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ABSTRACT

This document provides specifications of software units for the evaluation of measurement
uncertainty. It is intended to align with and support established guides and extend their
functionality in a consistent manner. It is also intended to complement the best-practice
guide to uncertainty evaluation that has been produced as part of the National Measurement
System Software Support for Metrology (SSfM) programme supported by the UK’s Depart-
ment for Business, Innovation and Skills. The target audience is those who in their work
wish to use software to assist in the evaluation of uncertainty.

This document is a revised edition of previous reports, accounting for revision of the SSfM
best-practice guide to uncertainty evaluation and the preparation of Supplements to the
‘Guide to the expression of uncertainty in measurement’ (GUM).
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1 Introduction

The purpose of this document is to provide specifications for software that is relevant to un-
certainty evaluation and associated statistical analyses. The specifications relate to software
units that are useful in this area, rather than packages or systems for uncertainty evalua-
tion. The user or supplier that is implementing software for uncertainty evaluation would
need to consider software units of the types covered here. The document is intended to
align with and support established guides [3, 4, 5, 18, 49] and extend their functionality
in a consistent manner. It is also intended to complement the best-practice guide [14] to
uncertainty evaluation that has been produced as part of the National Measurement System
Software Support for Metrology (SSfM) programme supported by the UK’s Department for
Business, Innovation and Skills. The target audience is those who in their work wish to use
software to assist in the evaluation of uncertainty. This document is a revised edition of
previous reports [11, 12, 13], accounting for revision of the SSfM best-practice guide to un-
certainty evaluation and the preparation of Supplements [2] to the ‘Guide to the expression
of uncertainty in measurement’ (GUM) [3].

The software specifications are not intended to be mandatory. They typify constituent parts
of uncertainty evaluation. In particular, they indicate the input and output parameters of the
software units and the purpose of each unit, viz., a statement of the computational aim of
the unit. The units are presented in the context of the more complete calculations in which
they would be used.

The specifications generally have a minimal number of input and output parameters. Com-
putational control parameters, such as those relating to the convergence criteria of iterative
techniques, are indicated only broadly. Diagnostic parameters, such as those that indicate
failure or degree of success of the computation, are not included.

The scope of the specifications is those that relate to:

1. The GUM uncertainty framework as summarized in Clause 8 of the ‘Guide to the
expression of uncertainty in measurement’ (GUM) [3];1

2. More general calculations, consistent with the GUM, for the propagation of distribu-
tions based on the use of a Monte Carlo method [4, 14];

3. The validation of (the use of) the GUM uncertainty framework using a Monte Carlo
method [4, 14].

It is emphasized that the primary concern is the specification of relevant software. Algo-
rithms and software per se are not the main consideration: the provision of such material

1In this document the term ‘GUM uncertainty framework’ is used to describe the procedure that includes
(a) the application of the law of propagation of uncertainty in terms of a first-order approximation to the mea-
surement model to obtain an estimate of the output quantity and the associated standard uncertainty, and (b) the
assumptions of the central limit theorem to obtain a coverage interval.
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is the responsibility of the user or supplier that is implementing software for uncertainty
evaluation. However, two departures from this stance are made:

1. Because of the importance of being able to generate random numbers from a rectan-
gular distribution that (a) have sound statistical properties in their own right, (b) can
be used as a basis for the many generators that make use of a rectangular random
number generator for their function, and (c) in certain circumstances can be re-
generated exactly, a specific rectangular random number generator is recommended
(Section 5.3). In addition, generators for Gaussian, t–, multivariate Gaussian and
multivariate t–distributions are regarded as so fundamental that algorithmic state-
ments for them are included (also in Section 5.3).

2. Some numerical considerations accompany the specifications, especially related to
the numerical stability of the underlying algorithms. Such considerations are regarded
as an important adjunct to the specification: users need to be able to rely on software
written in accordance with the specifications to perform reliably in a numerical way
as well as in a functional manner.

The fundamental relationship between the input quantities and the output quantity is the
measurement model. If there is a single (scalar) output quantity Y , the measurement model
takes the general form

h(Y,X) = h(Y,X1, . . . , XN ) = 0,

in which X = (X1, . . . , XN )> denotes the N input quantities. There may be more than
one output quantity, viz., Y = (Y1, . . . , Ym)>. In this case the measurement model is

h(Y ,X) = 0,

where h(Y ,X) = (h1(Y ,X), . . . , hm(Y ,X))>, a vector of measurement models.

If the measurement model can be expressed in the equivalent form

Y = f(X) = f(X1, . . . , XN ),

for a scalar output quantity, or

Y = f(X) = f(X1, . . . , XN ),

for a vector output quantity, the function f or f is the measurement function. The mea-
surement function can be a mathematical formula, a step-by-step calculation procedure,
computer software or other prescription, which yields a (unique) value y or y of the output
quantity given values x = (x1, . . . , xN )> of the input quantities.

The specifications provided relate to a classification of measurement model types, there
being 2× 2× 2 = 8 model types in all, based on whether

• there is one or more than one output quantity,
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• it is possible or not to write the measurement model as a measurement function, and

• the quantities within the measurement model are real or complex.

The coverage of the software specifications is divided according to whether they relate to

• the formulation or calculation stages of the process of uncertainty evaluation (Sec-
tion 1.1),

• the procedure followed is in accordance with the GUM uncertainty framework [3,
Clause 8], a Monte Carlo method [4, 14] or the validation of the GUM uncertainty
framework using a Monte Carlo method [4, 14], and

• the concern is with measurement models with a univariate (scalar) or a multivariate
(vector) output quantity.

Where a vector of values, e.g., the estimates x = (x1, . . . , xN )> of the N input quantities
X = (X1, . . . , XN )> is needed, it is used in the specifications here as a column vector or
a row vector, as appropriate, for consistency with calculations expressed in linear algebra
terms [24]. It is not necessary that the physical means of data storage adopted in software
implementations accords with these representations.

The bulk of this document is concerned with coverage intervals corresponding to a coverage
probability of 95 % and is couched this way. It is generally extensible to other coverage
probabilities.

The report is organized as follows. In the remainder of this section the above stages of
uncertainty evaluation are discussed. In Section 2 the formulation stage and its outputs
are described in terms of the information required for implementing the GUM uncertainty
framework and a Monte Carlo method. Section 3 covers the numerical evaluation of the
measurement model according to the eight types indicated earlier. In Sections 4, 5 and 6
specifications of software units are provided for the three aspects of uncertainty evaluation
considered: the GUM uncertainty framework, a Monte Carlo method and the validation of
the GUM uncertainty framework using a Monte Carlo method. Conclusions are given in
Section 7.

1.1 The stages of uncertainty evaluation

The software specifications are divided according to whether they relate to the formulation
or calculation stages of the process of uncertainty evaluation.

In the formulation stage a measurement model is derived and the input quantities in the
model are quantified. Each input quantity is characterized by a probability distribution in
the form of a probability density function (PDF) or distribution function (DF). According
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to the GUM, distributions are obtained from an analysis of a series of indication values [3,
Clauses 2.3.2, 3.3.5] or are based on scientific judgement using all the relevant informa-
tion available [3, Clauses 2.3.3, 3.3.5]. A distribution may also be defined by a previous
uncertainty evaluation as part of a multi-stage uncertainty evaluation process [14]. The dis-
tribution may be available analytically in a recognized form (rectangular, Gaussian, etc.)
or as an approximation obtained from a previous application of a Monte Carlo method, for
example. A means for determining such an approximation is given in Section 5.4.4.

In the calculation stage the distributions are propagated through the measurement model to
obtain the distribution for the output quantity. This distribution is used to obtain the ex-
pectation of the output quantity, taken as an estimate of the output quantity, the standard
deviation of the quantity, taken as the standard uncertainty associated with the estimate,
and a coverage interval corresponding to a specified coverage probability. The GUM un-
certainty framework and a Monte Carlo method both provide approaches to undertaking the
calculation stage of the process of uncertainty evaluation.

For an input quantity that is independent of the other input quantities, the GUM uncertainty
framework requires for its operation only three parameters that summarize the information
about the quantity represented by its distribution:

• An estimate of the input quantity;

• The standard uncertainty associated with the estimate;

• The corresponding degrees of freedom.

If there are dependencies, the procedure will also require the covariances associated with
estimates of the mutually dependent quantities.2

Software can support the formulation stage by providing estimates of location and disper-
sion and degrees of freedom from which a probability distribution can be constructed after
making appropriate assumptions. In the case of a sufficiently large number of repeated in-
dication values of a set of the input quantities, the data can be used to define a covariance
matrix.3 The specifications below relate to the (arithmetic) mean as a measure of location,
and its associated standard deviation as a measure of dispersion. In addition, the determina-
tion of a covariance matrix is covered.

The output of the formulation stage is required to be in a form to act as inputs either to
the GUM uncertainty framework or to a Monte Carlo procedure. For the GUM uncertainty
framework, the inputs are the outputs of the formulation stage identified above. For a Monte

2The degree of mutual dependence associated with the estimates xi and xj of the input quantitiesXi andXj

is sometimes characterized by the correlation coefficient. The covariance cov(xi, xj) and correlation coefficient
r(xi, xj) are related by cov(xi, xj) = r(xi, xj)u(xi)u(xj), where u(xi) and u(xj) are, respectively, the
standard uncertainties associated with the estimates xi and xj .

3A covariance matrix is also known as a variance-covariance or uncertainty matrix [4].
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Carlo method, the inputs are probability distributions or, where appropriate, joint distribu-
tions (where there are mutual dependencies) for the input quantities.

The basis of the GUM uncertainty framework is to ‘propagate the uncertainties’ associated
with estimates of the input quantities through the measurement model to provide the un-
certainties associated with estimates of the output quantities. For this purpose it is required
to:

• Evaluate the measurement model at the estimates of the input quantities to obtain
estimates of the output quantities;

• Determine sensitivity coefficients;

• Propagate the covariance matrix associated with the estimates of the input quantities
through (a linearization of) the measurement model to yield the covariance matrix
associated with estimates of the output quantities;

• Apply the Welch-Satterthwaite formula for effective degrees of freedom;

• Determine percentage points of a Gaussian or a t–distribution in order to provide a
coverage interval for the output quantity.

These calculations would apply, as appropriate, for each of the measurement model types,
and software can assist with the calculations.

For a Monte Carlo procedure it is necessary to ‘propagate (discrete representations of) the
distributions’ for the input quantities through the measurement model. For this purpose it is
required to:

• Obtain values for the input quantities by making random draws from the probability
distributions used to characterize the quantities;

• Evaluate the measurement model for the values for the input quantities to obtain a set
of values for the output quantities;

• Use the set of values for the output quantities to form a discrete representation of the
distribution for the output quantities;

• Determine from the discrete representation estimates of the output quantities and the
associated covariance matrix;

• Determine from the discrete representation a coverage interval for the output quantity.

Again, these calculations would apply, as appropriate, for each of the measurement model
types, and software can assist with their implementation.

Page 5 of 75



NPL Report MS 7 Software specifications for uncertainty evaluation

The remaining software specifications are intended to support a recommended procedure
for validating the GUM uncertainty framework using a Monte Carlo method [4, 14]. This
procedure constitutes operating both the GUM uncertainty framework and a Monte Carlo
method for an uncertainty evaluation of concern, and carrying out an appropriate compari-
son of the results obtained.

1.2 Document history

This document is intended to align with and help support established guides [3, 18, 48, 49]
on uncertainty evaluation and extend their functionality in a consistent manner. It is com-
plementary to the best-practice guide [14] on uncertainty evaluation, produced as part of
the UK’s Software Support for Metrology (SSfM) programme. The first edition of this best-
practice guide was published in March 2001, having been developed during the first SSfM
programme covering the period April 1998 to March 2001. During that period Working
Group 1, ‘Expression of Uncertainty in Measurement’, of the Joint Committee for Guides
in Metrology (JCGM) started work, following its first meeting in March 2000, on the first
Supplement [4] to the ‘Guide to the expression of uncertainty in measurement’ (GUM) [3]
concerned with numerical methods for the propagation of distributions [2]. Material from
the evolving best-practice guide was used in various parts of the Supplement and subse-
quently refined appropriately for consistency with the published Supplement.

This revised report, produced during the fourth SSfM programme, April 2007 to March
2010, takes account of the revision of the best-practice guide (now in its fourth edition) and
the preparation of the Supplement. In particular, material from the drafts of the Supplement
prepared during the second and third programmes that had an origin in the first edition
of the best-practice guide has been re-used. This revised report also takes account of the
work of Working Group 1 of the JCGM to prepare Supplement 2 to the GUM on using
the GUM uncertainty framework and a Monte Carlo method as approaches to uncertainty
evaluation for measurement models with a general number of output quantities. At the time
of publishing this report, a draft of Supplement 2 is available to the member organizations
of the JCGM for review by those organizations.

2 Formulation

In the formulation stage of uncertainty evaluation, it is necessary to characterize the input
quantities in the measurement model by probability density functions (PDFs). In the GUM
uncertainty framework only the expectations and standard deviations of the quantities char-
acterized by these PDFs, and covariances where appropriate, are used. For a Monte Carlo
method the PDFs themselves are used. The PDFs that characterize the input quantities de-
pend on the information that is available about the quantities. Two types of information are
considered.
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If a set of q indication values is available, obtained independently, the average of these
values is regarded as an instance of a quantity Xi with unknown expectation and standard
deviation. A statistical analysis of these values is undertaken to determine an estimate xi
of Xi together with the associated standard uncertainty ui = u(xi) and corresponding
degrees of freedom νi. These are the parameters used in the GUM uncertainty framework
(Section 4). To apply a Monte Carlo method the parameters are used to characterizeXi by a
PDF. The analysis of repeated indication values to characterize an input quantity by a PDF
is described in Section 2.1. In the GUM the use of this type of information is referred to as
‘a Type A evaluation of uncertainty’.

If repeated indication values are not available, the input quantity Xi is characterized by a
PDF that is constructed on the basis of any relevant information concerning the quantity.
Such information may be, for example, prior knowledge, experience or the result of a previ-
ous uncertainty evaluation. The PDF is used directly in a Monte Carlo method (Section 5).
To apply the GUM uncertainty framework parameters xi, ui and νi are determined from the
PDF. Results of the determination for a number of common PDFs are given in Section 2.2.
In the GUM the use of this type of information is referred to as ‘a Type B evaluation of
uncertainty’.

A variant of these analyses applies if some or all of the input quantities are mutually depen-
dent. For the GUM uncertainty framework a covariance matrix associated with the estimates
of the relevant input quantities is evaluated. For a Monte Carlo method these input quantities
would be characterized by a joint (multivariate) PDF.

In practice both types of information will be available, each applying to a subset of the input
quantities. For the GUM uncertainty framework a covariance matrix would be constructed
from those covariance matrices arising from the two types of analysis. For a Monte Carlo
method a joint PDF would be constructed from those PDFs arising from the two types of
analysis.

2.1 Formulation based on analysing repeated indication values

The statistical analysis of repeated indication values can be approached in two parts.

1. Given a set of indication values, obtained independently, of a quantity with unknown
expectation Xi, determine an estimate xi of Xi together with the standard uncer-
tainty ui associated with that estimate and the corresponding degrees of freedom νi
(Section 2.1.1).

2. Given a set of indication values of a pair of quantities with unknown expectations Xi

and Xj , determine the covariance associated with estimates xi and xj of Xi and Xj

(Section 2.1.2).
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These calculations are the basis for determining a covariance matrix associated with the
estimates of a number of input quantities (Section 2.1.3).

2.1.1 Mean and its associated standard deviation

Suppose (xi,1, xi,2, . . . , xi,q) are q indication values, obtained independently, of a quantity
with unknown expectation Xi. The estimate xi of Xi and the associated standard uncer-
tainty ui are determined, respectively, as x̄i, the arithmetic mean of the indication values,
and si, the standard deviation associated with x̄i. The corresponding degrees of freedom
νi is q − 1. Table 1 defines the mean of a set of indication values, the standard deviation
associated with this mean and the degrees of freedom, and specifies the input and output pa-
rameters associated with their determination. This is the information required for the GUM
uncertainty framework (Section 4).

Given the estimate x̄i and the associated standard uncertainty si so obtained, Xi is charac-
terized by a PDF as follows [14]:

• If the distribution underlying the indication values is unknown, characterize X by the
Gaussian distribution N(x̄i, s2

i );

• If the distribution underlying the indication values is known to be Gaussian, charac-
terize X by the t–distribution tνi(x̄i, s

2
i ) with νi = q − 1 degrees of freedom.

This is the information required for a Monte Carlo method (Section 5). Information on how
to generate pseudo-random numbers from these distributions for the purpose of a Monte
Carlo method is given in Sections 5.3.2 and 5.3.3, respectively.

2.1.2 Covariance associated with two means

Suppose (xi,k, xj,k)>, k = 1, . . . , q, are q pairs of indication values, each pair obtained
independently of the remaining pairs, of quantities with unknown expectations Xi and Xj .
An estimate xi of Xi, together with the associated standard uncertainty ui, may be deter-
mined as the mean x̄i and the standard deviation si associated with the mean for the set of
indication values (xi,1, xi,2, . . . , xi,q) as in Section 2.1.1, and similarly for Xj . The covari-
ance of Xi and Xj is taken as the covariance ui,j = u(x̄i, x̄j) associated with the means x̄i
and x̄j . Table 2 defines this covariance in terms of repeated indication values, and specifies
the input and output parameters associated with its determination.

2.1.3 Covariance matrix for input quantities

Suppose (x1,k, x2,k, . . . , xN,k)>, k = 1, . . . , q, are q N -tuples of indication values of quan-
tities with unknown expectations Xi, i = 1, . . . , N , each N -tuple obtained independently
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Input parameters

q Number of indication values

xi Indication values (xi,1, xi,2, . . . , xi,q), obtained independently

Output parameters

x̄i Mean, defined by

x̄i =
1
q

q∑
k=1

xi,k

si Standard deviation associated with the mean, defined by

s2
i =

1
q(q − 1)

q∑
k=1

(xi,k − x̄i)2

νi Degrees of freedom, defined by

νi = q − 1

Numerical analysis

The above formula for si should be used rather than the mathematically
equivalent formula

s2
i =

1
q − 1

(
1
q

q∑
k=1

x2
i,k − x̄2

i

)
.

For cases in which si is very much smaller than |x̄i| (in which case the
xi,k, k = 1, . . . , q, have a number of leading digits in common) the latter
formula suffers from subtractive cancellation (involving a mean square
less a squared mean). The cancellation effects can be so severe that the
resulting value of si may have too few correct significant figures for the
uncertainty evaluation to be valid [10]

Table 1: Mean, associated standard deviation and corresponding degrees of freedom from
repeated indication values.
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Input parameters

q Number of indication values

xi Indication values (xi,1, xi,2, . . . , xi,q)

xj Indication values (xj,1, xj,2, . . . , xj,q) paired with those in xi. Each pair
(xi,k, xj,k)> is obtained independently of the remaining pairs

Output parameter

ui,j Covariance associated with the estimates for the ith and jth input quanti-
ties, defined by

ui,j =
1

q(q − 1)

q∑
k=1

(xi,k − x̄i)(xj,k − x̄j),

where x̄i and x̄j are the means of the indication values xi and xj , respec-
tively

Numerical analysis

The above formula for u(xi, xj) should be used rather than the mathe-
matically equivalent formula

ui,j =
1

q − 1

(
1
q

q∑
k=1

xi,kxj,k − x̄ix̄j

)
.

The latter formula can suffer from subtractive cancellation as in the stan-
dard deviation calculation (Table 1) and the resulting value of u(xi, xj)
may have too few correct figures for the uncertainty evaluation to be valid

Table 2: Covariance associated with two means from repeated indication values.
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of the remaining N -tuples, and that these are assembled into the N × q matrix Φ.4 Let Φ′

be obtained from Φ by correcting for the means, i.e., the mean x̄i of the elements in the ith
row is subtracted from all elements xi,j , j = 1, . . . , q, in that row. Then, the covariance
matrix Ux of covariances ui,j associated with the means x̄ = (x̄1, x̄2, . . . , x̄N )> is given
by

Ux =
1

q(q − 1)
Φ′(Φ′)>.

Table 3 defines the covariance matrix associated with the means in terms of repeated indica-
tion values, and specifies the input and output parameters associated with its determination.
The estimates x = x̄ for the input quantitiesX and the associated covariance matrix Ux is
the information required for the GUM uncertainty framework (Section 4).

Input parameters

N Number of input quantities

q Number of indication values

Φ N × q matrix containing the indication values xi,j , where xi,j is the jth
indication value corresponding to the ith input quantity. Each N -tuple
(x1,k, x2,k, . . . , xN,k)> is obtained independently of the remaining N -
tuples

Output parameter

Ux Covariance matrix of dimension N ×N associated with the estimates of
the input quantitiesX , defined by

1
q(q − 1)

Φ′(Φ′)>,

where Φ′ is Φ corrected for the means

Table 3: Covariance matrix associated with the means from repeated indication values.

Given estimates x̄ and the associated covariance matrix Ux, X is characterized by a joint
PDF as follows:

• If the distribution underlying the indication values is unknown, characterizeX by the
multivariate Gaussian distribution N(x̄,Ux);

• If the distribution underlying the indication values is known to be Gaussian, charac-
terize X by the multivariate t–distribution tν(x̄,Sx) with ν = q − N degrees of
freedom,5 where

Sx =
(
q − 1
q −N

)
Ux.

4The symbol Φ is (reluctantly) used to denote the matrix of indication values xi,j , sinceX is used to denote
a scalar input quantity and X a vector input quantity.

5q must be strictly greater than N for this characterization to apply.
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This is the information required for a Monte Carlo method (Section 5). Information on how
to generate pseudo-random numbers from these distributions for the purpose of a Monte
Carlo method is given in Sections 5.3.7 and 5.3.8, respectively.

In practice there may be ‘simultaneous’ indication values (xi,1, xi,2, . . . , xi,q) for some of
the Xi, e.g, for i = 2, 4 and 5. In this case the above covariance considerations would
apply to this ‘group’. Any other such groups would be handled similarly, and the complete
covariance matrix of dimension N × N constructed from these groups, together with the
variances associated with estimates of those input quantities that are mutually independent.

2.2 Formulation based on other available information

If knowledge of an input quantity is based on non-statistical information, the quantity would
be characterized by a PDF that depended on the nature of the information. For a Monte
Carlo method this PDF is used directly. The information that leads to the characterization
of a quantity by some common distributions is indicated below (Sections 2.2.1 to 2.2.4).
Table 4 gives the estimate xi, the associated standard uncertainty ui and the corresponding
degrees of freedom νi used by the GUM uncertainty framework based on the available
information.

Distribution xi ui νi

Rectangular R(a, b)
b+ a

2
b− a
2
√

3
∞

Gaussian N(µ, σ2) µ σ ∞

Curvilinear trapezoid CTrap(a, b, d)
b+ a

2
b− a
2
√

3
1
2

[
b− a

2d

]2

U-shaped U(a, b)
b+ a

2
b− a
2
√

2
∞

Table 4: Estimate, associated standard uncertainty and corresponding degrees of freedom
for an input quantity characterized by some common probability distributions.

For example, suppose the only available information regarding an input quantity Xi is a
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lower limit a and an upper limit b with a < b. Then, Xi is characterized by a rectangular
distribution with limits a and b (Section 2.2.1). Information on how to generate pseudo-
random numbers from this distribution for the purpose of a Monte Carlo method is given in
Section 5.3.1. For this distribution

xi =
b+ a

2
, ui =

b− a
2
√

3
, νi =∞,

and this is the information required for the GUM uncertainty framework (Table 4). For a
quantity Xi characterized by a different PDF, Table 4 would be used in a similar way.

2.2.1 Rectangular distribution

If the only available information regarding a quantity X is a lower limit a and an upper
limit b with a < b, then, according to the principle of maximum entropy, X would be
characterized by the rectangular distribution R(a, b) over the interval [a, b].

The PDF for X is

gX(ξ) =


0, ξ < a,

1/(b− a), a ≤ ξ ≤ b,
0, b < ξ.

Information on how to generate pseudo-random numbers from this distribution for the pur-
pose of a Monte Carlo method is given in Section 5.3.1.

2.2.2 Gaussian distribution

If a best estimate µ and associated standard uncertainty σ are the only information regarding
a quantity X , then, according to the principle of maximum entropy, X would be character-
ized by the Gaussian probability distribution N(µ, σ2).

The PDF for X is

gX(ξ) =
1

σ
√

2π
exp

[
−(ξ − µ)2

2σ2

]
.

Information on how to generate pseudo-random numbers from this distribution for the pur-
pose of a Monte Carlo method is given in Section 5.3.2.

2.2.3 Curvilinear trapezoid distribution

A quantity X is known to lie between limits A and B with A < B, where the midpoint
(A + B)/2 of the interval defined by these limits is fixed and the length B − A of the
interval is not known exactly. A is known to lie in the interval a± d and B in b± d, where
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a, b and d, with d > 0 and a+ d < b− d, are specified. If no other information is available
concerning X , A and B, the principle of maximum entropy can be applied to characterize
X by the curvilinear trapezoid CTrap(a, b, d).

The PDF for X is

gX(ξ) =
1
4d



0, ξ < a− d,
ln [(w + d) / (h− ξ)] , a− d ≤ ξ ≤ a+ d,

ln [(w + d) / (w − d)] , a+ d < ξ < b− d,
ln [(w + d) / (ξ − h)] , b− d ≤ ξ ≤ b+ d,

0, b+ d < ξ,

where w = (b− a)/2 and h = (a+ b)/2. Information on how to generate pseudo-random
numbers from this distribution for the purpose of a Monte Carlo method is given in Sec-
tion 5.3.4.

2.2.4 U-shaped distribution

If a quantity X is known to cycle sinusoidally, with unknown phase Φ, between specified
limits a and b, with a < b, then, according to the principle of manimum entropy, Φ would be
characterized by the rectangular distribution R(0, 2π), and X by the U-shaped distribution
U(a, b).

The PDF for X is

gX(ξ) =


0, ξ < a,

1/[π
√
w2 − (ξ − h)2], a ≤ ξ ≤ b,

0, b < ξ.

where w = (b− a)/2 and h = (a+ b)/2. Information on how to generate pseudo-random
numbers from this distribution for the purpose of a Monte Carlo method is given in Sec-
tion 5.3.5.

3 Calculation of a value of the output quantity

The classification of measurement models in Section 1 covers eight types of model. In prin-
ciple, any measurement model will naturally fall into one, and only one, of these categories.
Some measurement models can be converted from one type to another. Whether doing so
is desirable depends on circumstances. For instance, it may not be numerically stable to
do so. A complex measurement model can always be converted into a real measurement
model, by replacing each complex quantity by two real quantities, its real and imaginary
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parts. Again, doing so is not necessarily desirable for purposes of calculating a value of the
output quantity.

Consider the calculation of the value y or y for the measurement functions Y = f(X)
(univariate) andY = f(X) (multivariate) given the valuex ofX . This calculation requires
the evaluation of the function f(x) or f(x). Tables 5 and 6 specify the calculations for these
types of measurement model, and the input and output parameters required.

Consider the calculation of the value y or y for the measurement models h(Y,X) = 0
(univariate) and h(Y ,X) = 0 (multivariate) given the value x of X . This calculation
requires the solution of the equation h(y,x) = 0 or system of equations h(y,x) = 0. For a
univariate measurement model, it is necessary to solve a single equation. For a multivariate
measurement model, a system of equations is to be solved. Tables 7 and 8 specify the
calculations for these types of measurement model, and the input and output parameters
required.

The calculation of a value of the output quantity for complex measurement models need be
no more complicated than for the categories of real measurement models considered above.
Many software packages and languages provide a complex type for complex quantities
together with functions for performing complex arithmetic. An alternative to using such
facilities is to store explicitly each complex quantity in terms of its real and imaginary
parts, and to undertake all numerical operations in terms of these two (real) parts.

An issue that requires consideration as part of any implementation for these categories of
complex measurement models is the way the ‘(standard) uncertainty’ associated with an
estimate of a complex quantity is stored. If Xi is complex with real and imaginary parts
XR
i and XI

i , the ‘squared (standard) uncertainty’ associated with an estimate xi of Xi is
described by the covariance matrix

U i =

[
cov(xR

i ) cov(xR
i , x

I
i)

cov(xR
i , x

I
i) cov(xI

i)

]

of dimension 2 × 2, where cov(xR
i , x

R
i ) = u2(xR

i ) and cov(xI
i, x

I
i) = u2(xI

i) are, respec-
tively, the variances associated with the estimates xR

i and xI
i of the real and imaginary parts,

and cov(xR
i , x

I
i) is the covariance associated with these estimates. Furthermore, the covari-

ance matrix Ux for the complete set of input quantities Xi, i = 1, . . . , N , is a matrix of
dimension 2N × 2N . Consequently, although the quantities themselves may be regarded
as complex, it is necessary to store the corresponding uncertainty information using real
matrices, and operate on them using real arithmetic.
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Input parameters

N Number of input quantities

f Function specifying the measurement function Y = f(X) in terms of
the input quantitiesX = (X1, . . . , XN )>

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

Output parameter

y Value obtained by evaluating the function

y = f(x)

Table 5: Value of the output quantity in a univariate, real measurement function.

Input parameters

N Number of input quantities

m Number of output quantities

f Function with m components specifying the measurement function
Y = f(X) in terms of the input quantitiesX = (X1, . . . , XN )>

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

Output parameter

y Column vector of values (y1, . . . , ym)> obtained by evaluating the func-
tion

y = f(x)

Table 6: Value of the output quantity in a multivariate, real measurement function.
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Input parameters

N Number of input quantities

h Function specifying the measurement model h(Y,X) = 0 in terms of the
input quantitiesX = (X1, . . . , XN )> and the output quantity Y

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

t Computational control parameters such as lower and upper bounds for y
and technical parameters relating to the equation-solving software

Output parameter

y Value obtained by solving the equation

h(y,x) = 0

Numerical analysis

A zero-finding algorithm [16, 23], such as the bisection algorithm in
cases where suitable lower and upper bounds are known for y, can be
used to solve the equation

Table 7: Value of the output quantity in a univariate, real measurement model.

4 GUM uncertainty framework

4.1 Procedure

For the application of the GUM uncertainty framework, the outputs of the formulation stage
are (Section 2):

• Estimates x = (x1, . . . , xN )> of the input quantitiesX = (X1, . . . , XN )>;

• Standard uncertainties u = (u1, . . . , uN )> associated with these estimates;

• Corresponding degrees of freedom ν = (ν1, . . . , νN )>;

• Where appropriate, covariances associated with estimates of the input quantities that
are mutually dependent.

This information is conveniently represented by x,Ux and ν, whereUx is a covariance ma-
trix that holds the variances (squared standard uncertainties) associated with the estimates x
and the covariances associated with these estimates. Ux is a matrix of dimension N × N ,
whose (i, j)th element contains the covariance cov(xi, xj) associated with xi and xj , with
cov(xi, xi) = u2

i .
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Input parameters

N Number of input quantities

m Number of output quantities

h Function with m components specifying the measurement model
h(Y ,X) = 0 in terms of the input quantities X = (X1, . . . , XN )>

and the output quantities Y = (Y1, . . . , Ym)>

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

t Computational control parameters such as an initial approximation to y
and technical parameters relating to the equation-solving software

Output parameter

y Column vector of values (y1, . . . , ym)> obtained by solving the equations

h(y,x) = 0

Numerical analysis

An iterative algorithm such as Newton’s method [23], starting from a
suitable approximation to y, can be used to solve the system of equations

Table 8: Value of the output quantity in a multivariate, real measurement model.
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x,Ux and ν, together with the measurement model and the required coverage probability p
(e.g., 0.95), constitute the inputs to the calculation stage of the GUM uncertainty framework.

For a univariate measurement function, the procedure is as follows:

1. Calculate the estimate of the output quantity by evaluating the measurement function
at the estimates of the input quantities.6 See Section 3.

2. Form the partial derivatives of first order of the measurement function with respect
to the input quantities, and calculate the sensitivity coefficients by evaluating these
partial derivatives at the estimates of the input quantities.7 See Section 4.2.

3. Calculate the standard uncertainty associated with the estimate of the output quantity
by combining the standard uncertainties associated with the estimates of the input
quantities, the covariances associated with these estimates and the sensitivity coeffi-
cients. See Section 4.3.

4. When the input quantities X are mutually independent, use the Welch-Satterthwaite
formula to calculate νeff , the effective degrees of freedom attached to the standard
uncertainty, from the standard uncertainties associated with the estimates of the input
quantities, the corresponding degrees of freedom, the sensitivity coefficients and the
standard uncertainty associated with the estimate of the output quantity. The GUM
uncertainty framework does not state how νeff is to be calculated when the input
quantities are correlated. See Section 4.4.1.

5. Calculate the coverage factor corresponding to νeff and the required coverage prob-
ability p as a percentage point of the (standard) Gaussian distribution (νeff = ∞) or
a t–distribution (νeff < ∞). Hence, calculate the expanded uncertainty, and thus an
interval containing the output quantity with the stipulated coverage probability, by
forming the product of this coverage factor and the standard uncertainty associated
with the estimate of the output quantity. See Sections 4.4.2 and 4.4.3.

The computational flow of the calculation stage for the GUM uncertainty framework, in-
dicating the inputs and the outputs, viz., an estimate of the output quantity, the standard
uncertainty associated with this estimate and a coverage interval, is given in Figure 1. This
figure applies in the case of a univariate, real measurement function with input quantities
that are mutually independent. Other measurement model types would give diagrams that
constitute a variant of Figure 1.

For multivariate measurement models, Steps 1, 2 and 3 would be performed as above (Sec-
tions 3, 4.2 and 4.3). The extension of steps 4 and 5 to the evaluation of coverage regions for

6For a general measurement model, the measurement model is solved for the estimate of the output quantity
given estimates of the input quantities: see Section 3.

7For a general measurement model, the partial derivative of first order of the measurement model with
respect to the output quantity is also required to determine the sensitivity coefficients: see Section 4.2.
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Figure 1: Uncertainty evaluation using the GUM uncertainty framework for a univariate,
real measurement function with mutually independent input quantities.
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multivariate output quantities is not straightforward. Provision of coverage regions is lim-
ited to those taking the form of ellipses (for the case of two output quantities) and ellipsoids
(for the case of a general number of output quantities): see Section 4.5.

Implementation of the above procedure would be achieved in terms of software ‘units’ as
described in Sections 3, 4.2, 4.3, and 4.4 or 4.5. For example, for a univariate, real mea-
surement function, these units are specified in Tables 5, 9, 13, 14, 15 and 16.

4.2 Sensitivity coefficients

The procedure for the GUM uncertainty framework (Section 4.1) covers the univariate, real
measurement function Y = f(X). The sensitivity coefficients used by that procedure are
denoted here by the (row) vector8 C = (c1, . . . , cN ), whose jth element cj is the partial
derivative ∂f/∂Xj of first order evaluated at X = x. Table 9 specifies the evaluation of
sensitivity coefficients for this category of measurement model, and indicates the input and
output parameters necessary for their determination.

Table 10 specifies the counterpart for a multivariate, real measurement functionY = f(X).
In this case C takes the form of a matrix of sensitivity coefficients, whose (i, j)th element
is the partial derivative of first order of the ith output quantity with respect to the jth input
quantity evaluated atX = x.

Input parameters

N Number of input quantities

f Function specifying the measurement function Y = f(X) in terms of
the input quantitiesX = (X1, . . . , XN )>

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

Output parameter

C 1 ×N vector of sensitivity coefficients, whose jth element is the partial
derivative ∂f/∂Xj of first order evaluated atX = x

Table 9: Sensitivity coefficients for a univariate, real measurement function.

The general univariate, real measurement model is h(Y,X) = 0. The sensitivity coef-
ficients C = (c1, . . . , cN ) are determined from the partial derivatives of first order of h
with respect to both the input quantities X and the output quantity Y . The jth sensitivity
coefficient cj is given by

−
(
∂h

∂Y

)−1( ∂h

∂Xj

)
,

8The symbol C rather than the ‘more natural’ c for this vector is used to denote this set of coefficients.
The reason for this choice is that for multivariate measurement models C is used to hold an array (matrix) of
sensitivity coefficients, and that it is appropriate to use the same symbol throughout.
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Input parameters

N Number of input quantities

m Number of output quantities

f Function specifying the measurement function Y = f(X) in terms of
the input quantitiesX = (X1, . . . , XN )>

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

Output parameter

C m × N matrix of sensitivity coefficients, whose (i, j)th element is the
partial derivative ∂fi/∂Xj of first order evaluated atX = x

Table 10: Sensitivity coefficients for a multivariate, real measurement function.

where the partial derivatives of first order are evaluated at X = x and Y = y, with y
satisfying h(y,x) = 0. Table 11 specifies the evaluation of sensitivity coefficients for this
category of measurement model, and indicates the input and output parameters necessary
for their determination.

The general multivariate, real measurement model is h(Y ,X) = 0. The matrix C of
sensitivity coefficients is determined as the solution to the linear system of equations

HyC = −Hx,

where the matrices Hx and Hy contain, respectively, the partial derivatives ∂hi/∂Xj and
∂hi/∂Yj of first order evaluated at X = x and Y = y, with y satisfying h(y,x) = 0.
Table 12 specifies the evaluation of sensitivity coefficients for this category of measurement
model, and indicates the input and output parameters necessary for their determination.

Counterparts would apply for complex measurement models. It is necessary to form partial
derivatives of first order of the real and imaginary parts of the (components of the) mea-
surement model with respect to the real and imaginary parts of the input quantities (and the
output quantities for general measurement models).

The sensitivity coefficients can be formed [8]:

1. Manually, by the algebraic differentiation of, e.g., f(X) with respect to each compo-
nent Xi, i = 1, . . . , N , ofX , followed by settingX = x;

2. As 1, except by the use of a computer package for algebraic differentiation or a
symbolic-algebra package that provides this capability;

3. By the use of finite-difference formulae, including that based on the complex-step
method;
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Input parameters

N Number of input quantities

h Function specifying the measurement model h(Y,X) = 0 in terms of the
input quantitiesX = (X1, . . . , XN )> and the output quantity Y

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

y Estimate of the output quantity Y that satisfies h(y,x) = 0

Output parameter

C 1×N vector of sensitivity coefficients, whose jth element is

−
(
∂h

∂Y

)−1( ∂h

∂Xj

)
,

where the partial derivatives of first order are evaluated at X = x and
Y = y

Table 11: Sensitivity coefficients for a univariate, real measurement model.

Input parameters

N Number of input quantities

m Number of output quantities

h Function specifying the measurement model h(Y ,X) = 0 in terms
of the input quantities X = (X1, . . . , XN )> and the output quantities
Y = (Y1, . . . , Ym)>

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

y Column vector (y1, . . . , ym)> of estimates of the output quantities Y that
satisfy h(y,x) = 0

Output parameter

C m×N matrix of sensitivity coefficients that solves

HyC = −Hx,

where the matrices Hx and Hy contain, respectively, the partial deriva-
tives ∂hi/∂Xj and ∂hi/∂Yj of first order evaluated at X = x and
Y = y

Numerical analysis

The above system of equations should be solved using a numerically sta-
ble procedure, such as Gaussian elimination with a pivoting strategy [24]

Table 12: Sensitivity coefficients for a multivariate, real measurement model.
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4. By the use of program differentiation techniques, including forward automatic dif-
ferentiation and reverse automatic differentiation (which are examples of operator
overloading), and source to source transformation.

The manner in which the partial derivatives of first order required in forming the sensi-
tivity coefficients C in Tables 9 to 12 are obtained requires careful consideration. These
derivatives and hence the sensitivity coefficients can be difficult to determine by hand for
measurement models that are complicated. The above options of using a symbolic-algebra
package, finite-difference formulae or program differentiation techniques can be attractive
in such circumstances. There are learning overheads associated with the use of a symbolic-
algebra package and program differentiation techniques: their use can be justified if the user
needs to address a sufficient number of complicated measurement models. Finite-difference
formulae may provide inadequate accuracy if used inappropriately. These alternatives to the
manual determination of sensitivity coefficients are addressed in Appendices A, B and C.

4.3 Uncertainty associated with the estimate of the output quantity

For a univariate, real measurement function, the standard uncertainty u(y) associated with
the estimate y of Y is obtained from the formula [3]

u2(y) =
N∑
i=1

N∑
j=1

cicjcov(xi, xj),

where ci is the sensitivity coefficient for the ith input quantity, and cov(xi, xj) the covari-
ance associated with the estimates xi and xj , with cov(xi, xi) = u2

i , the variance (squared
standard uncertainty) associated with the ith estimate. A compact way of representing the
above expression is

Uy = CUxC
>, (1)

where Uy = u2(y), C = (c1, . . . , cN ), and Ux is the covariance matrix of dimension
N ×N associated with the estimates x of the input quantitiesX .

Using this notation, formula (1) for Uy applies for all categories of measurement model.
For univariate, real measurement models, Uy is the variance associated with the estimate y
of the output quantity Y ; for other measurement models, it is the covariance matrix asso-
ciated with the estimates of the output quantities. Table 13 specifies the evaluation of the
uncertainty associated with the estimate of the output quantity, and indicates the input and
output parameters necessary for its determination.
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Input parameters

N Number of input quantities

m Number of output quantities

Ux N × N covariance matrix associated with the estimates x of the input
quantitiesX

C m×N matrix of sensitivity coefficients

Output parameter

Uy Covariance matrix of dimension m × m associated with the estimate y
(or y) of the output quantity Y (or Y ) obtained by evaluating

Uy = CUxC
>

Table 13: Variance (squared standard uncertainty) associated with the estimate y of Y for
a univariate (m = 1) measurement model or the covariance matrix associated with the
estimate y of Y for a multivariate (m > 1) measurement model.

4.4 Coverage interval for a univariate, real output quantity

4.4.1 Effective degrees of freedom

Table 14 specifies the Welch-Satterthwaite formula for evaluating the effective degrees of
freedom νeff for a univariate, real output quantity Y when the input quantitiesX are mutu-
ally independent. The GUM uncertainty framework does not state how νeff is to be calcu-
lated when the input quantities are correlated.

4.4.2 Expanded uncertainty

Table 15 specifies the calculation of expanded uncertaintyU(y) associated with the estimate
y of a univariate, real output quantity Y when the input quantitiesX are mutually indepen-
dent. The expanded uncertainty is evaluated as the product of the standard uncertainty u(y)
(Section 4.3) and a coverage factor kp that depends on the required coverage probability p
and the effective degrees of freedom νeff (Section 4.4.1).

The calculation of expanded uncertainty depends on knowledge of the distribution that char-
acterizes the output quantity Y . In the GUM uncertainty framework, a t–distribution with
νeff degrees of freedom is assigned to the random variable

T =
Y − y
u(y)

.
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Input parameters

N Number of input quantities

u Column vector (u1, . . . , uN )> ≡ (u(x1), . . . , u(xN ))> of standard un-
certainties associated with the estimates x = (x1, . . . , xN )> of the input
quantitiesX

C 1 × N (row) vector of sensitivity coefficients, whose jth element is the
partial derivative ∂f/∂Xj of first order evaluated atX = x

ν Column vector (ν1, . . . , νN )> of degrees of freedom. If the estimate xi
of Xi is taken as the mean of a set of q repeated indication values, νi is
taken as q − 1. If a rectangular distribution with accurately known end-
points is assigned to Xi, νi is taken as infinite (∞). (Since∞ cannot be
represented as such as an input parameter, a convention may be adopted.
For instance such a value can be ‘coded’ as 0 (zero), and the procedure
would be designed to interpret this value, which cannot occur otherwise,
as infinite.) These are two important cases. There are other possibili-
ties [3] for attaching a degrees of freedom to the standard uncertainties
associated with estimates of the input quantities. Each case is treated on
its own merits

u(y) Standard uncertainty associated with the estimate y of the output quantity

Output parameter

νeff Effective degrees of freedom determined from the Welch-Satterthwaite
formula

u4(y)
νeff

=
N∑
i=1

c4
iu

4(xi)
νi

Table 14: Effective degrees of freedom according to the Welch-Satterthwaite formula.
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It follows that kp is the percentage point tp(νeff) of the t–distribution such that the proba-
bility that |t| is no greater than tp(νeff) is equal to p, i.e.,

p = Pr [|t| ≤ tp(νeff)] ,

where t has a t–distribution with νeff degrees of freedom. Values of kp for various choices
of coverage probability p and degrees of freedom νeff may be obtained from statistical tables
and implemented as a ‘look-up’ table. Many mathematical and statistical software libraries
provide an implementation and can be used. For νeff ≥ 473, kp = 1.96, correct to two
decimal places, the corresponding value for the standard Gaussian distribution N(0, 1).

Input parameters

u(y) Standard uncertainty associated with the estimate y of the output quantity

νeff Effective degrees of freedom determined from the Welch-Satterthwaite
formula

p Coverage probability (typically 0.95)

Output parameter

U(y) Expanded uncertainty, defined by

U(y) = kpu(y),

where kp is a coverage factor, depending on the stipulated coverage prob-
ability p, that is obtained from tables of percentage points of the Gaussian
distribution (νeff =∞) or a t–distribution (νeff <∞)

Table 15: Expanded uncertainty for a univariate, real measurement model.

4.4.3 Coverage interval

Table 16 specifies the calculation of the coverage interval for a univariate, real output quan-
tity Y when the input quantitiesX are mutually independent. The interval is centred at the
estimate y of the output quantity (Section 3) with a semi-width equal to the expanded uncer-
tainty associated with the estimate (Section 4.4.2). The coverage interval can be expected
to contain 100p% of the values that can reasonably be attributed to the output quantity.

4.5 Coverage region for a multivariate output quantity

For a multivariate quantity Y , the counterpart of a coverage interval is a coverage region
in m-dimensions that contains Y with specified coverage probability p. If the estimate y
and associated covariance matrixUy constitute the only available information about Y , the
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Input parameters

y Estimate of the output quantity

U(y) Expanded uncertainty corresponding to required coverage probability p

Output parameter

ylow, yhigh Endpoints of a coverage interval, defined by

ylow = y − U(y), yhigh = y + U(y)

Table 16: Coverage interval for a univariate, real measurement model.

joint PDF characterizing Y is the multivariate Gaussian N(y,Uy) [4, Clause 6.4.8]. Then,
the boundary of the coverage region for Y of smallest (hyper-)volume is the ellipsoid

(η − y)>Uy
−1(η − y) = k2

p,m

centred at y, with k2
p,m given by an upper percentage point of the chi-squared distribution

with m degrees of freedom and satisfying

p = Pr(χ2
m ≤ k2

p,m),

where χ2
m has a chi-squared distribution with m degrees of freedom [34]. Values of k2

p,m

for various choices of coverage probability p and number m of output quantities may be
obtained from statistical tables and implemented as a ‘look-up’ table. Many mathematical
and statistical software libraries provide an implementation and can be used.

5 Monte Carlo method

5.1 Procedure

For the application of a Monte Carlo method, the outputs of the formulation stage are
the PDFs9 g(ξ) = (g1(ξ1), . . . , gn(ξN ))> for the input quantities X = (X1, . . . , XN )>

(Section 2).10 The PDFs, together with the measurement model and the required coverage
probability p (e.g., 0.95), constitute the inputs to the calculation stage of the Monte Carlo
procedure.

For a univariate measurement function, the procedure is as follows:
9A joint (multivariate) PDF for (a subset of) the input quantities is also possible (Section 2.1.3).

10The following notation is used: Xi to denote the ith input quantity, xi an estimate ofXi, and ξi a (general)
value of Xi. Hence, the PDF for Xi is written as a function of ξi. Similarly, Y , y and η are used for a
(univariate) output quantity.

Page 28 of 75



Software specifications for uncertainty evaluation NPL Report MS 7

1. Select the number M of Monte Carlo trials to be made. See Section 5.2.

2. Generate M vectors by making random draws from the PDFs for the (set of N ) input
quantities. See Section 5.3.

3. For each vector, evaluate the measurement function to give the corresponding value
of the output quantity. See Section 5.4.1.

4. Calculate the estimate of the output quantity and the associated standard uncertainty
as the (arithmetic) mean and standard deviation of the values of the output quantity.
Optionally, use the values to form an approximation to the PDF for the output quan-
tity. See Sections 5.4.2 and 5.4.3.

5. Sort the values of the output quantity into non-decreasing order, and use the sorted
values to provide a discrete representation of the distribution function for the out-
put quantity. Optionally, use the discrete representation to form a (continuous) ap-
proximation to the distribution function for the output quantity. See Sections 5.4.4
and 5.4.5.

6. Use the discrete representation of the distribution function to calculate a coverage
interval for the output quantity for the required coverage probability p. See Sec-
tion 5.4.6.

Figure 2 shows the procedure diagrammatically.

The modifications to the procedure illustrated in Figure 2 for other types of univariate mea-
surement model are straightforward. Multivariate measurement models are considered in
Section 5.5.

Section 5.6 describes how a Monte Carlo method may be used to undertake a sensitivity
analysis for the measurement model with respect to each input quantity, yielding ‘non-
linear’ sensitivity coefficients that are the counterpart of (linear) sensitivity coefficients nec-
essary for the implementation of the GUM uncertainty framework.

Section 5.7 indicates a basic implementation of an adaptive Monte Carlo procedure that
removes the need to make an a priori choice of the number of Monte Carlo trials.

5.2 The number of Monte Carlo trials

A value of M , the number of Monte Carlo trials to be made, needs to be selected. It
can be chosen a priori, in which case there will be no direct control over the degree of
approximation delivered by the Monte Carlo procedure. The reason is that the number
needed to provide a prescribed degree of approximation will depend on the ‘shape’ of the
PDF for the output quantity and the coverage probability required. Also, the calculations
are stochastic in nature, being based on making random draws from the PDFs for the input
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Coverage interval [ylow, yhigh]
for Y

Section 5.4.6

?
Estimate y of Y and
associated standard uncertainty u(y)

Section 5.4.2

?

Discrete representationG of the
distribution function for Y

Section 5.4.4

?

M values of the output quantity
y = (y1, . . . , yM ) = (f(x1), . . . , f(xM ))

Section 5.4.1

?

M draws x1, . . . ,xM

ofX from g(ξ)
Section 5.3

?

Measurement
function
Y = f(X)

?

Probability density
functions g(ξ)

Section 2

?

Number M of
Monte Carlo trials

Section 5.2

?

Coverage
probability pInputs

Outputs

Figure 2: Uncertainty evaluation using a Monte Carlo method for a univariate, real mea-
surement function.
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quantities. However, a value of M = 106 can often be expected to deliver a 95 % coverage
interval, having a length with a degree of approximation of one or two significant decimal
digits, for the output quantity.

Because there is no guarantee that this or any specific number will suffice, it is recom-
mended to use a process that selects M adaptively, i.e., as the trials progress. A property
of such a process is that it takes a number of trials that is economically consistent with the
achievement of the required degree of approximation [1, 4, 14, 51]. A basic implementation
of an adaptive Monte Carlo procedure is described in Section 5.7.

5.3 Making random draws from the probability density functions

In an implementation of the Monte Carlo procedure M vectors xr, r = 1, . . . ,M , are
randomly drawn from the PDFs for the input quantities X . Random draws are made from
a joint (multivariate) distribution when appropriate (Section 2.1.3).

Recommendations concerning the manner in which random draws should be made are given
here for the commonest distributions, viz., the rectangular, the Gaussian, the t–distribution,
the curvilinear trapezoid, the U-shaped, the multivariate Gaussian and the multivariate t. It
is possible to prepare software for making random draws from almost any distribution, and
indeed to develop a general framework for doing so (Section 5.3.6).

Tests of randomness of the numbers produced by a generator are indicated.

5.3.1 Rectangular distribution

The ability to generate pseudo-random numbers from a rectangular distribution is funda-
mental in its own right, and also as the basis for generating numbers from any distribution
(Section 5.3.6) using an appropriate algorithm or formula. In the latter regard, the quality of
the numbers generated from a non-rectangular distribution depends on that of the numbers
generated from the rectangular distribution and on the properties of the algorithm employed.
The quality of the non-rectangular generator can therefore be expected to be related to that
of the rectangular generator. A good rectangular generator and a good algorithm can be
expected to provide a good non-rectangular generator. A poor rectangular generator and
a good or bad algorithm can be expected to provide a poor non-rectangular generator. It
is thus especially important that the underlying rectangular generator is sound (cf. [32]).
Unless the user is sure of the pedigree of a rectangular generator it should not be used until
adequate testing has been carried out. Invalid results can otherwise be obtained. Some of
the ‘tests for randomness’ that should be undertaken are indicated below. A recommended
rectangular pseudo-random number generator, that has been shown to perform well in these
tests and that is straightforward to implement, is given in this section.

Table 17 defines relevant aspects of the functioning of a procedure for generating rectan-
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gular pseudo-random numbers in the interval (0, 1), specifying the input, input-output and
output parameters associated with their determination.

Input parameter

q Number of rectangular pseudo-random numbers to be generated

Input-output parameter

t Column vector of parameters required as input quantities and that may
be changed as part of the computation. The subsequent values of these
quantities are not usually of immediate concern to the user. The parame-
ters are needed to help control the process by which the pseudo-random
numbers are produced. The parameters may be realized as global vari-
ables and thus not explitly appear as parameters of the procedure. One or
more of these parameters may be a seed, used to initiate the sequence of
random numbers produced by successive calls of the procedure. By set-
ting the seed(s) to values previously used, the same sequence of random
numbers can be produced. Doing so is important as part of software re-
gression testing, used to verify the consistency of results produced using
the software with those from previous versions

Output parameter

r q random draws from a rectangular distribution between zero and one

Table 17: Pseudo-random number generation.

A random draw from the rectangular distribution on the interval (a, b) can be formed from
a+ (b− a)r, where r is a random draw from the rectangular distribution on the interval
(0, 1).

A review [39] has been carried out on the use of random numbers in solving problems using
a Monte Carlo procedure. It draws conclusions concerning, in particular, the best methods
to employ for generating rectangular pseudo-random numbers. The so-called ‘combination
generators’ are recommended and are reported as being favoured by experts as fulfilling
the requirements of possessing the longest periods11 and passing a set of statistical tests for
randomness.12

A combination generator simultaneously uses more than one generator. Each such generator
is typically a member of the class of congruential generators or the class of shift register
generators, both of which are widely discussed in the literature [22, 30, 40, 42].

11A pseudo-random number generator provides a sequence of numbers. The period of the sequence is the
number of consecutive values in the sequence before they are repeated.

12The tests include the so-called standard tests [30], viz., the χ2 test, the Kolmogorov-Smirnov test, the
frequency test, the serial test, the gap test, the poker test, the coupon collector’s test and the more stringent Die
Hard tests [35], that include the overlapping M-tuple test, the overlapping permutation test, the parking lot and
lattice test and the birthday-spacing test.
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The KISS13 generator [36] is a combination of a congruential generator and two shift reg-
ister generators. A version in the C programming language is available [41, p42] and in
Fortran [36].

The test suite TestU01 [31] may be used to carry out an extensive test of the statistical
properties of any generator submitted to it. The suite is very detailed, with many individual
tests, including the so-called ‘Big Crush’. Several generators that pass the suite of tests are
listed by Wichmann and Hill [50]. An enhanced Wichmann-Hill generator also passes the
test and is recommended [4].

Table 18 defines the enhanced Wichmann-Hill generator for generating rectangular pseudo-
random numbers in the interval (0, 1).

5.3.2 Gaussian distribution

The procedure in Table 19 provides a straightforwardly implementable approach [9] to gen-
erate random draws from the standard Gaussian distribution N(0, 1) using the Box-Muller
transform.

A random draw from the Gaussian distribution N(µ, σ2) can be formed from µ+σz, where
z is a random draw from the standard Gaussian distribution N(0, 1).

5.3.3 t–distribution

The procedure in Table 20 provides an approach [29], [41, p63] to generate random draws
from the t–distribution tν with ν degrees of freedom, that is also straightforward to imple-
ment.

A random draw from the t–distribution tν(µ, σ2) with shift parameter µ and scale parameter
σ can be formed from µ+ σt, where t is a random draw from the t–distribution tν .

5.3.4 Curvilinear trapezoid distribution

A random draw from the curvilinear trapezoid distribution CTrap(a, b, d) can be formed
from

as + (bs − as)r2,

where as = (a − d) + 2dr1, bs = (a + b) − as and r1 and r2 are random draws made
independently from the rectangular distribution R(0, 1).

13Keep It Simple, Stupid!
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Input parameter

None

Input-output parameters

ix, iy, iz, it Integer parameters required as input parameters and that are changed by
the procedure. Set to integers between 1 and 2 147 483 647 before the first
call. Do not disturb between calls. Subsequent values of these parameters
are not usually of concern to the user. The parameters provide the basis by
which the pseudo-random numbers are generated. They may be realized
as global variables and thus not appear explicitly as parameters of the
procedure

Output parameter

r A random draw from a rectangular distribution between zero and one

Computation

1. Form ix = 11 600×(ix mod 185 127)−10 379×bix÷185 127c;

2. Form iy = 47 003× (iy mod 45 688)− 10 479× biy ÷ 45 688c;

3. Form iz = 23 000× (iz mod 93 368)− 19 423× biz ÷ 93 368c;

4. Form it = 33 000× (it mod 65 075)− 8 123× bit÷ 65 075c;

5. If ix < 0, form ix = ix+ 2 147 483 579;

6. If iy < 0, form iy = iy + 2 147 483 543;

7. If iz < 0, form iz = iz + 2 147 483 423;

8. If it < 0, form it = it+ 2 147 483 123;

9. Form w = wx+ wy + wz + wt, where

9.1 wx = ix/2 147 483 579.0,

9.2 wy = iy/2 147 483 543.0,

9.3 wz = iz/2 147 483 423.0,

9.4 wt = it/2 147 483 123.0;

10. Form r = w − bwc.

Table 18: Enhanced Wichmann-Hill pseudo-random number generator for the rectangular
distribution. ix mod n denotes the modulus (or remainder) after division by n, and bwc
denotes the integer part of w.
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Input parameter

None

Output parameters

z1, z2 Two random draws from the standard Gaussian distribution N(0, 1)

Computation

1. Generate random draws r1 and r2 independently from the rectan-
gular distribution between zero and one

2. Form z1 =
√
−2 log r1 cos 2πr2 and z2 =

√
−2 log r1 sin 2πr2

Table 19: Box-Muller pseudo-random number generator for the Gaussian distribution.

Input parameter

ν Degrees of freedom

Output parameter

t A random draw from a t–distribution with ν degrees of freedom

Computation

1. Generate random draws r1 and r2 independently from the rectan-
gular distribution between zero and one

2. If r1 < 1/2, form t = 1/(4r1 − 1) and v = r2/t
2; otherwise set

t = 4r1 − 3 and v = r2

3. If v < 1 − |t|/2 or v < (1 + t2/ν)−(ν+1)/2, accept t as a random
draw from the t–distribution; otherwise repeat from Step 1

Table 20: Pseudo-random number generator for the t–distribution.
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5.3.5 U-shaped distribution

A random draw from the U-shaped distribution U(a, b) can be formed from

(a+ b)/2 + (b− a)/2 sin(2πr),

where r is a random draw from the rectangular distribution R(0, 1).

5.3.6 General univariate distributions

Sections 5.3.1 to 5.3.5 presented procedures for making random draws from the PDFs relat-
ing to common (univariate) distributions, viz., rectangular, Gaussian, t–distribution, curvi-
linear trapezoid and U-shaped, respectively. Consideration is given here to the task of mak-
ing random draws from a general (univariate) distribution defined by its distribution function
G(ξ).

A random draw z from this distribution is obtained as follows:

1. Generate a random draw ψ from a rectangular distribution between zero and one
(Section 5.3.1)

2. Find the value z satisfying G(z) = ψ.

The ‘inversion’ step (in 2 above) of forming z = G−1(ψ) may be possible analytically or,
otherwise, performed numerically. In the latter case, z is evaluated by solving the equation

G(z)− ψ = 0.

Upper and lower bounds for z are generally easily found, in which case a ‘bracketing’
algorithm such as bisection can be used to determine z [16, 23].

5.3.7 Multivariate Gaussian distribution

The most important multivariate distribution is the multivariate Gaussian distribution. A
vector µ of dimension n×1 of expectations and a covariance matrix V of dimension n×n
are the parameters of the n-dimensional Gaussian distribution N(µ,V ). Random draws can
be made from this distribution [43, 47] using the procedure in Table 21.

Figure 3 shows three examples of 1 000 points generated from bivariate Gaussian distribu-
tions using the MULTNORM generator [43]. In all three cases the distributions characterize
a quantity with expectation µ = (2, 3)>. In the top graph, the quantity has covariance ma-
trix

V =

[
2.0 0.0

0.0 2.0

]
,
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Input parameters

n Dimension of the multivariate Gaussian distribution

µ n× 1 vector of expectations

V n× n covariance matrix

q Number of random draws from the multivariate Gaussian distribution

Output parameter

Φ n× q matrix, the jth column of which is a random draw from the multi-
variate Gaussian distribution

Computation

1. Form the Cholesky factorR of V , i.e., the upper triangular matrix
satisfying V = R>R. (To generate q pseudo-random numbers it
is necessary to perform this matrix factorization only once.)

2. Generate q random draws from the n-dimensional standard Gaus-
sian distribution N(0, 1) × · · · × N(0, 1). Doing so simply means
generating an n × q array Z of random draws from the standard
Gaussian distribution

3. Provide the required random draws (the Cholesky factor acts as
a transformation from the uncorrelated standardized space to that
required):

Φ = µ1> +R>Z,

where 1 denotes a q × 1 vector of ones

Table 21: Pseudo-random number generator for the multivariate Gaussian distribution.
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i.e., the components of the quantity are independent and have the same standard deviation,
and the cloud of points resembles a disk with centre at the expectation µ. In the middle
graph, the quantity has covariance matrix

V =

[
1.0 0.0

0.0 4.0

]
,

i.e., the components are independent and have different standard deviations, and the cloud
of points resembles an ellipse with major and minor axes parallel to the co-ordinate axes.
In the bottom graph, the quantity has covariance matrix

V =

[
2.0 1.9

1.9 2.0

]
,

i.e., the components are correlated, and the cloud of points resembles an ellipse with axes
oriented to the co-ordinate axes by an angle that is determined by the covariance of the
components.

Similar generators are available elsewhere [17].

5.3.8 Multivariate t–distribution

Another important multivariate distribution is the multivariate t–distribution (Section 2.1.3).
A vector µ of dimension n× 1 of expectations, a scale matrix S of dimension n× n and a
degrees of freedom ν are the parameters of the n-dimensional t–distribution tν(µ,S). Ran-
dom draws can be made from this distribution using the procedure given in Table 22. The
procedure relies on making random draws from a chi-squared distribution with ν degrees of
freedom (see, e.g., [19]).

5.4 Monte Carlo procedure for univariate measurement models

5.4.1 Calculation of the values of the output quantity

Denote by x1, . . . ,xM the M random draws from the PDFs for the N input quantities,
where the rth draw xr contains values x1,r, . . . , xN,r, with xi,r a draw from the PDF for
Xi. For a univariate, real measurement function, the corresponding values of the output
quantity are obtained by evaluating the measurement function:

yr = f(xr), r = 1, . . . ,M.

For a univariate, real measurement model, they are determined by solving the measurement
model:

h(yr,xr) = 0, r = 1, . . . ,M.
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Figure 3: Points drawn from bivariate Gaussian distributions used to characterize quantities
that are independent with the same standard deviation (top), independent having different
standard deviations (middle), and correlated (bottom).
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Input parameters

n Dimension of the multivariate t–distribution

µ n× 1 vector of expectations

S n× n scale matrix

ν Degrees of freedom

q Number of random draws from the multivariate t–distribution

Output parameter

T n× q matrix, the jth column of which is a random draw from the multi-
variate t–distribution

Computation

1. Form the Cholesky factor R of S, i.e., the upper triangular matrix
satisfying S = R>R. (To generate q pseudo-random numbers it
is necessary to perform this matrix factorization only once.)

2. Generate q random draws from the n-dimensional standard Gaus-
sian distribution N(0, 1) × · · · × N(0, 1). Doing so simply means
generating an n × q array Z of random draws from the standard
Gaussian distribution

3. Generate q random draws w1, . . . , wq from the chi-squared distri-
bution with ν degrees of freedom

4. Provide the required random draws:

T = µ1> +R>ZD,

where 1 denotes a q× 1 vector of ones andD a diagonal matrix of
dimension q × q with diagonal elements

√
ν/w1, . . . ,

√
ν/wq

Table 22: Pseudo-random number generator for the multivariate t–distribution.
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The values y1, . . . , yM are used in the evaluation of the estimate y of Y and the associated
standard uncertainty u(y) (Section 5.4.2), and as the basis for calculating an approximation
to the PDF for Y (Section 5.4.3). The values are also used to provide a discrete represen-
tation of the distribution function for Y (Section 5.4.4) in terms of which are obtained a
(continuous) approximation to the distribution function (Section 5.4.5) and a coverage in-
terval for Y (Section 5.4.6). The case of a univariate measurement model is covered below.
Multivariate measurement models are considered in Section 5.5.

An ‘updating’ procedure for forming y, u(y) and approximations to the PDF and distribu-
tion function for the output quantity, which avoids the need to store and sort the complete
set of values of the output quantity, is described in Appendix E.

Section 3 provides advice on calculating a value of the output quantity given values for the
input quantities. Note that in the Monte Carlo procedure a value of the output quantity is
calculated for each random draw of the input quantities and hence for values that may be
distanced by ‘several standard deviations’ from the estimates of the input quantities. This
is in contrast to the GUM uncertainty framework in which a value of the output quantity
is calculated only for the estimates of the input quantities and, if finite difference approxi-
mations are used [3, Clause 5.1.3], also for points perturbed from these estimates by ± one
standard deviation for each quantity in turn. For this reason some issues may arise regarding
the numerical procedure used to calculate a value of the output quantity, e.g., ensuring its
convergence (where iterative schemes are used) and numerical stability. The user should
ensure that, where appropriate, the numerical methods used to calculate a value of the out-
put quantity are valid for a sufficiently large region centred on the estimates of the input
quantities.

5.4.2 Estimate of the output quantity and the associated standard uncertainty

The average of the values yr, r = 1, . . . ,M , of the output quantity is taken as the estimate y
of the output quantity, and the standard deviation of the values is taken as the standard
uncertainty u(y) associated with y:

y =
1
M

M∑
r=1

yr, (2)

and

u2(y) =
1

M − 1

M∑
r=1

(yr − y)2. (3)

Table 23 specifies the evaluation of the estimate y of Y and the associated standard un-
certainty u(y) using formulae (2) and (3), respectively, and indicates the input and output
parameters necessary for their determination.

The evaluations of y and u(y) (Table 23) require the summation of M numbers with M
large (typically of the order of 105 or 106: Section 5.2). A procedure for undertaking these
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Input parameters

M Number of random draws (equal to the number of Monte Carlo trials)

y Values (y1, . . . , yM ) of the output quantity corresponding to the M ran-
dom draws xr from the PDFs for the N input quantities, i.e., yr = f(xr)
or h(yr,xr) = 0

Output parameters

y Estimate of the output quantity: the arithmetic mean of the values of the
output quantity, defined by

y =
1
M

M∑
r=1

yr

u(y) Standard uncertainty: the standard deviation of the values of the output
quantity, defined by

u2(y) =
1

M − 1

M∑
r=1

(yr − y)2

Numerical analysis

The above formula for u(y) should be used rather than the mathemati-
cally equivalent formula

u2(y) =
M

M − 1

(
1
M

M∑
r=1

y2
r − y2

)
.

For cases in which u(y) is very much smaller than |y| (in which case the
yr, r = 1, . . . ,M , have a number of leading digits in common) the latter
formula suffers from subtractive cancellation (involving a mean square
less a squared mean). The cancellation effects can be so severe that the
resulting value of u(y) may have too few correct significant figures for
the uncertainty evaluation to be valid [10]

Table 23: Estimate of the output quantity and the associated standard uncertainty for a
univariate output quantity.
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summations, designed to reduce the effect of rounding errors associated with the floating-
point operations (of which there are many), is described in Appendix D. An ‘updating’
procedure for evaluating the estimate of the output quantity and the associated standard
uncertainty that avoids the need to store the complete set of values of the output quantity is
described in Appendix E.

The value of y so obtained yields the smallest mean squared deviation over all possible
choices of the estimate of the output quantity. However, the value will not in general agree
with that corresponding to the estimates of the input quantities [3, Clause 4.1.4]. Agreement
(in a practical sense) will be achieved for a large value of M when the measurement model
is linear in the input quantities. Whether this general lack of agreement is important depends
on the application. The value of y, even in the limit as M → ∞, is not in general equal to
the value of the output quantity for the expectation values of the input quantities, unless the
measurement model is linear [3, Clause 4.1.4].

5.4.3 Approximation to the probability density function

An approximation g̃(η) to the PDF g(η) for the output quantity can be formed from the
values yr, r = 1, . . . ,M . These values, when assembled into a histogram with suitable
bin widths, form a frequency distribution that, when normalized to have unit area, consti-
tutes g̃(η). Calculations are not generally carried out in terms of this histogram, the resolu-
tion of which depends on the choice of bin size. The histogram can, however, be useful as
an aid to understanding the nature of the PDF, e.g., the extent of its asymmetry.

One way of obtaining g̃(η) is as follows. Let [η0, ηb] be an interval of values of the output
quantity partitioned into b subintervals {Bk : k = 1, . . . , b}, where

Bk =

{
[ηk−1, ηk), k = 1, . . . , b− 1,

[ηk−1, ηk], k = b,

and
η0 ≤ min{yr : r = 1, . . . ,M}, max{yr : r = 1, . . . ,M} ≤ ηb,

i.e., each of the values yr of the output quantity lies in exactly one of the intervals Bk.14

Define,15 for k = 1, . . . , b,

Mk = card({yr ∈ Bk : r = 1, . . . ,M}), hk =
Mk

ηk − ηk−1
, gk =

hk
M
.

Mk is the number of values yr in the kth bin. hk is the height of the kth bar correspond-
ing to the bin Bk in a histogram of the values yr. The height is chosen so that the area of
the bar is proportional to the number of values of the output quantity contained in the bin.
gk is a probability density obtained by scaling the heights of the bars so that the total area

14Often the bins will be chosen to have equal width, δη say, where δη = ηk − ηk−1, k = 1, . . . , b.
15card(A) is used to denote the cardinality of the set A, i.e., the number of elements in the set.
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of the bars is unity. The scaled histogram defined by the bins Bk and probability densi-
ties gk, k = 1, . . . , b, defines an approximation to the PDF for the output quantity as the
piecewise-constant function

g̃(η) = gk, η ∈ Bk, k = 1, . . . , b.

Table 24 specifies the evaluation of g̃(η), and indicates the input and output parameters
necessary for its determination.

Input parameters

M Number of random draws (equal to the number of Monte Carlo trials)

y Values (y1, . . . , yM ) of the output quantity corresponding to the M ran-
dom draws xr from the PDFs for the N input quantities, i.e., yr = f(xr)
or h(yr,xr) = 0

b Number of bins in the approximation to the PDF for the output quantity

η Values (η0, . . . , ηb), with η0 ≤ min{yr : r = 1, . . . ,M} and
max{yr : r = 1, . . . ,M} ≤ ηb, that define binsBk, k = 1, . . . , b, where

Bk =

{
[ηk−1, ηk) k = 1, . . . , b− 1,

[ηk−1, ηk], k = b.

Output parameter

g Probability densities (g1, . . . , gb), defined by

gk =
hk
M
, k = 1, . . . , b,

where
hk =

Mk

ηk − ηk−1

and
Mk = card({yr ∈ Bk : r = 1, . . . ,M}).

The scaled histogram defined by bins Bk and probability densities gk
defines an approximation to the PDF for the output quantity

Table 24: Approximation to the probability density function for a univariate output quantity.

5.4.4 Discrete representation of the distribution function

A discrete representation G of the distribution function for the output quantity is obtained
by sorting the values yr, r = 1, . . . ,M , provided in Section 5.4.1 into non-decreasing order.
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Denoting the sorted values by y(r), r = 1, . . . ,M , the discrete representation is given by
G = (y(1), . . . , y(M)). Table 25 specifies the evaluation of a discrete representation of the
distribution function for the output quantity, and indicates the input and output parameters
necessary for its determination.

The discrete representation is used as the basis for calculating a coverage interval for the
output quantity (Section 5.4.6). It is also used as the basis for obtaining a (continuous)
approximation to the distribution function for the output quantity (Section 5.4.5) that may
be used, for example, to obtain random draws from the distribution for the output quantity
(in the manner described in Section 5.3.6).

Input parameters

M Number of random draws (equal to the number of Monte Carlo trials)

y Values (y1, . . . , yM ) of the output quantity corresponding to the M ran-
dom draws xr from the PDFs for the N input quantities, i.e., yr = f(xr)
or h(yr,xr) = 0

Output parameter

G Discrete representation of the distribution function for the output quan-
tity, whereG = (y(1), . . . , y(M)), the values of the output quantity sorted
into non-decreasing order

Numerical analysis

It is recommended that a sorting algorithm that takes a number of oper-
ations proportional to M logM be used (e.g., [44]). A naive algorithm
would take a time proportional to M2 and may make the computation
time unacceptable

Table 25: Discrete representation of the distribution function for a univariate output quan-
tity.

5.4.5 Approximation to the distribution function

An approximation G̃(η) to the distribution function G(η) for the output quantity is ob-
tained as follows. Assign uniformly spaced cumulative probabilities pr = (r − 1/2)/M ,
r = 1, . . . ,M , to the ordered values y(r) in the discrete representation G of the distribu-
tion function for the output quantity.16 Form G̃(η) as the piecewise-linear function joining
the M points (y(r), pr), r = 1, . . . ,M :

G̃(η) =
r − 1/2
M

+
η − y(r)

M(y(r+1) − y(r))
, y(r) ≤ η ≤ y(r+1), (4)

16The values pr , r = 1, . . . ,M , are the midpoints of M contiguous probability intervals of width 1/M
between zero and one.
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for r = 1, . . . ,M − 1. Table 26 specifies the evaluation of an approximation to the dis-
tribution function for the output quantity, and indicates the input and output parameters
necessary for its determination.

Input parameters

M Number of random draws (equal to the number of Monte Carlo trials)

G Discrete representation of the distribution function for the output quan-
tity, whereG = (y(1), . . . , y(M)), the values of the output quantity sorted
into non-decreasing order

Output parameter

p Probabilities (p1, . . . , pM ), defined by

pr = (r − 1/2)/M.

The function G̃(η) determined as the piecewise-linear function join-
ing the points (y(r), pr), r = 1, . . . ,M , provides an approximation to
the distribution function for the output quantity. (G̃(η) is defined only
for values of η corresponding to values of probability p in the interval
M/2 ≤ p ≤ 1−M/2. Indeed, it should not be used near the endpoints
of this interval, because it is less reliable there.)

Table 26: Approximation to the distribution function for a univariate output quantity.

Formulae (2) and (3) for the estimate of the output quantity and the associated standard
uncertainty do not in general provide values that are identical to the expectation and standard
deviation of the quantity characterized by the distribution function G̃(η). The latter values
are given by

ỹ =
1
M

M∑
r=1

′′y(r) (5)

and

u2(ỹ) =
1
M

[
M∑
r=1

′′(y(r) − ỹ)2 − 1
6

M−1∑
r=1

(y(r+1) − y(r))
2

]
, (6)

where the double prime on the summation in expression (5) and on the first summation in
expression (6) indicates that the first and the last terms are to be taken with weight one half.
However, for a sufficiently large value of M , the values obtained using expressions (2) and
(3) are generally indistinguishable for practical purposes from those given by expressions
(5) and (6).
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5.4.6 Coverage interval

Let α denote any value between zero and 1−p, where p is the required coverage probability
(e.g., 0.95). The endpoints of a 100p% coverage interval for the value of the output quantity
areG−1(α) andG−1(p+α), i.e., the α– and (p+α)–quantiles ofG(η). Here, the β–quantile
is the value of η for which G(η) = β.

The choice α = 0.025 gives the coverage interval defined by the 0.025- and 0.975-quantiles.
This choice provides a 95 % coverage interval that is probabilistically symmetric. The prob-
ability is 2.5 % that the value of the output quantity is smaller than the left-hand endpoint
of the interval and 2.5 % that it is larger than the right-hand endpoint. If g(η) is symmetric
about its expectation, this coverage interval is symmetric about the estimate y of the output
quantity, and the left-hand and right-hand endpoints of the coverage interval are equidistant
from y.

A value of α different from 0.025 would generally be appropriate were the PDF asymmetric.
Usually the shortest coverage interval is required, because it corresponds to the best possible
location of the output quantity for a specified probability. It is given by the value of α
satisfying g(G−1(α)) = g(G−1(p + α)), if g(η) is single-peaked, and in general by the
value of α such thatG−1(p+α)−G−1(α) is a minimum. If g(η) is symmetric, the shortest
coverage interval is given by taking α = (1 − p)/2, corresponding to the probabilistically
symmetric interval.

The endpoints of a coverage interval can be obtained from the discrete representation of the
distribution function for the output quantity (Section 5.4.4) as follows. Let q = pM , if pM
is an integer, or the integer part of pM + 1/2, otherwise. Then, [ylow, yhigh] = [y(r), y(r+q)]
for any r = 1, . . . ,M − q, is a 100p% coverage interval. The probabilistically symmet-
ric 100p% coverage interval is given by r = (M − q)/2 if (M − q)/2 is an integer, or
the integer part of (M − q + 1)/2, otherwise. The shortest 100p% coverage interval is
given by determining r = r∗ such that, y(r∗+q) − y(r∗) is the minimum of y(r+q) − y(r)

for r = 1, . . . ,M − q. Table 27 specifies the determination of the shortest coverage inter-
val from a discrete representation of the distribution function for the output quantity, and
indicates the input and output parameters necessary for their determination.

The endpoints of a coverage interval can also be obtained from the approximation G̃(η)
to G(η) obtained in Section 5.4.5 or Appendix E. For a sufficiently large value of M , the
coverage interval obtained using the discrete representation G of G(η) can be expected to
be indistinguishable for practical purposes from those obtained using the approximation
G̃(η). To find the left-hand endpoint ylow such that α = G̃(ylow), identify the index r for
which the points (y(r), pr) and (y(r+1), pr+1) satisfy

pr ≤ α < pr+1.

Then, by inverse linear interpolation,

ylow = y(r) +
(
y(r+1) − y(r)

) α− pr
pr+1 − pr

.
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Input parameters

M Number of random draws (equal to the number of Monte Carlo trials)

G Discrete representation of the distribution function for the output quan-
tity, whereG = (y(1), . . . , y(M)), the values of the output quantity sorted
into non-decreasing order

p Coverage probability (e.g., 0.95)

Output parameters

ylow, yhigh Endpoints of the shortest 100p% coverage interval for the output quan-
tity, given by [y(r∗), y(r∗+q)], where q = pM , if pM is an integer, or the
integer part of pM + 1/2, otherwise, and r∗, an integer between 1 and
M − q, is chosen so that for r = 1, . . . ,M − q,

y(r∗+q) − y(r∗) ≤ y(r+q) − y(r)

Table 27: Shortest coverage interval obtained from a discrete representation of the distribu-
tion function for a univariate output quantity.

Similarly, the upper endpoint yhigh is calculated from

yhigh = y(s) +
(
y(s+1) − y(s)

) p+ α− ps
ps+1 − ps

,

where the index s is identified to satisfy

ps ≤ p+ α < ps+1.

The shortest coverage interval can generally be obtained computationally from G̃(η) by
determining α such that G̃−1(p+α)− G̃−1(α) is a minimum. A straightforward approach
to determining the minimum is to evaluate G̃−1(p + α) − G̃−1(α) for a sufficient number
of choices {αk} of α between zero and 1−p, and to choose that value α` from the set {αk}
yielding the minimum value from the set {G̃−1(p+ αk)− G̃−1(αk)}.

5.5 Monte Carlo procedure for multivariate measurement models

5.5.1 Calculation of the values of the output quantities

Denote byx1, . . . ,xM theM random draws from the PDFs for theN input quantities. For a
multivariate, real measurement function, the corresponding values yr of the output quantity,
which are vectors of dimensionm×1, are obtained by evaluating the measurement function:

yr = f(xr), r = 1, . . . ,M.
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For a multivariate, real measurement model, they are determined by solving the measure-
ment model:

h(yr,xr) = 0, r = 1, . . . ,M.

The values y1, . . . ,yM are used in the evaluation of the estimate y of Y and the associated
covariance matrix Uy (Section 5.5.2), and as the basis for calculating an approximation to
the PDF for Y (Section 5.5.3) and a coverage region for Y (Section 5.5.4).

An ‘updating’ procedure for forming y, Uy, an approximation to the PDF for the output
quantities, and a coverage region, which avoids the need to store and sort the complete set
of values of the output quantities, is described in Appendix E.

5.5.2 Estimate of the output quantity and the associated covariance matrix

The average of the values yr, r = 1, . . . ,M , is taken as the estimate y of Y :

y =
1
M

M∑
r=1

yr.

To evaluate the uncertainty associated with this estimate, assemble the vectors yr, into an
m×M matrix:17

Ψ = (y1, . . . ,yM ).

From this matrix the covariance matrix Uy associated with y is calculated from

Uy =
1

M − 1
Ψ ′(Ψ ′)>,

where Ψ ′ is Ψ corrected for the means over all M trials, i.e., the mean of the elements in
the jth row is subtracted from all elements in that row. Table 28 specifies the evaluations
of the estimates y and the associated covariance matrix Uy in terms of the vectors yr, and
indicates the input and output parameters necessary for its determination.

This covariance matrix contains (generally a more reliable estimate of) the information that
would be delivered by a linear analysis such as the GUM uncertainty framework. (In fact,
it provides more than the GUM uncertainty framework, since that procedure does not in
general cover multivariate measurement models.) The matrix Ψ provides much richer in-
formation, however, in the following sense. Any column of Ψ corresponds to the values
of the output quantities for one choice (random draw) of the input quantities. Any (scalar)
derived quantity can be determined from this single set of values. This quantity can be cal-
culated for all columns, the resulting row vector of dimension 1×M being used to provide
a discrete representation of the distribution function for that quantity (as in Section 5.4.4).
In particular, the discrete representation can be used to provide a coverage interval for the

17The symbol Ψ is (reluctantly) used to denote the matrix of y-vectors, since Y is used to denote a scalar
output quantity and Y a vector output quantity.
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Input parameters

m Number of output quantities

M Number of random draws (equal to the number of Monte Carlo trials)

Ψ m×M matrix containing the values yr of the output quantities, i.e.,

Ψ = (y1, . . . ,yM ).

Output parameter

y Estimates of the output quantities Y : the arithmetic mean of the values
of the output quantities, defined by

y =
1
M

M∑
r=1

yr.

Uy Covariance matrix associated with estimates y of the output quantities
Y , defined by

1
M − 1

Ψ ′(Ψ ′)>,

where Ψ ′ is Ψ corrected for the means

Table 28: Estimates of the output quantities and the associated covariance matrix.
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derived quantity (as in Section 5.4.6). Another quantity could be so introduced and the two
row vectors used to compute any statistics required (mean, median, etc.) and the pair of
vectors used to estimate correlation effects. Thus, the matrix Ψ is a very valuable array,
being the basis of almost unlimited statistical information about Y .

5.5.3 Approximation to the probability density function

The construction of an approximation g̃(η) to the PDF g(η) for a bivariate output quantity,
i.e., for m = 2, is described. The construction is a natural extension of that described in
Section 5.4.3 for a univariate output quantity. Its generalization for output quantities with
m > 2 is straightforward.

The values yr, r = 1, . . . ,M , when assembled into a (two-dimensional) histogram with
suitable rectangular bins, form a frequency distribution that, when normalized to have unit
volume, constitutes g̃(η). Calculations are not generally carried out in terms of this his-
togram, the resolution of which depends on the choice of bin size. However, visualization
of the histogram, for example as a surface or contour plot, can be useful as an aid to under-
standing the nature of the PDF.

One way of obtaining g̃(η) is as follows. For j = 1, 2, let [ηj,0, ηj,bj ] be an interval of values
of the jth output quantity partitioned into bj subintervals {Bkj

: kj = 1, . . . , bj}, where

Bkj
=

{
[ηj,kj−1, ηkj

), kj = 1, . . . , bj − 1,

[ηj,kj−1, ηkj
], kj = bj ,

and
ηj,0 ≤ min{yj,r : r = 1, . . . ,M}, max{yj,r : r = 1, . . . ,M} ≤ ηbj ,

i.e., each of the values yj,r of the jth output quantity lies in exactly one of the intervals
Bkj

.18

Let Bk1,k2 denote the rectangular bin

Bk1,k2 = Bk1 ×Bk2 ,

composed of the points η = (η1, η2)> such that η1 ∈ Bk1 and η2 ∈ Bk2 . Define, for
k1 = 1, . . . , b1, and k2 = 1, . . . , b2,

Mk1,k2 = card({yr ∈ Bk1,k2 : r = 1, . . . ,M}),

hk1,k2 =
Mk1,k2

(η1,k1 − η1,k1−1) (η2,k2 − η2,k2−1)
,

gk1,k2 =
hk1,k2
M

.

18Often the bins will be chosen to have equal width, δηj say, where δηj = ηj,kj − ηj,kj−1, kj = 1, . . . , bj .
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Mk1,k2 is the number of values yr in the rectangular bin Bk1,k2 . hk1,k2 is the height of
the cuboid corresponding to the rectangular bin Bk1,k2 in a histogram of the values yr.
The height is chosen so that the volume of the cuboid is proportional to the number of
values of the output quantity contained in the rectangular bin. gk1,k2 is a probability density
obtained by scaling the heights of the cuboids so that the total volume of the cuboids is
unity. The scaled histogram defined by the rectangular bins Bk1,k2 and probability densities
gk1,k2 , k1 = 1, . . . , b1, k2 = 1, . . . , b2, defines an approximation to the PDF for the output
quantity as the piecewise constant function

g̃(η) = gk1,k2 , η ∈ Bk1,k2 , k1 = 1, . . . , b1, k2 = 1, . . . , b2.

Table 29 specifies the evaluation of g̃(η), and indicates the input and output parameters
necessary for its determination.

5.5.4 Coverage region

The provision of coverage regions for multivariate output quantities is not straightforward,
because the operation of sorting multivariate data is generally not well-defined. Even in the
univariate case, the choice of coverage interval is not unique, and there is far greater freedom
of choice in the multivariate case, where any domain containing 95 % of the distribution of
possible values constitues a 95 % coverage region.

The construction of coverage regions of a particular form, viz., an ellipsoid inm-dimensions,
is described. For linear or linearized problems, the covariance matrix Uy associated with
the estimates y of Y defines a one-standard-deviation ellipsoid centred on y. Ellipsoids
concentric with this one contain various fractions of the distribution of values of Y . For
a given coverage probability p, the size of the ellipsoid can be found, using the theory of
multidimensional Gaussian distributions, that contains 100p% of the possible values of Y
(see Section 4.5). Such an ellipsoid can be constructed from Uy, but its size would depend
on the Gaussian assumption and not on the actual distribution of Y . An ellipsoid is required
that contains 100p% of the actual distribution. Since the values yr can be expected to re-
flect faithfully the distribution of Y , a coverage region is constructed as the ellipsoid that
(just) contains 100p% of these yr. The steps in the construction are as follows.

Form the Cholesky factor L of the covariance matrix Uy, i.e., the lower-triangular matrix
L that satisfies

Uy = LL>.

Transform the points yr to give

ẏr = L−1 (yr − y) , r = 1, . . . ,M.

Sort the transformed points ẏr according to increasing value of dr, where

d2
r = ẏ>r ẏr =

m∑
j=1

ẏ2
j,r, r = 1, . . . ,M.
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Input parameters

M Number of random draws (equal to the number of Monte Carlo trials)

Ψ 2 ×M matrix containing the values yr of the bivariate output quantity,
i.e.,

Ψ = (y1, . . . ,yM ),

where yr = (y1,r, y2,r)>

b1, b2 For j = 1, 2, number of intervals for the jth output quantity in the ap-
proximation to the PDF for the bivariate output quantity

η1,η2 For j = 1, 2, values ηj = (ηj,0, . . . , ηj,bj ), with

ηj,0 ≤ min{yj,r : r = 1, . . . ,M},

and
max{yj,r : r = 1, . . . ,M} ≤ ηj,bj ,

that define intervals Bkj
, kj = 1, . . . , bj , where

Bkj
=

{
[ηj,kj−1, ηj,kj

) kj = 1, . . . , bj − 1,

[ηj,kj−1, ηj,kj
], kj = bj .

Output parameter

g Probability densities gk1,k2 , defined by

gk1,k2 =
hk1,k2
M

, k1 = 1, . . . , b1, k2 = 1, . . . , b2,

where
hk1,k2 =

Mk1,k2

(η1,k1 − η1,k1−1) (η2,k2 − η2,k2−1)

and
Mk1,k2 = card({yr ∈ Bk1,k2 : r = 1, . . . ,M}).

The scaled histogram defined by rectangular bins Bk1,k2 = Bk1 × Bk2
and probability densities gk1,k2 defines an approximation to the PDF for
the bivariate output quantity

Table 29: Approximation to the probability density function for a bivariate output quantity.
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Using the sorted ẏr, determine the coverage factor kp such that a fraction p of the ẏr satisfies
dr < kp, i.e., kp = d(r∗) where r∗ is the integer part of pM and d(r), r = 1, . . . ,M , are the
values dr sorted into non-decreasing order. The boundary of a 100p% coverage region for
Y is then defined by the ellipsoid

(η − y)>Uy
−1(η − y) = k2

p.

5.6 Sensitivity analysis

In the application of a Monte Carlo method there is no immediate counterpart of a sen-
sitivity coefficient (Section 4.2) since the Monte Carlo procedure operates in terms of the
actual non-linear measurement model rather than a linearized counterpart. Recall that with
a linear measurement model the sensitivity coefficients ‘reproduce’ linear effects, and for
a non-linear model the sensitivity coefficients provide first-order information. Therefore,
those practitioners accustomed to the GUM uncertainty framework may find the absence of
sensitivity coefficients disconcerting.

It is possible and straightforward, however, to adapt the Monte Carlo procedure such that
it provides information that in a sense constitutes a non-linear counterpart of a sensitivity
coefficient. Consider holding all input quantities but one, say Xk, at their estimates. In
this setting the measurement model effectively becomes one having a single input quantity,
viz., Xk. Draw values randomly from the PDF for this input quantity, taking the standard
deviation uk(y) of the corresponding values of the output quantity as an approximation to
the component of the standard uncertainty u(y) corresponding to Xk.

A ‘non-linear’ sensitivity coefficient c̃k is defined by

c̃k =
uk(y)
u(xk)

.

It will be equal to the magnitude |ck| of the ‘linear’ sensitivity coefficient ck when the
measurement model is linear in Xk, and be close to its value when the non-linearity with
respect to Xk is negligible. When c̃k is appreciably different from |ck| the non-linearity
effect may noticeably influence the standard uncertainty u(y). Thus, the deviation of c̃k
from |ck| can be used as an approximate measure of the influence of measurement model
non-linearity with regards to Xk alone.

The sensitivity coefficients so obtained are not generally to be taken in conjunction with
the standard uncertainties associated with the estimates of the input quantities as the only
contributions to the standard uncertainty associated with the estimate of the output quantity.
There will be further contributions arising from any interaction (i.e., non-additive) terms in
the measurement model.

Table 30 specifies the calculation of a non-linear sensitivity coefficient relating to the input
quantity Xk using the Monte Carlo procedure.
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Input parameters

M Number of random draws (equal to the number of Monte Carlo trials)

yk Values (yk1 , . . . , y
k
M ) of the output quantity corresponding to the M ran-

dom draws xkr obtained by holding all input quantities but one, Xk, at
their estimates and making random draws from the PDF gk(ξk) for Xk

u(xk) Standard uncertainty associated with the estimate xk of Xk

Output parameters

uk(y) Component of the standard uncertainty u(y): the standard deviation of
the values (yk1 , . . . , y

k
M ), defined by

u2
k(y) =

1
M − 1

M∑
r=1

(ykr − yk)2

where

yk =
1
M

M∑
r=1

ykr .

c̃k Non-linear sensitivity coefficient, defined by

c̃k =
uk(y)
u(xk)

.

Table 30: Sensitivity analysis using a Monte Carlo procedure.
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For a multivariate output quantity Y , the analysis described above can be straightforwardly
extended. All input quantities but one, say Xk, are held at their estimates. Draw values ran-
domly from the PDF for this input quantity and determine the estimates of the output quanti-
ties and the associated covariance matrix. Calculate the square roots uk(yj), j = 1, . . . ,m,
of the diagonal elements of the covariance matrix. The standard deviation uk(yj) is taken
as an approximation to the component of the standard uncertainty u(yj) associated with
the estimate yj of Yj corresponding to Xk. The ‘non-linear’ sensitivity coefficients c̃j,k are
defined by

c̃j,k =
uk(yj)
u(xk)

, j = 1, . . . ,m, k = 1, . . . , N.

c̃j,k will be equal to the magnitude |cj,k| in the case that the measurement model is linear in
Xk, where cj,k is the partial derivative of first order of Yj with respect to Xk evaluated at
Xi = xi, i = 1, . . . , N .

5.7 Adaptive Monte Carlo procedure

A basic implementation of an adaptive Monte Carlo procedure is described as follows. It is
based on carrying out an increasing number of Monte Carlo trials until the various param-
eters of interest have stabilized in a statistical sense. The parameters of interest include the
estimate y of the output quantity Y , the standard uncertainty u(y) associated with y, and
the endpoints ylow and yhigh of a 95 % coverage interval for Y .19 A parameter is deemed to
have stabilized if twice the standard deviation associated with the estimate of the parameter
is less than a numerical tolerance used to assess the ‘degree of approximation’ required in
the standard uncertainty u(y), and corresponds to that given by expressing u(y) to what is
regarded as a meaningful number of siginficant decimal digits (see Section 6 and Table 31).

A practical approach consists of carrying out a sequence of Monte Carlo calculations, each
containing a relatively small number, say Madap = 104, trials.20 For each Monte Carlo
calculation in the sequence, y, u(y) and the endpoints of a 95 % coverage interval are formed
from the results obtained, as in Sections 5.4.2 and 5.4.6. Denote by y(h), u(y(h)), y(h)

low

and y(h)
high the values of y, u(y) and the left- and right-hand endpoints of the 95 % coverage

interval for the hth member of the sequence.

After the hth Monte Carlo calculation (apart from the first) in the sequence, the arith-
metic mean of the values y(1), . . . , y(h) and the standard deviation sy associated with this
arithmetic mean are formed. The counterparts of these statistics for y are determined

19When a coverage interval is not required, the parameters of interest would include only the estimate y and
the associated standard uncertainty u(y).

20It is recommended that each sequence of calculations be performed using the same random number gen-
erator (albeit using a different part of the generated sequence) or two or more independent generators. This
is because the statistical properties of a random number generator are defined ‘within’ sequences and not ‘be-
tween’ sequences (as, for example, two sequences obtained from the same number generator may contain a
common sub-sequence even if initialized with different seeds).
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for u(y), ylow and yhigh. If the largest of 2sy, 2su(y), 2sylow and 2syhigh
does not exceed

the numerical tolerance used to assess the degree of approximation required in u(y), the
overall computation is regarded as having stabilized. The results from the total number of
Monte Carlo trials taken are then used to provide the estimate of the output quantity, the
associated standard uncertainty and the coverage interval for the output quantity.

For a multivariate output quantity, the procedure described above can be straightforwardly
extended. It is (also) based on carrying out an increasing number of Monte Carlo trials until
the various parameters of interest have stabilized in a statistical sense. The parameters of
interest can include21

• the estimates yj , j = 1, . . . ,m, of the output quantities,

• the standard uncertainties u(yj), j = 1, . . . ,m, associated with the estimates,

• the correlation coefficients r(yl, yj), l = 1, . . . ,m, j = 1, . . . ,m, associated with
pairs of estimates,

• the ‘size’ kp of the 95 % covering ellipsoid, and

• any other quantity determined from the values of the output quantity.

A parameter is (again) deemed to have stabilized if twice the standard deviation associated
with the estimate of the parameter is less than a numerical tolerance used to assess the degree
of approximation required in the parameter. For yj and u(yj), the numerical tolerance is
calculated in terms of a number of significant decimal digits regarded as meaningful in the
value of u(yj). For r(yl, yj), it is calculated in terms of a number of significant decimal
digits regarded as meaningful in the value unity.22 For kp, it is calculated in terms of a
number of significant decimal digits regarded as meaningful in the value of kp.

A sequence of Monte Carlo calculations is carried out until the parameters of interest have
stabilized. The results from the total number of Monte Carlo trials taken are then used to
provide estimates of the output quantities, the associated covariance matrix and a coverage
region for the output quantity.

6 Validation of the GUM uncertainty framework

The GUM uncertainty framework has some limitations [3, 14]. Although the procedure can
be expected to work well in many circumstances, it is generally difficult to quantify the

21When a coverage region is not required, the parameters of interest would include only the estimates yj ,
associated standard uncertainties u(yj) and correlation coefficients r(yl, yj). The standard uncertainties and
correlation coefficients together define the covariance matrix Uy associated with the estimates of the output
quantities.

22The motivation for this choice is that the correlation coefficients r(yl, yj) are normalized (and dimension-
less) quantities.
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effects of the approximations involved, viz., linearization, the Welch-Satterthwaite formula
for the effective degrees of freedom and the assumption that the output quantity is Gaus-
sian (i.e., that the Central Limit Theorem is applicable). Indeed, the degree of difficulty of
doing so would typically be considerably greater than that required to apply a Monte Carlo
method. Therefore, since these circumstances cannot readily be tested, any cases of doubt
should be validated. To this end, since a Monte Carlo method is a more general approach
to uncertainty evaluation, it is recommended that both the GUM uncertainty framework
and the Monte Carlo approach are applied and the results compared. If the comparison
is favourable, the GUM uncertainty framework can be used on this occasion and for suf-
ficiently similar problems in the future. Otherwise, consideration can be given to using a
Monte Carlo method instead.

Specifically, for a univariate measurement model, it is recommended that the two steps
below and the following comparison process are carried out.

1. Apply the GUM uncertainty framework to yield a 95 % coverage interval y ± U(y)
for the output quantity.

2. Apply a Monte Carlo method to yield the standard uncertainty u(y) associated with
an estimate of the output quantity and the endpoints ylow and yhigh of a 95 % coverage
interval for the output quantity.

A comparison procedure is based on the following objective: determine whether the cov-
erage intervals obtained by the GUM uncertainty framework and a Monte Carlo method
agree to a stipulated degree of approximation.23 This degree of approximation is assessed
in terms of the endpoints of the coverage intervals and corresponds to that given by express-
ing the standard uncertainty u(y) to what is regarded as a meaningful number of significant
decimal digits.

The procedure is as follows:

1. Let nndig denote the number of significant decimal digits regarded as meaningful in
the numerical value of u(y). Usually, nndig = 1 or nndig = 2. Express the value
of u(y) in the form a × 10r, where a is an nndig-digit integer and r an integer. The
numerical tolerance for assessing the degree of approximation is

δ = 0.5× 10r.

Table 31 specifies the calculation of the numerical tolerance for assessing the degree
of approximation of a parameter in an adaptive application of a Monte Carlo method
and for validating a parameter from the GUM uncertainty framework.

23When a coverage interval is not required, the comparison can be undertaken in terms of the estimates and
associated standard uncertainties obtained by the GUM uncertainty framework and a Monte Carlo method.

Page 58 of 75



Software specifications for uncertainty evaluation NPL Report MS 7

2. Compare the coverage intervals obtained by the GUM uncertainty framework and a
Monte Carlo method to determine whether the required number of correct digits in
the coverage interval provided by the GUM uncertainty framework has been obtained.
Specifically, determine the values

|y − U(y)− ylow|

and
|y + U(y)− yhigh|,

viz., the absolute differences of the respective endpoints of the two coverage intervals.
Then, if both these values are no larger than δ the comparison is favourable and the
GUM uncertainty framework has been validated in this instance.

Example of calculating the numerical tolerance δ. The estimate of the output quantity for
a nominally 100 g standard of mass [3, Clause 7.2.2] is y = 100.021 47 g. The standard
uncertainty u(y) = 0.000 35 g. Thus, nndig = 2 and u(y) is expressed as 35× 10−5 g, and
so a = 35 and r = −5. Take δ = 0.5× 10−5 g = 0.000 005 g.

Input parameters

ndig Number of significant decimal digits regarded as meaningful in the nu-
merical value of u(y)

z Numerical value of a parameter, e.g., the standard uncertainty u(y) asso-
ciated with the estimate y of the output quantity

Output parameter

δ Numerical tolerance for assessing the degree of approximation of a pa-
rameter in an adaptive application of a Monte Carlo method and for vali-
dating a parameter from the GUM uncertainty framework, given by

δ = 0.5× 10r,

where z is expressed in the form a × 10r in which a is an nndig-digit
integer and r an integer

Table 31: Numerical tolerance for assessing the degree of approximation of a parameter in
an adaptive application of a Monte Carlo method and for validating a parameter from the
GUM uncertainty framework.

For a multivariate output quantity, the procedure described above can be straightforwardly
extended. The objective is to determine whether the parameters of interest obtained by
the GUM uncertainty framework and a Monte Carlo method agree to a stipulated degree
of approximation. The parameters of interest can include the estimates yj of the output
quantities, the standard uncertainties u(yj) associated with the estimates, the correlation
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coefficients r(yl, yj) associated with pairs of estimates, and the size kp of a 95 % cover-
ing ellipsoid24 (cf. Section 5.7). For yj and u(yj) a numerical tolerance for assessing the
degree of approximation is calculated in terms of a number of significant decimal digits
regarded as meaningful in the value u(yj), for r(yl, yj) it is calculated in terms of a num-
ber of significant decimal digits regarded as meaningful in the value unity, and for kp in
terms of the number of significant decimal digits regarded as meaningful in the value of kp
(cf. Section 5.7). If the comparison is favourable for all parameters of interest, the GUM
uncertainty framework has been validated in this instance.

7 Conclusions

Software specifications have been given for three aspects of uncertainty evaluation, viz.,

1. The GUM uncertainty framework [3];

2. A Monte Carlo method [4, 14] as an implementation of the propagation of distribu-
tions;

3. Validation of the GUM uncertainty framework using a Monte Carlo method [4, 14].

The specifications are not intended to be mandatory but indicative of the software units that
are required for implementation of the above aspects.

The fourth edition of this document has been produced in the Software Support for Metrol-
ogy (SSfM) programme 2007 to 2010. It is anticipated that future editions, extending and
revising the document further and keeping it in line with the evolving SSfM best-practice
guide [14], will be produced in subsequent SSfM programmes.

Software implementing the specifications described in this report has been developed at the
National Physical Laboratory to support the use of the GUM [3] and the first supporting
document to the GUM, GUM Supplement 1 [4], concerned with the use of a Monte Carlo
method for measurement uncertainty evaluation. The software is available25 in two forms.

Firstly, software is available as stand-alone executables that enable users to apply the ap-
proaches to uncertainty evaluation described in these documents to the four example prob-
lems considered in GUM Supplement 1 [15]. The software is intended to allow users to
reproduce the results presented in tables and figures contained within GUM Supplement
1. It is also intended to help users learn about the methods for uncertainty evaluation de-
scribed in the GUM and GUM Supplement 1 by enabling them to experiment with (a)

24When a coverage region is not required, the parameters of interest would include only the estimates yj ,
associated standard uncertainties u(yj) and correlation coefficients r(yl, yj).

25www.npl.co.uk/mathematics-scientific-computing/software-support-for-metrology/
software-downloads-(ssfm)
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different information about the input quantities in the measurement models defining the ex-
ample problems, and (b) different values for the parameters controlling the application of
those methods, e.g., the number of trials in an application of a Monte Carlo method.

Secondly, software is available as source code, written in the MATLAB programming lan-
guage [38], for applying the GUM uncertainty framework and a Monte Carlo method to a
univariate, real measurement function with a general number of uncorrelated input quanti-
ties, and validating the results from the GUM uncertainty framework using those provided
by a Monte Carlo method. In the future it is planned to make available software to treat
correlated input quantities and covering multivariate, real measurement functions.
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A Use of symbolic-algebra packages

This appendix is concerned with the use of a symbolic-algebra package to provide partial
derivatives of first order of a measurement function, from which sensitivity coefficients can
be determined (Section 4.2). Table 32 specifies for a univariate, real measurement function,
the use of a symbolic-algebra package to obtain sensitivity coefficients and indicates the
input and output parameters associated with their determination. The input parameter f is
used to specify the measurement function. Counterparts would apply for the other categories
of measurement model.

Input parameters

N Number of input quantities

f Function specifying the measurement function Y = f(X) in terms of
the input quantitiesX = (X1, . . . , XN )>

x Column vector (x1, . . . , xN )> of estimates of the input quantities X .
Some packages may not be able to make use of x in that they return
algebraic expressions for (∂f/∂X1, . . . , ∂f/∂XN ) rather than these ex-
pressions evaluated atX = x

Output parameters

f ′ Functions (f ′1, . . . , f
′
N ) representing algebraic expressions for

(∂f/∂X1, . . . , ∂f/∂XN ), the partial derivatives of first order of
the function f

C 1 ×N vector of sensitivity coefficients, whose jth element is the partial
derivative ∂f/∂Xj of first order evaluated at X = x. Some symbolic-
algebra packages may produce just f ′ and it will be the user’s responsi-
bility to evaluate f ′ atX = x

Table 32: Sensitivity coefficients obtained using a symbolic-algebra package.
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B Use of finite-difference formulae

This appendix is concerned with the use of finite-difference methods to evaluate the partial
derivatives of first order of a measurement function, from which sensitivity coefficients can
be determined (Section 4.2).

Numerical approximations to the values of the partial derivatives of first order can be ob-
tained using finite-difference methods. Given a value i (1 ≤ i ≤ N ), set all Xk = xk, apart
from Xi, i.e., hold all input quantities, apart from the ith, at their estimates. Denote the
resulting function of Xi by fi(Xi).

A typical finite-difference approximation to ∂f/∂Xi evaluated at x is

∂f

∂Xi

∣∣∣∣
X=x

≈ fi(xi + δi)− fi(xi)
δi

,

where δi is a ‘suitably small’ increment in xi (see below). Note that fi(xi) ≡ f(x) will
already have been formed in evaluating the measurement function at the estimates x of the
input quantities.

The approximation can be perceived as follows. Consider the graph of fi(Xi). The formula
gives the gradient of the chord joining the points (xi, fi(xi)) and (xi + δi, fi(xi + δi)).
This gradient approximates the gradient of the tangent at (xi, fi(xi)) to the graph of the
function, which is of course the required derivative.

The choice of δi is important. If it is too great, the formula gives a large approximation
error, i.e., the tangent and the chord point in appreciably different directions. If it is too
small, the formula gives a large subtractive cancellation error, since the values of fi(xi) and
fi(xi + δi) will have many common leading digits.

A generally more accurate form, requiring an additional function evaluation, is

∂f

∂Xi

∣∣∣∣
X=x

≈ fi(xi + δi)− fi(xi − δi)
2δi

.

For a given value of δi, the magnitude of the approximation error is often reduced using this
form. Thus the value of δi can be larger, affording a better balance between approximation
and cancellation errors.

The GUM, in Clause 5.1.3, suggests the use of the second formula with δi = u(xi). This
choice can generally be expected to be acceptable, although there may be circumstances
when it is not.26

Table 33 specifies, for a univariate, real measurement function, the use of a finite-difference
formula to obtain sensitivity coefficients, and indicates the input and output parameters as-
sociated with their determination. The input parameter f is used to provide information

26For example, in cases where u(xi) is large and the non-linearity of f as a function of Xi is appreciable.
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about the measurement function, and may take the form of a function for evaluating the
measurement model as in Section 3, Table 5. Counterparts would apply for the other cate-
gories of measurement model.

Input parameters

N Number of input quantities

f Function specifying the measurement function Y = f(X) in terms of
the input quantitiesX = (X1, . . . , XN )>

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

u Column vector (u1, . . . , uN )> ≡ (u(x1), . . . , u(xN ))> of standard un-
certainties associated with the estimates of the input quantities. This pa-
rameter would be used if the GUM recommendation for estimating the
sensitivity coefficients were adopted. It would not be used if a finite-
difference formula were applied that attempted to provide a sensible com-
promise between loss of accuracy due to truncation (approximation) error
and that due to subtractive cancellation

Output parameter

C 1×N vector of sensitivity coefficients, whose ith element is an estimate
obtained using finite differences of the partial derivative ∂f/∂Xi of first
order evaluated atX = x

Table 33: Sensitivity coefficients obtained using a finite-difference formula.

The complex-step method [33, 37, 46] is similar to finite differences, but uses complex
arithmetic to provide accurate values for sensitivity coefficients. The Taylor expansion for
a complex function f takes the form

f(Z +W ) = f(Z) +Wf ′(Z) +
W 2

2
f ′′(Z) +

W 3

3!
f ′′′(Z) +

W 4

4!
f iv(Z) + · · · ,

where Z and W are complex numbers.27 Taking f = fi, Z = xi and W = iδi where
i2 = −1 and δi is real and small,

fi(xi + iδi) = fi(xi) + iδif ′i(xi)−
δ2
i

2
f ′′i (xi)− i

δ3
i

3!
f ′′′i (xi) +

δ4
i

4!
f iv
i (xi) + · · · .

Taking real and imaginary parts,

<fi(xi + iδi) = fi(xi)−
δ2
i

2
f ′′i (xi) +

δ4
i

4!
f iv
i (xi) + · · · ,

and

=fi(xi + iδi) = δif
′
i(xi)−

δ3
i

3!
f ′′′i (xi) +

δ5
i

5!
fv
i (xi) + · · · .

27The Taylor expansion holds for what are termed analytical functions that have continuous derivatives of all
orders, but these include almost all the function of interest to science.

Page 67 of 75



NPL Report MS 7 Software specifications for uncertainty evaluation

From these last expressions, for δi small,

fi(xi) ≈ <fi(xi + iδi), f ′i(xi) ≈
=fi(xi + iδi)

δi
, (7)

both with a truncation error of order δ2
i . Thus, both fi(xi) and f ′i(xi) are obtained for one

complex function evaluation. Unlike the use of a finite-difference formula, δi can be chosen
to be very small with no concern about the loss of significant digits through subtractive can-
cellation since no subtraction is involved. The only practical restriction is that δi must not
be chosen so small that it underflows, i.e., is replaced by zero in floating-point arithmetic.
The value δi = 10−100 should be suitable for all but pathologically-scaled problems.

The success of this approach, i.e., the use of the approximation (7), depends on the avail-
ability of complex arithmetic and on the integrity of the inbuilt complex-valued functions.
The complex step method is particularly suitable for implementation in software such as
MATLAB [38] since the default data type is complex, and all the main intrinsic functions
can be evaluated for complex arguments. Most functions can be worked with satisfactorily,
but care must be taken to ensure that the intrinsic functions used in the function evaluation
component behave in the appropriate way in complex arithmetic.

Table 34 specifies, for a univariate, real measurement function, the use of the complex-
step method to obtain sensitivity coefficients, and indicates the input and output parameters
associated with their determination. The input parameter f is used to provide information
about the measurement function. In the complex-step method the function is evaluated for
complex values of the input quantitiesX . Counterparts would apply for the other categories
of measurement model.
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Input parameters

N Number of input quantities

f Function specifying the measurement function Y = f(X) in terms of
the input quantities X = (X1, . . . , XN )>. The function is evaluated for
complex values of the quantitiesX

x Column vector (x1, . . . , xN )> of estimates of the input quantitiesX

δ Column vector (δ1, . . . , δN )>, where δi is a small real increment in xi. δi
must not be chosen so small that it underflows, i.e., is replaced by zero in
floating-point arithmetic. The value δi = 10−100 should be suitable for
all but pathologically-scaled problems

Output parameter

C 1 × N vector of sensitivity coefficients, whose ith element Ci is an es-
timate obtained using the complex-step method of the partial derivative
∂f/∂Xi of first order evaluated atX = x:

Ci =
=fi(xi + iδi)

δi

Table 34: Sensitivity coefficients obtained using the complex-step method.
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C Use of program differentiation techniques

Automatic differentiation (AD) is a set of techniques aimed at ‘differentiating the program’
that computes a function value [8, 20]. AD is an accurate method in the sense that AD
applies the rules of calculus in a repetitive way to an algorithmic specification of a function
and, in exact arithmetic, will produce the exact answer. Like symbolic algebra, AD relies
on the fact that any program, no matter how complex, can be broken down into a finite com-
bination of elementary operators such as arithmetic operations (e.g., +, −) and elementary
functions (e.g., sinx, cosx, ex) [7, 25].

There are two different approaches to differentiating program code: operator overloading
and source-to-source transformation. In the operator overloading approach, the basic arith-
metic operations and intrinsic functions are assigned routines that calculate the derivatives
of the operator output in addition to the calculation of the function value. The source code
of the function is progressively differentiated by calling these routines at the same time
as each operation is performed in the evaluation of the function. Operator overloading is
only allowed by a limited number of programing languages such as Fortran 90, ADA, C++
and Matlab. Examples of software packages that use this approach are ADOL-C [26] and
ADOL-F [45].

The source-to-source approach defines a new source code for calculating the derivatives
explicitly obtained from the program function evaluation source code. However, the imple-
mentation of this method requires considerable programming effort. Examples of software
packages that use this approach are ADIFOR [6] and ODYSSEE [21].
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D Use of Kahan summation

The natural way to evaluate, for example, the summation

S =
M∑
r=1

yr

is recursively, i.e., by the following procedure:

S = 0
for r = 1 : M

S = S + yr
end

When implemented using floating-point arithmetic the computed result S̃ will differ from
the mathematical result S by an amount E that is the result of rounding errors associated
with each floating-point operation (of which there will be M ). Alternative procedures for
undertaking the summation are available and have been designed with the aim of reducing
the magnitude of E [27]. One such procedure is Kahan summation [28].

Suppose a and b are floating-point numbers with |a| ≥ |b|, and let s̃ denote the floating-point
sum of a and b: s̃ = fl(a+ b).28 Then,

ẽ = fl(−(((a+ b)− a)− b)) = fl((a− s̃) + b)

is an approximation to the error (a+ b)− s̃. Kahan’s summation procedure uses this result
to apply a correction ẽ at every step of a recursive summation procedure for evaluating S.
The procedure takes the following form:

S = 0
e = 0
for r = 1 : M

a = S
b = yr + e
S = a+ b
e = (a− S) + b

end

The method has two weaknesses: ẽ is not necessarily the exact correction, and the addition
b = yr + e is not performed exactly. Nevertheless, the use of the procedure brings a benefit
in the form of an improved error bound compared with that for the (basic) recursive scheme
for evaluating S [27].

28In general, fl(p) denotes the result of computing expression p in floating-point arithmetic.
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E Updating procedures in an implementation of a Monte Carlo
method

A consideration for an implementation of a Monte Carlo method, as described in Section 5,
is the need to store large quantities of data and to perform numerical operations on that data.
For a univariate, real measurement model, an implementation of the method requires:

• Evaluating M values of the output quantity and storing those values (Section 5.4.1);

• Evaluating the arithmetic mean and standard deviation of the M values to provide
the estimate of the output quantity and the associated standard uncertainty (Sec-
tion 5.4.2);

• Sorting the M values, and storing the sorted values, to provide a discrete representa-
tion of the distribution function for the output quantity (Section 5.4.4);

• Evaluating a coverage interval in terms of the discrete representation (Section 5.4.6).

An approach is described here that does not require all M values of the output quantity
to be stored at the same time. The approach is based on expressing the results (including
the estimate of the output quantity, the associated standard uncertainty, etc.) forM0 +Mseq

Monte Carlo trials in terms of the results forM0 trials andMseq additional values of the out-
put quantity. The procedure is applied iteratively starting with M0 = 0. The approach only
requires that the Mseq values of the output quantity are stored, where Mseq will generally
be small compared to the total numberM required, and avoids the need to sort the complete
set ofM values. It is also straightforward to integrate the approach with the adaptive Monte
Carlo procedure described in Section 5.7 by taking Mseq = Madap.

Suppose M0 Monte Carlo trials have been undertaken, and the corresponding values y0,r,
r = 1, . . . ,M0, of the output quantity are summarized by the arithmetic mean

y0 =
1
M0

M0∑
r=1

y0,r,

the variance

u2(y0) =
1

M0 − 1

M0∑
r=1

(y0,r − y0)2,

and the histogram defined by bins Bk and corresponding ‘heights’ h0,k, k = 1, . . . , b, of
the bars of the histogram (see Tables 23 and 24).

Suppose a furtherMseq Monte Carlo trials are undertaken giving values yr, r = 1, . . . ,Mseq,
of the output quantity. Then, the arithmetic mean of the combined set of M0 +Mseq values
is

y = y0 +
1

M0 +Mseq

Mseq∑
r=1

(yr − y0), (8)
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and the variance is

u2(y) =
1

M0 +Mseq − 1

(M0 − 1)u2(y0) +M0(y − y0)2 +
Mseq∑
r=1

(yr − y)2

 . (9)

For the evaluation of y and u2(y) using formulae (8) and (9) it is not necessary to store the
values of the output quantity from the first M0 trials, but only the arithmetic mean y0 and
variance u2(y0) evaluated in terms of those values.

The histogram for the combined set of values of the output quantity can similarly be up-
dated. The new ‘heights’ of the bars of the histogram corresponding to the bins Bk,
k = 1, . . . , b, are given by

hk = h0,k +
card({yr ∈ Bk : r = 1, . . . ,Mseq})

ηk − ηk−1
, k = 1, . . . , b. (10)

In cases where there are values yr satisfying yr < η0 or yr > ηb, those values do not lie in
any of the bins Bk and are, consequently, not counted in the application of formula (10). It
is necessary to store separately these values of the output quantity in order to determine a
histogram for the complete set of values.

Let yL
r , r = 1, . . . ,ML, denote the values to the left of η0, with smallest values yL

min, and
yR
r , r = 1, . . . ,MR, those to the right of ηb, with largest value yR

max. Then, additional bars
in the histogram for the complete set of values of the output quantity are defined by the bins

B0 = [yL
min, η0), Bb+1 = (ηb, yR

max]

with heights

h0 =
ML

η0 − yL
min

, hb+1 =
MR

yR
max − ηb

.

Provided a reasonable (initial) choice of bins Bk, k = 1, . . . , b, is made, it can generally
be expected that the numbers ML and MR of values not contained in (one of) the bins are
small. An approximation to the PDF for the output quantity is then given by the scaled
histogram defined by bins Bk and probability densities gk, k = 0, . . . , b+ 1, where

gk =
hk
M
, k = 0, . . . , b+ 1.

Let yL
(r), r = 1, . . . ,ML, and yR

(r), r = 1, . . . ,MR, denote the values yL
r and yR

r sorted into
non-decreasing order. Corresponding to the (sorted) values

G =
(
yL

(1), . . . , y
L
(ML)

, η0, . . . , ηb, y
R
(1), . . . , y

R
(MR)

)
of the output quantity, assign cumulative probabilities

p =

(
1/2
M

, . . . ,
ML − 1/2

M
, g0, . . . ,

b∑
k=1

gk,
M −MR + 1/2

M
, . . . ,

M − 1/2
M

)
.
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An approximation to the distribution function for the output quantity is then given by the
piecewise-linear function joining the points (Gk, pk), k = 1, . . . ,ML + (b + 1) + MR.
A coverage interval for the output quantity can be formed from this approximation to the
distribution function in the manner described in Section 5.4.6.

For the case of a multivariate output quantity, the updating formulae (8) and (9) can straight-
forwardly be extended. Suppose M0 Monte Carlo trials have been undertaken, and the cor-
responding values y0,r, r = 1, . . . ,M0, of the output quantities Y are summarized by the
arithmetic mean y0 and covariance matrix Uy0 (Section 5.5.2). Suppose a further Mseq

Monte Carlo trials are undertaken giving values yr, r = 1, . . . ,Mseq, of Y . Then, the
arithmetic mean of the combined set of M0 +Mseq values is

y = y0 +
1

M0 +Mseq

Mseq∑
r=1

(yr − y0), (11)

and the covariance matrix is

Uy =
1

M0 +Mseq − 1

[
(M0 − 1)Uy0 +M0(y − y0)(y − y0)> + Ψ̃Ψ̃>

]
, (12)

where Ψ̃ is the matrix Ψ containing the vectors yr, viz.,

Ψ = (y1, . . . ,yMseq
),

corrected for y, i.e., y is subtracted from each column of Ψ . For the evaluation of y
and Uy using formulae (11) and (12) it is not necessary to store the values of the output
quantity from the first M0 trials, but only the arithmetic mean y0 and covariance matrix
Uy0 evaluated in terms of those values.

The histogram for the combined set of values of the output quantity can similarly be up-
dated. Consider the case of a bivariate output quantity (as in Section 5.5.3). Let the ‘heights’
of the cuboids in the histogram for the M0 values of Y corresponding to the bins Bk1,k2
be denoted by h0,k1,k2 , k1 = 1, . . . , b1, k2 = 1, . . . , b2. Then, following the further Mseq

Monte Carlo trials, the new heights of the cuboids in the histogram are given by

hk1,k2 = h0,k1,k2 +
card({yr ∈ Bk1,k2 : r = 1, . . . ,Mseq})

(η1,k1 − η1,k1−1) (η2,k2 − η2,k2−1)
. (13)

In cases where there are values yr that do not lie in any of the bins Bk1,k2 and are, conse-
quently, not counted in the application of formula (13), it is necessary to store separately
these values in order to determine a histogram for the complete set of values.

The determination of a coverage region for the output quantities Y in the form of an el-
lipsoid corresponding to coverage probability p is described in Section 5.5.4. It is based
on sorting the values yr of Y according to the ‘distances’ dr of the transformed values ẏr
from the estimate y of Y . Specifically, the boundary of the coverage region is defined by
the estimate y, the covariance matrix Uy associated with the y, and the value kp = d(r∗),
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where r∗ is the integer part of pM and d(r), r = 1, . . . ,M , are the values dr sorted into
non-decreasing order.

An approach to calculating the coverage region that does not require the complete set of val-
ues yr to be stored is as follows. It is based on determining the subset yt

r, r = 1, . . . ,Mt, of
values that lie outside the boundary of the coverage region corresponding to coverage prob-
ability p− p0 for 0 < p0 < p. An updating procedure can be used to obtain approximately
this subset. The subset corresponding toM0 trials is augmented by the values from a further
Mseq Monte Carlo trials that lie outside the boundary of a coverage region corresponding to
coverage probability p− p0 where the coverage region is specified in terms of the estimate
and associated covariance matrix determined from the further Mseq values. The updating
procedure is generally approximate because it is undertaken in terms of (approximations
to) the required coverage region that are different each time. The choice of p0 influences
the degree of approximation as well as the storage requirements of the procedure. For p0

close to p, all the values yr are stored. For p0 close to zero, approximately 100(1 − p) %
of the total number M of values are stored, but it is not guaranteed that the value from the
complete set of values with index r∗ is contained within the subset. The choice p0 = 0.05
can be expected to deliver a compromise.

In terms of subset yt
r, r = 1, . . . ,Mt, of values, kp = d(s∗), where s∗ is chosen such

that (M − Mt) + s∗ is the integer part pM and d(r), r = 1, . . . ,Mt, are the values dr
for the subset of values sorted into non-decreasing order. The boundary of the coverage
region is then defined (approximately) by the estimate y and associated covariance matrix
Uy obtained from the complete set of values, e.g., using the formulae (11) and (12), and the
value of kp determined from the subset of values.
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