 126
load() (in module archive), 158
loads() (in module archive), 159
log() (in module core), 116
log10() (in module core), 116

M
mag_squared() (in module core), 117
magnitude() (in module core), 117
mahalanobis_sq() (in module reporting), 138
matrix (class in linear_algebra), 144
mean() (in module function), 153
mean() (in module type_a), 121
merge_components() (in module type_a), 127
mul2() (in module function), 155
multi_estimate_complex() (in module type_a), 119
multi_estimate_real() (in module type_a), 119
multiple_ucomplex() (in module core), 109
multiple_ureal() (in module core), 108
mv_gaussian_err() (in module sim), 163
mv_gaussian_est() (in module sim), 164

N
N (LineFitOLS attribute), 125, 155
N (LineFitRWLS attribute), 126
N (LineFitWLS attribute), 126, 155
N (LineFitWTLS attribute), 127, 155
newline() (File method), 148
number_strings (module), 148

O
offset() (BiasedIndication method), 128
ones() (in module linear_algebra), 147
open() (in module number_strings), 150

P
phase() (in module core), 117
polar() (in module function), 151
pow() (in module core), 116

R
read() (File method), 148
readline() (File method), 149
readlines() (File method), 149
rect() (in module function), 152
reporting (module), 131
result() (in module core), 110
rotate_cv_coordinates() (in module reporting), 141
round() (in module reporting), 134

S
s (UncertainComplex attribute), 106
s (UncertainReal attribute), 103
sensitivity() (in module reporting), 134
seq_to_complex() (in module function), 152
sequence_parser() (in module number_strings), 150
sequence_printer() (in module number_strings), 149
set_correlation() (in module core), 114
shape (array attribute), 144
shape (matrix attribute), 145
sim (module), 159
sin() (in module core), 115
sinh() (in module core), 116
solve() (in module linear_algebra), 147
sqrt() (in module core), 116
ssr (LineFitOLS attribute), 125, 155
ssr (LineFitRWLS attribute), 126
ssr (LineFitWLS attribute), 126, 155
ssr (LineFitWTLS attribute), 127, 155
standard_deviation() (in module type_a), 121
standard_uncertainty() (in module type_a), 121
success_rate_sd() (in module sim), 166
summary() (in module core), 112

T
T (array attribute), 143
T (matrix attribute), 145
tan() (in module core), 115
tanh() (in module core), 116
to_numeric() (in module number_strings), 150
to_string() (in module number_strings), 149
transpose() (in module linear_algebra), 146
triangular() (in module type_b), 130
triangular_err() (in module sim), 161
triangular_est() (in module sim), 162
tv_bar() (in module reporting), 137
type_a (module), 117
type_b (module), 129

U
u (UncertainComplex attribute), 106
u (UncertainReal attribute), 103
u_bar() (in module reporting), 137
u_component() (in module reporting), 133
u_polar_to_rect() (in module reporting), 139
u_rect_to_polar() (in module reporting), 140
u_rect_to_tangent() (in module reporting), 140

178 Index

GUM Tree Calculator, Release 0.9.10

u_shaped() (in module type_b), 130
u_tangent_to_rect() (in module reporting), 141
u_to_cv() (in module reporting), 136
ucomplex() (in module core), 109
UncertainComplex (class in library_complex), 105
UncertainReal (class in library_real), 102
uncertainty() (in module core), 111
uncertainty_interval() (in module reporting), 135
uncertainty_region() (in module reporting), 138
uniform() (in module type_b), 130
uniform_disk() (in module type_b), 131
uniform_disk_err() (in module sim), 164
uniform_err() (in module sim), 161
uniform_est() (in module sim), 162
uniform_ring() (in module type_b), 131
uniform_ring_err() (in module sim), 163
unknown_phase_product() (in module type_b), 131
ureal() (in module core), 108

V
v (UncertainComplex attribute), 106
v (UncertainReal attribute), 103
v_bar() (in module reporting), 137
value() (in module core), 111
values() (Archive method), 158
variance() (in module core), 111
variance_and_dof() (in module reporting), 136
variance_covariance_complex() (in module type_a),

122

W
write() (File method), 149

X
x (UncertainComplex attribute), 106
x (UncertainReal attribute), 104
x_from_y() (LineFitOLS method), 125
x_from_y() (LineFitRWLS method), 126

Y
y_from_x() (LineFitOLS method), 125
y_from_x() (LineFitRWLS method), 126

Z
zeros() (in module linear_algebra), 147

Index 179

	I License
	License

	II Getting started
	Installation
	Obtaining GTC
	Upgrading
	Installing
	Uninstalling
	Documentation

	Operation
	The Command Prompt
	Explorer context menus
	The SciTE editor
	Help inside SciTE

	A quick tour
	First steps
	Uncertain numbers
	Uncertain real numbers
	Uncertain complex numbers

	Programming
	Sequences
	Functions
	Strings and printing
	Operators
	Modules
	Errors

	III User Guide
	Overview
	Measurement errors and uncertainty
	Measurement functions

	Uncertain Numbers
	Elementary uncertain numbers
	Uncertain Number Attributes
	Uncertain numbers and measurement errors

	Examples
	GUM Appendices
	Gauge block measurement (GUM H1)
	Resistance and reactance measurement (GUM H2)
	Calibration of a thermometer (GUM H3)

	EURACHEM / CITAC Guide Examples
	Preparation of a Calibration Standard (A1)
	Standardising a Sodium Hydroxide Solution (A2)
	An Acid/Base Titration (A3)
	Cadmium released from ceramic-ware (A5)

	Linear calibration
	Linear Calibration Equations
	Linear Regression Results
	Straight-line calibration functions

	RF and microwave problems
	Mismatch
	Equivalent reflection coefficient
	One-port vector network analyser calibration

	Working with Files
	Reading and Writing XLS files
	Reading and Writing XLSX files
	Reading and Writing CSV files
	Archive to a file
	Text File Input and Output

	Frequently Asked Questions
	What is GTC?
	What does that funny symbol mean?
	How do I report a bug in GTC?
	Can I do a type-A analysis on a set of uncertain numbers?
	Can I use CSV (comma-separated value) files?
	Can I use .XLS spreadsheet files?
	Can I use .XLSX spreadsheet files?
	Can I use RTF (rich text format) files?
	How do I define an uncertain number with relative uncertainty?
	Is there a simple way to chain GTC calculations?
	Why does the GTC window close before I can read anything?

	IV Reference
	GTC Modules
	Core Functions and Classes
	Uncertain Number Types
	Core Functions

	Evaluating type-A uncertainty
	Sample estimates
	Correcting indications
	Least squares regression
	Merging uncertain components
	Module contents

	Evaluating type-B uncertainty
	Real-valued problems
	Complex-valued problems
	A table of distributions
	Module contents

	Reporting functions
	Reporting functions
	Coordinate changes
	Uncertainty functions
	Type functions
	Module contents

	Linear algebra
	Classes
	Arithmetic operations
	Functions
	Array broadcasting
	Module contents

	Conversion between numbers and strings
	Loss of precision
	Functions
	Module contents

	Additional functions
	Coordinate transformation
	Implicit problems
	Utility functions
	Least-squares regression
	Module contents

	Storing uncertain numbers
	Class
	Functions
	Module contents

	Tools for validating uncertainty calculations
	Functions that create simple random error generators (real-valued)
	Functions that generate estimates (real-valued)
	Functions that create random error generators (complex-valued)
	Functions that generate estimates (complex-valued)
	Utility functions
	Module contents

	Other Topics
	Windows command prompt syntax
	Interactive mode

	Windows environment variables
	The Windows user environment variable PATH
	The user's environment variable GTC_LIB
	The user's environment variable GTC_SCRIPTS
	Extension modules and packages

	Some comments about GTC regression functions
	Overview
	The type_a module regression functions
	The function module regression functions

	Change History
	Version 0.9.10
	Version 0.9.9
	Version 0.9.8
	Version 0.9.7
	Version 0.9.6
	Version 0.9.5

	Index

