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Preface

The scientific method is based on the measurement of different physical quan-
tities and the search for relations between their values. All measured values of
physical quantities are, however, affected by uncertainty. Understanding the
origin of uncertainty, evaluating its extent, and suitably taking it into account
in data analysis, are fundamental steps for assessing the global accuracy of
physical laws and the degree of reliability of their technological applications.

The introduction to uncertainty evaluation and data analysis procedures
is generally made in laboratory courses for freshmen. During my long-lasting
teaching experience, I had the feeling of some sort of gap between the avail-
able tutorial textbooks, and the specialized monographs. The present work
aims at filling this gap, and has been tested and modified through a feedback
interaction with my students for several years. I have tried to maintain as
much as possible a tutorial approach, that, starting from a phenomenologi-
cal introduction, progressively leads to an accurate definition of uncertainty
and to some of the most common procedures of data analysis, facilitating
the access to advanced monographs. This book is mainly addressed to un-
dergraduate students, but can be a useful reference for researchers and for
secondary school teachers.

The book is divided into three parts and a series of appendices.
Part I is devoted to a phenomenological introduction to measurement and

uncertainty. In Chap. 1, the direct and indirect procedures for measuring
physical quantities are distinguished, and the unavoidability of uncertainty
in measurements is established from the beginning. Measuring physical quan-
tities requires the choice of suitable standard units, and Chap. 2 is dedicated
to the International System of units and to dimensional analysis. To perform
measurements, suitable instruments are necessary; the basic properties of in-
struments are presented in Chap. 3, including the characteristics of static and
dynamic performance. Chap. 4 plays a central role; here, the different pos-
sible causes of uncertainty are thoroughly explored and compared, and the
methodologies for quantitatively evaluating and expressing the uncertainty
are explained. The phenomenological introduction of the normal and uniform
distributions naturally leads to the demand for a more formal probabilistic
approach.
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To such an approach, Part II is dedicated. In Chap. 5, the basic con-
cepts of probability theory are presented: sample space, events, definitions of
probability, sum and product of events. The theory of probability is further
developed in Chap. 6, through the formalism of random variables; the general
properties of the distributions of random variables are introduced, and atten-
tion is focused on the distributions most frequently encountered in physics:
binomial, Poisson, normal, uniform, and Cauchy–Lorentz. Chap. 7 is devoted
to some basic statistical concepts and tools: parent and sample populations,
estimate of population parameters, and the maximum likelihood criterion.

In Part III, some common data analysis procedures are introduced.
Chap. 8 is dedicated to the propagation of uncertainty in indirect measure-
ments. Chap. 9 introduces the distinction between probability and confidence,
and presents some relevant applications of the confidence level and the Stu-
dent distribution. In Chap. 10, the correlation between physical quantities
is quantitatively studied by introducing the linear correlation coefficient and
the procedures of regression based on the least squares method. Finally, an
introduction to the chi square statistical test is made in Chap. 11.

Part IV contains a set of appendices. A clever presentation of data in-
creases the effectiveness of analysis procedures, and guarantees accuracy in
communicating the results to other researchers. Appendix A is dedicated to
the treatment of significant digits and the use of tables, graphs, and his-
tograms. Appendix B is dedicated to the International System of Units (SI)
and to other frequently used systems of units. Appendix C contains some
useful tables: the Greek alphabet, a list of selected constants of physics, and
the integrals of the probability distributions introduced in previous chap-
ters. Mathematical technicalities have been avoided as much as possible in
the main text of the book. Some useful demonstrations can, however, be
found in Appendix D by interested readers. The comprehension of theoreti-
cal concepts is greatly facilitated by the possibility of practical applications.
Several problems are proposed at the end of some chapters. Solving statistical
problems is, however, much more effective if they refer to real experiments.
Appendix E contains the description of some simple experiments, particularly
suited to illustrate the data analysis procedures introduced in this book. The
experiments are based on cheap and easily available instrumentation, and
their effectiveness has been tested by many classes of students.

I am indebted to a large number of colleagues and students for stimulating
discussions. Let me here remember in particular M. Grott, G. Prodi, and
L. Tubaro, for their invaluable advice.

Povo Paolo Fornasini

January 2008
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1 Physical Quantities

The great power of the scientific method relies on the possibility of singling
out several measurable properties, the physical quantities, and of finding
stable relations between the measured values of different physical quantities.

What do we mean by physical quantity? Why, for example, are length and
mass physical quantities, and taste and smell are not? The very definition
of physical quantities, as well as their practical use, is strictly connected to
the definition of a measurement procedure, which allows us to establish a
correspondence between physical quantities and numbers.

Every practical measurement entails a degree of uncertainty in its result.
Otherwise stated, uncertainty is an integral part of every measure. The ability
of evaluating the measurement uncertainty is fundamental both in scientific
research, to establish the validity limits of theories, and in technological ap-
plications, to assess the reliability of products and procedures.

1.1 Methods of Observation and Measurement

To clarify the concept of physical quantity, it is useful to distinguish the
different methods that are used to study natural phenomena, and classify
them in order of increasing complexity and power.

Morphological Method

The simplest method consists of the sensorial detection of some properties
of objects or phenomena, and possibly their registration and description, by
means of drawings, photographs, and so on.

Example 1.1. The study of anatomy is generally done by means of pho-
tographs, drawings, and movies.

Example 1.2. Many chemical substances can be identified, by a skilled person,
through their color, brilliance, smell, taste, and so on.

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 3
to Data Analysis in the Physics Laboratory, DOI 10.1007/978-0-387-78650-6 1,
c© Springer Science+Business Media LLC 2008
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Classificatory Method

Progress is made when there is the possibility of partitioning a set of objects
or phenomena into classes, according to the fulfillment of well-defined req-
uisites. Two objects or phenomena belong to the same class if, and only if,
they share at least one property.

Example 1.3. Zoology and botanics are based on complex and articulated
classifications. For example, vertebrate animals are divided into five classes:
mammals, birds, reptiles, amphibians, and fish. Every class is in turn divided
into many orders, families, and species, according to a descending hierarchy.

Example 1.4. The relation of congruence of segments is an equivalence re-
lation, and allows one to group the segments of space into classes, called
lengths. Note, however, that at this level length cannot be considered a phys-
ical quantity as yet.

Comparative Method

Further progress is represented by the possibility of introducing an order
relation, say a criterion for deciding whether, of two objects or phenomena,
the first one possesses a given property in a smaller, equal, or larger degree
than the second one. If the order relation is transitive, one can establish a
correspondence between the degrees of the physical property and a set of
numbers, such that the order relation is preserved. A property for which a
comparative method can be defined is a physical quantity.

Example 1.5. The Mohs scale for the hardness of minerals is based on the
following criterion: mineral A is harder than mineral B, if A can scratch B.
This criterion establishes a transitive order relation: Hardness is a physical
quantity. The Mohs scale lists ten minerals in order of growing hardness, as-
sociated with ten numbers: 1–talc, 2–gypsum, 3–calcite, 4–fluorite, 5–apatite,
6–orthoclase, 7–quartz, 8–topaz, 9–corundum, and 10–diamond. The choice
of numbers is arbitrary, provided they are consistent with the order relation.

Example 1.6. By superposing two segments, one can decide if one of them
is shorter or longer than the other, thus operatively introducing a transitive
order relation. With every length, one can associate a number, arbitrarily
chosen, provided the order relation is preserved. One can now say that length
is a physical quantity.

Example 1.7. The thermal states of two objects A and B can be compared
by bringing the two objects successively in contact with the same thermo-
scope. (A mercury thermoscope consists of a glass bulb filled with mercury,
connected to a thin glass tube; it is like a common thermometer, without
scale.) The comparison allows one to establish a transitive order relation.
We can say that A has higher temperature than B if A induces a stronger
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dilatation of the thermoscope mercury. With the thermal state one can asso-
ciate a number, arbitrarily chosen, provided the order relation is preserved.
Temperature is a physical quantity.

Quantitative Method

In some cases, in addition to a transitive order relation, it is also possible
to define a composition rule having the same properties of the addition of
numbers. One can then establish a correspondence between the degrees of
the physical property and the set of real numbers, reproducing not only the
order relation but also the additive structure.

Example 1.8. An additive composition rule for segments can be introduced
as follows. Let a = AA′ and b = BB′ be two segments. The composition
consists of aligning the two segments on the same straight line, in such a
way that the extremum A′ of segment a coincides with the extremum B of
segment b. The segment sum is a+ b = AB′.

The quantitative method is the basis of most scientific and technical mea-
surements. It allows the description of natural phenomena through math-
ematical formalisms. Notice, however, that an additive composition rule
cannot be defined for all physical quantities (typical examples are hardness
and temperature).

Statistical Methods

When studying very large populations of objects or events, it is often pos-
sible to describe some of their average properties by a limited number of
parameters, utilizing statistical methods. For example, statistical methods
are used in physics to give an interpretation of thermodynamic quantities
(such as pressure, internal energy, temperature, and so on) in terms of the
average behavior of a very large number of atoms or molecules. As shown
in the following chapters, statistical methods play a fundamental role in the
treatment of uncertainties of physical quantities.

1.2 Physical Quantities

According to Sect. 1.1, a physical quantity is a property of an object or
phenomenon for which one can define a transitive order relation. For many
physical quantities, an additive rule of composition can be defined as well.
Physical quantities can thus be grouped into two sets.

(a) Additive quantities, for which one can define both a transitive order re-
lation and an additive composition rule. Length, time interval, mass, speed,
and force are examples of additive quantities.
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(b) Nonadditive quantities, for which one can define a transitive order re-
lation but not an additive composition rule. Temperature and hardness are
examples of nonadditive quantities.

Measurement is the experimental procedure by which a number, the mea-
sure, is associated with every value of a physical quantity. Different measure-
ment methodologies have to be developed, according to whether one deals
with an additive or a nonadditive quantity.

1.3 Direct and Indirect Measurement

Two different measurement methods have to be distinguished, direct and
indirect measurement.

Direct Measurement

Let us consider an additive quantity G; for the sake of concreteness, let it
be the length of a rod. The direct measurement of the quantity G can be
decomposed into the following sequence of logical steps.

(a) Construction or choice of a unit standard U
(b) Composition of unit standards,

∑
Ui

(c) Check of the correspondence between G and a sum nU of unit standards
(d) Counting of the n unit standards

According to this logical scheme, the measure X(G) of the quantity G is
the ratio between the quantity G and the unit standard U :

X(G) = G/U . (1.1)

The result of a direct measurement is thus written as G = X U , the number
X being the measure and U being the unit. Examples: for a length, d = 5
meters; for a time interval, ∆t = 7 seconds; for a mass, m = 2 kilograms.

The direct measurement is the operative realization of the quantitative
method, and is possible only for additive quantities.

Example 1.9. Measurement of the length of an object by a ruler. The unit
standard is the distance between two adjacent cuts (1 mm); the composition
of unit standards has been made when the cuts have been engraved on the
rule; the check of correspondence is performed by bringing to coincidence
the sides of the object with the cuts on the ruler; the count of standards is
facilitated by the numbers engraved on the ruler.

Example 1.10. Measurement of a mass by an equal-arm balance. The stan-
dard is a unit mass; the composition of standards is made by placing several
unit masses on the same scale-pan of the balance; the check of correspon-
dence consists of calibrating the number of unit masses in order to obtain
equilibrium between the two scale-pans.
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Uncertainty in Direct Measurements

Let us now analyze in more detail the meaning of (1.1), starting from purely
mathematical arguments, and considering then the experimental factors that
can influence the measurement.

Only seldom will the quantity G correspond to an integer multiple nU of
the unit standard. In general, the measure X = G/U is not an integer number
n. If the unit U is supposed indefinitely divisible into submultiples, one could
guess that the measure X = G/U is a rational number m/n. It is, however,
well known that incommensurate quantities exist (such as the side and the
diagonal of a square), whose ratio is an irrational number. As a consequence,
the measure of a physical quantity is in principle a real number r:

X(G) = G/U = r . (1.2)

In an actual experimental measurement, one always deals with instru-
ments whose unit U cannot be made arbitrarily small. As a consequence, the
check of identity between the quantity G and a sum of unit standards only
allows one to state that

nU < G < (n+ 1)U , (1.3)

say to define an interval of values of width U , which includes G. Otherwise
stated, the result of a direct measurement is always represented by a finite
interval of possible values. The width of this interval represents an uncertainty
of the measure.

In principle, one could think that the uncertainty can be reduced below
any predetermined value by suitably reducing the unit U . In practice, the
reduction of U is limited by technical difficulties. Anyway, as shown in sub-
sequent chapters, other causes, depending on both random fluctuations and
systematic errors, contribute to the uncertainty and become predominant
when U is sufficiently small.

It is a result of long-term experience that uncertainty in measurements
can never be completely eliminated. Uncertainty is then an integral part of
every measure, and always has to be carefully evaluated. The measure of any
physical quantity must always contain information about its uncertainty. The
standard expression of a physical measure is

G = (X0 ± δX)U , (1.4)

where X0 is the central value of the measure, and δX is the uncertainty, here
taken as the half-width of the uncertainty interval.

Chapter 4 is devoted to the evaluation of uncertainty in various realistic
situations, and to the definition of its standard expression.
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Indirect Measurement

Indirect measurement is the procedure by which the measure X(G) of
a quantity G is obtained through analytical relations from the measures
Y (A), Z(B), . . . of other quantities A,B, . . . directly measured.

Quantities that could in principle be directly measured are often indirectly
measured, for convenience or because of the practical difficulty of direct mea-
surements.

Example 1.11. Velocity is in principle directly measurable (if relativistic ef-
fects can be neglected). In general, however, it is indirectly measured, for
example, as a ratio between a length and a time interval.

Example 1.12. Astronomic distances cannot be directly measured for practi-
cal reasons. Their indirect measurement is based on direct measurements of
angles and of a small distance.

Indirect measurement is necessary for nonadditive quantities, such as tem-
perature. When using calibrated instruments, however, the procedure of in-
direct measurement is not evident to the user.

Example 1.13. Temperature cannot be directly measured, because an addi-
tive composition law cannot be defined. Different thermometric scales connect
temperature to a directly measurable quantity, such as length, pressure, elec-
tric resistance, and so on. In a mercury thermometer, the measurement of a
temperature variation ∆T is connected to the direct measurement of the ex-
pansion ∆` of mercury; the reading is, however, directly given in temperature
units.

The uncertainty, which characterizes every direct measure, obviously
propagates to the indirect measures. The propagation of uncertainty from
direct to indirect measures is considered in Chap. 8.

1.4 Time Dependence of Physical Quantities

Among physical quantities, time plays a particular role. Frequently, one is
interested in the time variations of a given quantity G, say in the behavior
of the function X(t), where X is the measure of G and t is time. The most
important kinds of time dependence are described below, and schematically
depicted in Fig. 1.1.

A quantity G is constant when its value X(G) does not change with time.

Example 1.14. The force of gravitational interaction between two masses m
and M at a distance r is F = GmM/r2. The value of the gravitational
constant G does not depend on the site and time of measurement. G is a
fundamental constant of physics.
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time
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time

Fig. 1.1. Time dependence of physical quantities: constant, periodic, transient,
and random quantities.

Example 1.15. The period T of oscillation of a pendulum depends on the am-
plitude of oscillation, which decreases in time as an effect of friction. However,
if the oscillations are small enough, the dependence of period on amplitude
is weak and the friction damping is slow. In this situation, the period can be
considered constant with good approximation.

A quantity X is periodic with period T if, for each time value t,

X(t+ T ) = X(t) . (1.5)

Example 1.16. Within the approximation of small oscillations, the angle θ of
an oscillating pendulum varies periodically with time. The dependence of θ
on time is given by a sinusoidal law: θ = θ0 sin(2πt/T + φ0), where θ0 is the
amplitude of oscillation, T the period, and φ0 the phase for t = 0.

The periodic character of some natural phenomena – such as rotation
or revolution of planets, oscillation of pendulums, and vibrations of quartz
crystals – allows one to establish the procedures for measuring the time in-
tervals, thus making possible the very definition of time interval.

A physical quantity is impulsive or transient when its value is different
from zero only in a finite time interval.

Example 1.17. When two solid bodies collide, the force of interaction varies
very quickly in time within the short time interval during which the two
bodies are in contact. The force has an impulsive character.

A physical quantity is random or casual when its value continuously varies
in time, in a nonperiodic way.

Example 1.18. The molecules of a gas continuously move and collide with
the container walls and with other molecules. At each collision, the velocity
of a molecule changes direction and intensity in an unpredictable way. The
velocity of a molecule is thus a random quantity.
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The methodology of measurement of a physical quantity, as well as the
choice of the most suitable instruments, depends on its time dependence. To
measure a constant quantity, the available time is virtually unlimited; one can
obtain reliable measures with relatively simple instruments, by exploiting the
possibility of repeating the measurement many times and of modifying the
procedures. The measurement of time-dependent quantities requires instead
fast enough instruments and procedures (see Chap. 3).

1.5 Counting of Random Events

The direct measurement of a physical quantity requires counting a number n
of identical standard units U . A simple example is given by the measurement
of a time interval ∆t = t2 − t1 by a clock with 1 second resolution, U = 1 s.
The measurement consists of counting the number of seconds from the initial
time t1 to the final time t2. The signals produced by the clock at every second
are events regularly spaced in time (Fig. 1.2, left).

emitemit

Fig. 1.2. Regularly spaced events (left) and random events (right).

A completely different situation is encountered when dealing with random
events, say events dispersed in a disordered and unpredictable way in time or
space (Fig. 1.2, right). A typical example of random events is represented by
cosmic rays, say high-energy particles that continuously arrive on the Earth’s
surface. Cosmic rays can be detected and counted by means of suitable in-
struments, such as Geiger counters (Sect. 3.6). The arrival of a particle at
the entrance window of a Geiger counter is a random event, and the time of
arrival is completely unpredictable. The sequence of detection of cosmic rays
is disordered and causal, as in Fig. 1.2, right.

Many other phenomena of physics give rise to random events, such as
the decay of radioactive isotopes, the emission of photons (light quanta) by
atoms, and elementary particle collisions.

One could think that randomness prevents us from performing quanti-
tative studies. However, if a sufficiently high number of random events is
considered, it is possible to extract some stable average properties from the
irregular time or space sequences. These average properties represent physical
quantities.

Example 1.19. Let us consider a sample of radioactive isotopes. A radioac-
tive decay is a random event, and the time sequence of decays is random.
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However, if a large enough number of decays is observed, it is possible to
note a regularity in their average behavior. If N0 isotopes are present at time
t = 0, their average number reduces in time according to the exponential law:
N(t) = N0 exp(−αt), where α is the disintegration constant. The disintegra-
tion constant is a physical quantity, whose value characterizes the behavior
of a specific isotope.

Counting of random events requires suitable instruments and suitable sta-
tistical techniques of data analysis, which are considered in the next chapters,
and is intrinsically affected by uncertainty.

1.6 Operative Definition of Physical Quantities

As shown in previous sections, a physical quantity is by definition a property
of objects or phenomena for which one can define a transitive order relation,
and possibly also an additive composition rule. The existence of an order
relation, and possibly of a composition rule, is in turn necessary for measur-
ing physical quantities. For example, the procedure of direct measurement
requires that a practical rule for summing up the standard units U is given.
The very concept of physical quantity is thus intrinsically connected to the
measurement procedures.

This standpoint naturally leads to the operative definition of physical
quantities. Physical quantities (length, mass, time, force, and so on) are not
defined in terms of abstract properties, but in terms of realistic procedures:
the definition of each physical quantity consists of the detailed description of
the procedures for its measurement.

The development of science and technology has led to a progressive ex-
tension of the use of physical quantities outside the field of everyday common
experience. As a consequence, the values of physical quantities can span over
many orders of magnitude. For example, let us consider two typical lengths,
one of atomic physics and one of astronomy: the radius of the first electronic
orbit of the atomic Bohr model is about 5.3× 10−11 m, whereas the average
radius of the orbit of Pluto is 5.9× 10+12 m.

It is evident that neither the lengths at atomic scale nor the lengths of as-
tronomical interest can be measured through a direct comparison with a unit
standard. In general, the same physical quantity can require different mea-
surement procedures for different orders of magnitude of its values. Different
measurement procedures in turn correspond to different operative definitions.
To guarantee the possibility of referring to the same physical quantity in spite
of the difference in measurement procedures, it is necessary that the different
operative definitions are consistent: if two measurement procedures can be
adopted within the same interval of values, they must give the same results. A
physical quantity is thus defined by the class of all its possible and consistent
operative definitions.
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1.7 The Experimental Method

Physics is not limited to the observation of natural phenomena and to the
measurement of physical quantities. The great power of the scientific method
relies on the ability of finding correlations between different physical quanti-
ties, so as to establish laws and build up theories of general validity.

The search for correlations between physical quantities is not a simple
task. Natural phenomena generally appear in complex forms, characterized
by the simultaneous presence and mutual influence of many factors: a typical
example is the ubiquitous presence of friction that prevented us, for many
centuries, from understanding the relation of proportionality existing between
force and acceleration, which is now at the basis of classical mechanics. Many
important phenomena even escape a direct sensorial perception and can be
detected only by means of suitable instrumentation (let us here mention only
electromagnetic phenomena).

The search for correlations between physical quantities is founded on the
experimental method, introduced by Galileo Galilei (1564–1642). A scientist
is not confined to a passive observation of natural phenomena; he or she
reproduces instead the phenomena in a controlled way in the laboratory,
systematically modifying the factors that can affect their development. By
this procedure, one can reduce or even eliminate secondary factors, and isolate
the fundamental aspects of phenomena. One can thus detect simple empirical
relations between physical quantities. For example, it was the progressive
reduction of friction on a body moving along an inclined plane that led Galileo
to hypothesize the relation of proportionality between force and acceleration.

The relations, experimentally established, between physical quantities are
the basis for the development of scientific theories. Scientific theories, in turn,
allow one to make previsions on the evolution of more complex phenomena.
The validity of every scientific theory is corroborated by the experimental
verification of its expectations.

The experimental method relies on a careful choice of the physical quan-
tities used to describe natural phenomena, and on their rigorous operative
definition. It also requires critical sense, technical ability, and some fantasy,
in order to find simple and reproducible correlations between physical quan-
tities.

A good researcher should be able to correctly evaluate the reliability of his
results. Actually, the measurement of whichever physical quantity is affected
by uncertainty, due to the instruments and procedures of measurement. The
uncertainty reflects on the laws that express the correlations between physical
quantities, and then on the consequent scientific theories.

The reliability of measurements determines the limits of validity of scien-
tific theories, as well as of their technological applications.
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Physical quantities are organized in systems of units. This chapter is mainly
dedicated to the International System (SI), but other systems, used in spe-
cialized fields of physics, are mentioned as well. The chapter ends with an
introduction to the dimensions of physical quantities and to the main appli-
cations of dimensional analysis.

2.1 Base and Derived Quantities

In Sect. 1.3, it has been shown that every measurement is based on the possi-
bility that some quantities (the additive quantities) can be directly measured
by comparison with a unit standard U .

To describe objects and phenomena of the physical world, many quantities
are used, both additive and nonadditive, connected by analytical relations.
In principle, one could choose an arbitrary unit standard for every additive
quantity. This choice would, however, lead to the introduction of inconvenient
proportionality factors, and would require us to define and to maintain a large
number of measurement standards.

Example 2.1. Let us consider three quantities, length `, time t, and velocity
v, which are temporarily labeled G`, Gt, and Gv, respectively. For a uniform
motion, the velocity is defined as Gv = ∆G`/∆Gt. In principle, one can in-
dependently choose the unit standards U of the three quantities. Possible
choices could be the Earth radius U`, the period of the Earth rotation Ut,
and the velocity tangential to the equator Uv, respectively. Let us now con-
sider the values X of the quantities G, as defined by (1.1): G = XU . Velocity
is, by definition, the ratio between space and time. According to the indepen-
dent choice of unit standards, the value of the velocity would be connected to
the space and time units through the relation Xv = (1/2π)X`/Xt. In fact, a
point fixed at the equator moves with unit velocity Gv = 1 Uv, traveling the
distance G` = 2πU` in the unit time Gt = 1 Ut.

In this example, the velocity unit is connected to the space and time
units through the (1/2π) factor. To avoid, or at least to reduce the number
of factors different from unity in the relations connecting the units of different
physical quantities, it is convenient to arbitrarily choose the unit standards

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 13
to Data Analysis in the Physics Laboratory, DOI 10.1007/978-0-387-78650-6 2,
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of only a very small number of quantities. For the other quantities, the units
are univocally defined through analytical relations.

Example 2.2. Let us choose as arbitrary unit standards the meter (m) for
lengths ` and the second (s) for times t; the unit of velocity v is then the
meter per second (m/s), defined by the relation v = `/t.

One distinguishes:

(a) Base quantities, for which the unit standard is arbitrarily defined
(b) Derived quantities, for which the unit standard is defined through analyt-

ical relations that connect them to the base quantities

Establishing a system of measurement units consists of:

(a) Choosing a particular partition between base and derived physical
quantities

(b) Defining the unit standards of the base quantities

The first attempt at establishing a system of units was made by the French
revolutionary government in 1790, and led to the proposal of the Decimal
Metric System in 1795. Afterwards, various other systems of units have been
introduced, many of which are still in use. The increasing demand of stan-
dardization, connected to the development of trade and scientific research,
led, since 1895 (Meter Convention), to various international agreements on
unit systems. In the last decades, there has been a convergence towards the
International System (SI), which is treated in Sect. 2.3.

A system of units is said to be

– Complete, when all physical quantities can be deduced from the base
quantities through analytical relations

– Coherent, when the analytical relations defining the derived units do not
contain proportionality factors different from unity

– Decimal, when all multiples and submultiples of units are powers of ten

2.2 Measurement Standards

The unit standards of the fundamental quantities are physically realized by
means of measurement standards. There are standards also for many derived
quantities. The main properties characterizing a measurement standard are:

(a) Precision
(b) Invariability in time
(c) Accessibility, say the possibility that everyone can have access to the

standard
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(d) Reproducibility, say the possibility of reproducing the standard in case of
destruction

One can distinguish two fundamental kinds of measurement standards, nat-
ural standards and artificial standards. The distinction is clarified by the
following example.

Example 2.3. Let us consider the evolution of the length standard. In 1795,
the meter was for the first time introduced as the fraction 1/107 of the arc of
an Earth meridian from a Pole to the equator (natural standard). In 1799, an
artificial standard was built, made by a platinum rule (precision 10 ÷ 20µm).
In 1889, the old standard was substituted by a rule made of an alloy 90%
platinum + 10% iridium (precision 0.2 µm). In 1960, a natural standard was
again introduced, the optical meter, defined as a multiple of the wavelength
of the red-orange light emitted by the isotope 86 of krypton (precision 0.01
µm). Finally, since 1983, the definition of the meter has been based on the
product between the speed of light and an interval of time.

Natural standards guarantee reproducibility and invariability, although
sometimes at the expenses of accessibility.

The standards of the highest precision are called primary standards. More
accessible, although less precise, secondary standards are periodically cal-
ibrated against primary standards. Standards of current use, the working
standards, are in turn calibrated against secondary standards.

2.3 The International System of Units (SI)

The International System (SI) divides the physical quantities into base quan-
tities and derived quantities, and defines the names and symbols of their
units. The SI defines the measurement standards of the base quantities. In
addition, the SI gives the rules for writing names and symbols of the units, as
well as the names and symbols of the prefixes (see Appendix B.1). The SI is
complete, coherent, and decimal (with the exception of time measurements).

Base Units

The SI is founded on seven base quantities. Their names, units and symbols
are listed in Table 2.1. The official definitions of the base SI units are listed
in Appendix B.1.

Time Interval

The unit of time, the second, is defined with reference to the period of the
electromagnetic radiation that is emitted by the isotope 133 of Cesium (say
the isotope whose nucleus contains 55 protons and 78 neutrons) during the
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Table 2.1. Base quantities of the International System, their units and symbols.

Quantity Unit Symbol

Time interval second s
Length meter m
Mass kilogram kg
Amount of substance mole mol
Temperature kelvin K
Electric current ampere A
Luminous intensity candela cd

transition between two hyperfine energy levels of its ground state. The time
standard is thus a natural standard.

The ground state of an atom corresponds to the electronic configuration
of minimum energy. The splitting of the ground state into hyperfine levels is
due to the interaction of electrons with the nuclear magnetic moment; the
difference in energy ∆E between the hyperfine levels is much smaller than
the difference between the principal levels. During the transition between the
two levels of 133Cs labeled F = 4, M = 0, and F = 3, M = 0, respectively,
electromagnetic waves are emitted with frequency ν = ∆E/h ' 1010 Hz, say
in the microwave region (h is the Planck constant). The second is defined
as 9 192 631 770 times the period T = 1/ν. The primary standard of time is
realized by the cesium clock, whose maximum relative uncertainty is 1×10−12,
corresponding to 1 µs every twelve days.

Length

The unit of length, the meter, is defined as the distance covered by light in
vacuum in 1/299 792 458 seconds. As a consequence of this definition, the ex-
act value c = 299 792 458 m/s has been attributed, since 1983, to the velocity
of light in vacuum, one of the fundamental constants of physics.

Mass

The unit of mass, the kilogram, is the mass of a cylindric body made by an
alloy of platinum and iridium, that is preserved in Sèvres (France). This is
the only artificial standard of the SI. Its relative precision is of the order of
10−9.

Amount of Substance

The mole is the amount of substance of a system containing as many elemen-
tary entities (atoms, molecules, electrons, etc.) as there are atoms in 0.012 kg
of isotope 12 of carbon (say the most abundant isotope of carbon, whose nu-
cleus contains six protons and six neutrons). The number N0 of elementary
entities within a mole is called the Avogadro number; its approximate value
is N0 ' 6.022× 1023.
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Temperature

The kelvin is the fraction 1/273.16 of the thermodynamic temperature of the
triple point of water. The triple point of water, say the thermodynamic state
of equilibrium of the solid, liquid, and gas phases (Fig. 2.1, left), corresponds
to a temperature of 273.16 K and a pressure of 610 Pa. The relative precision
of the kelvin is 1× 10−6.

Temperature is a nonadditive quantity. The absolute thermodynamic tem-
perature is defined in relation to the efficiency of the Carnot cycle; its mea-
surement corresponds to the measurement of the ratio between two additive
quantities, for example, two heat quantities.
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Fig. 2.1. Left: schematic representation of the phase diagram of water. Right:
sensitivity curve of the human eye as a function of light wavelength.

Electric Current Intensity

The definition of the unit of electric current intensity, the ampere, refers to
the force F per unit length ` between two parallel conductors placed at a
distance d and carrying the same current I:

F/` = 2km I2/d .

A numerical value 10−7 is attributed to the constant km. One ampere cor-
responds to the current that produces a force of 2 × 10−7 N per meter of
length.

For the practical realization of standards, one prefers to rely on the Ohm
law I = V/R, and obtain the ampere as a ratio between the units of potential
difference (volt) and resistance (ohm). The standards of volt and ohm are
realized by means of two quantum phenomena, the Josephson effect and the
quantum Hall effect, respectively.

Luminous Intensity

Luminous intensity is the base quantity of photometry, say the discipline
dealing with the sensitivity of the human eye to electromagnetic radiation.
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The luminous intensity corresponds to the flux of energy radiated by a source
within the unit solid angle, weighted by the average sensitivity of the human
eye (Fig. 2.1, right). Photometric measurements are relevant in the fields of
astronomy, photography, and lighting. The unit of luminous intensity, the
candela, corresponds to the intensity, in a given direction, of a source that
emits monochromatic radiation of frequency 540× 1012 hertz and that has a
radiant intensity of 1/683 watt per steradian.

Derived Units

The derived quantities are defined in terms of the seven base quantities via
a system of simple equations. There are no conversion factors different from
one (the SI is coherent). Some derived units have special names and are listed
in Appendix B.1. Here are some relevant examples.

Example 2.4. Acceleration is a derived quantity. By definition, it is the deriva-
tive of velocity with respect to time. Its unit is the ratio between the unit of
length and the square of the unit of time, say 1 m s−2. The unit of acceleration
has no special name.

Example 2.5. Plane angle and solid angle are derived quantities. Their units
have special names, radian and steradian, respectively. The radian (rad) is
the plane angle that subtends, on a circumference centered on its vertex, an
arc whose length is equal to the radius. The steradian (sr) is the solid angle
that subtends, on a sphere centered on its vertex, a spherical cap whose area
is equal to the square of the radius.

Example 2.6. Force F is a derived quantity. By the fundamental law of dy-
namics, F = ma, the unit of force is referred to the units of mass and accel-
eration. The unit of force has a special name, the newton (N), and is defined
as 1 N = 1 Kg m s−2.

2.4 Other Systems of Units

In spite of the SI being an internationally adopted complete system, several
other systems are still in use. We consider here the systems most relevant for
physics.

cgs Systems

In cgs systems, the fundamental mechanical quantities are length, mass, and
time, as in the SI. The corresponding units are centimeter, gram, and second
(whence the acronym cgs). The differences between cgs and SI systems are
limited, for mechanical quantities, to multiplicative factors, powers of 10, in
the values of base and derived quantities, and to the name of units.
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The substantial difference between cgs and SI systems concerns the elec-
tromagnetic quantities. While the SI has a base quantity for electromagnetism
(the electric current intensity), in csg systems all electromagnetic units are
derived from mechanical units. Several different cgs systems exist, depending
on the relation that is used to define electromagnetic units as a function of
mechanical units.

The electrostatic cgs system defines the electric charge unit (statcoulomb)
through the Coulomb law

Fe = Ke q1 q2/r
2 , (2.1)

by imposing Ke = 1, dimensionless.
The electromagnetic cgs system defines the current unit (abampere)

through the law of electrodynamic interaction between currents

Fm = 2Km I1 I2 `/d , (2.2)

by imposing Km = 1, dimensionless.
The Gauss symmetrized cgs system uses the electrostatic cgs units for

electrical quantities and the electromagnetic cgs units for magnetic quantities.
The symmetrized cgs system is still frequently used in theoretical physics.

Practical Systems

In the past, many practical units have been introduced in different fields of
science and technology. After the introduction of the SI, practical units should
not be used. Several exceptions limited to specialistic fields are, however,
still accepted. Let us list here some non-SI units that are frequently used in
physics; other examples can be found in Appendix B.1.

The atomic mass unit (u) is 1/12 of the mass of an atom of carbon 12,
say the isotope whose nucleus contains six protons and six neutrons. The
approximate value is 1 u ' 1.66× 10−27 kg.

The electronvolt (eV) is the energy gained by an electron when crossing an
electric potential difference of 1 V. The approximate value is 1 eV ' 1.602×
10−19 J.

The astronomic unit (au), roughly corresponding to the distance between
the Earth and Sun, is used for expressing distances within the solar system.
Its approximate value is 1 au ' 1.496× 1011 m.

Plane angles are often measured using the degree (◦) and its nondecimal
submultiples: the minute, 1′ = (1/60)◦, and the second, 1′′ = (1/3600)◦.

The ångström (Å) is often used to measure distances at the atomic level:
1 Å = 0.1 nm = 10−10 m.
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British Systems

In some countries, such as Great Britain (UK) and the United States of
America (USA), some British units are still in use (a partial list can be found
in Appendix B.3).

British systems are not decimal. For example, the base unit of length is
the inch, and its most important multiples are the foot, corresponding to 12
inches, and the yard, corresponding to three feet.

Some units have different values in the UK and in the USA. For example,
the gallon, unit of volume, corresponds to 4.546 dm3 in the UK and 3.785 dm3

in the USA.

Natural Systems

In some specialistic fields of physics, it is customary to use peculiar units,
which are called natural because they refer to particularly relevant funda-
mental quantities.

The Hartree atomic system is often used when describing phenomena at
the atomic level. Its base quantities are:

– Mass: the unit is the electron rest mass me (in SI, me ' 9.109×10−31 kg)
– Electric charge: the unit is the electron charge e (in SI, e ' 1.602 ×

10−19 C)
– Action (product of energy and time): the unit is the quantum of action h

(Planck constant) divided by 2π, h̄ = h/2π (in SI, h̄ ' 1.054× 10−34 J s)

The Dirac system is often used in elementary particle physics. Its base
quantities are:

– Mass: the unit is again the electron rest mass, me

– Velocity: the unit is the velocity of light in vacuum, c (in SI, c = 299 792
458 m s−1)

– Action: the unit is again h̄=h/2π

2.5 Dimensional Analysis

The choice of the base units reflects on the numerical values of both base
and derived quantities. Dimensional analysis deals with this topic, and repre-
sents a useful tool for testing the soundness of equations connecting physical
quantities.
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Dimensions of Physical Quantities

Let us suppose that the unit of length, the meter, is substituted by a new
unit, L times smaller; for example, the centimeter is L = 100 times smaller.
As a consequence of the new choice of the length unit, the values

of length are multiplied by L
of time are multiplied by L0 = 1
of volume are multiplied by L3

of velocity are multiplied by L

The exponent of L is the dimension with respect to length:
Length has dimension 1 with respect to length
Time has dimension 0 with respect to length
Volume has dimension 3 with respect to length
Velocity has dimension 1 with respect to length

The dependence of the value X of whichever base or derived quantity on
the units of the base quantities A,B,C, . . . is symbolically expressed by a
dimensional equation:

[X] = [A]α [B]β [C]γ . . . (2.3)

where α, β, γ are the dimensions of X with respect to A, B, and C, respec-
tively.

Dimensional analysis is mainly used in mechanics: here we consider only
the dimensions with respect to length, mass, and time, which are symbol-
ized by L,M, T , respectively. For example, the dimensions of velocity are
expressed by the equation

[v] = [L]1 [T ]−1 [M ]0 , (2.4)

and the dimensions of work and energy are expressed by the equation

[W ] = [E] = [L]2 [T ]−2 [M ]1 . (2.5)

Quantities characterized by the same dimensions are said to be dimensionally
homogeneous.

Dimensionless Quantities

Some quantities have zero dimension with respect to all base quantities:

[L]0 [T ]0 [M ]0 . (2.6)

It is the case of pure numbers (3,
√

2, π, . . .) and of dimensionless quantities,
say quantities defined by the ratio between two homogeneous quantities. The
value of dimensionless quantities does not depend on the particular choice of
the base units.
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Example 2.7. Plane angles are dimensionless quantities; their value measured
in radians is the ratio between the length of the arc and the length of the
radius. Also solid angles are dimensionless quantities; their value measured
in steradians is the ratio between two squared lengths.

Example 2.8. The absolute density of a substance is the ratio between its
mass and its volume: ρ = m/V . The dimensions of the absolute density
are given by [ρ] = [L]−3[T ]0[M ]1. The relative density of a substance is the
ratio between its absolute density and the absolute density of water at the
temperature of 4◦C. The relative density is a dimensionless quantity.

Principle of Dimensional Homogeneity

The usefulness of dimensional analysis is founded on the principle of dimen-
sional homogeneity, stating that it is possible to sum or equate only dimen-
sionally homogeneous quantities. Otherwise stated, any equation between
physical quantities

A+B + C + . . . = M +N + P + . . . (2.7)

is true only if A,B,C, . . . ,M,N, P, . . . are dimensionally homogeneous mono-
mials. In particular, transcendental functions (sin, cos, exp, log, etc.) are
dimensionless, and their arguments must be dimensionless.

Applications of Dimensional Analysis

Let us consider here the most important applications of dimensional analysis.

Test of Equations

The dimensional homogeneity is a necessary condition for the correctness
of equations connecting physical quantities, such as (2.7). This means that,
for the equation to be true, all terms must have the same dimensions. Di-
mensional homogeneity is thus the first test of validity of any theoretical
relationship.

Example 2.9. Let us consider the oscillations of a mass suspended from a
spring. The position x of the mass depends on time t according to a sinusoidal
law. The dependence of x on t cannot be expressed by x = sin t, because: (a)
the argument t of the sine function is not dimensionless; (b) the sine function
is dimensionless, and x has the dimension of length. A valid expression is
x = A sin(ωt), where A is a constant with the dimension of length, and ω is
a constant with the dimension of an inverse time.

The dimensional homogeneity, however, is not a sufficient condition for
the correctness of an equation, since:

1. Dimensional analysis cannot test the correctness of numerical values
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2. There exist some quantities that, in spite of being dimensionally homo-
geneous, have a completely different meaning (e.g., mechanical work and
the momentum of a force).

Example 2.10. We want to determine the trajectory of a missile that is thrown
at an angle θ with respect to the horizontal, with initial velocity v0. After
some kinematical calculations, we find the following equation,

z = − g

2 v0 cos2 θ
x2 + x cos θ , [wrong!] (2.8)

where x and z are the horizontal and vertical coordinates, respectively. A
dimensional check shows that (2.8) is wrong. We repeat the calculations and
find

z = − g

2 v2
0 cos2 θ

x2 + x cos θ ; [wrong!] (2.9)

the equation is now dimensionally homogeneous; in spite of this, it is still
wrong. The right equation is

z = − g

2 v2
0 cos2 θ

x2 + x tan θ . (2.10)

The exchange of tan θ by cos θ in the last term of (2.9) led to a dimensionally
homogeneous wrong equation.

In order to use dimensional analysis for testing equations, it is necessary
to perform calculations in literal form. Numerical values should be inserted
only at the end of the test.

Deduction of Physical Laws

In particular cases, dimensional analysis allows one to find analytical re-
lations between different quantities characterizing a physical phenomenon.
Obviously, no information on numerical values can be obtained, and dimen-
sionless constants are neglected.

Example 2.11. The period T of a pendulum can depend, in principle, on the
mass m and length ` of the pendulum, on the acceleration of gravity g, and
on the amplitude θ0 of the angular oscillation. The dimensional dependence
of T on m, `, and g can be expressed as

[T ] = [m]α [`]β [g]γ , (2.11)

say, taking into account the dimensions of m, `, and g,

[T ] = [M ]α [L]β+γ [T ]−2γ . (2.12)

The principle of dimensional homogeneity demands that
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α = 0 , β + γ = 0 , γ = −1/2 , (2.13)

whence
T = C

√
`/g , (2.14)

where C is a dimensionless constant. It is important to note that one cannot
determine, by dimensional analysis, the possible dependence of the period on
the amplitude θ0 (dimensionless), nor the value of the constant C.

Actually, the period of a pendulum can easily be determined, including
the value of the dimensionless constant C and the dependence on the ampli-
tude θ0, by properly solving the equation of motion. The foregoing application
of dimensional analysis to the determination of the period of a pendulum has
thus mainly didactical interest.

In the case of very complex physical systems, however, for which a com-
plete theory does not exist or is exceedingly complicated (such as in some
problems of fluid dynamics), dimensional analysis can represent a very useful
tool.

Physical Similitude

Large complex systems are often studied with the help of models in reduced
scale (e.g., in applications of hydraulic and aeronautic engineering, elasticity,
and heat transmission). A basic problem is to evaluate how the scale reduction
affects the different properties of the model with respect to the real system.
For example, a reduction of linear dimensions by a factor L = 100 produces
a reduction of volumes by a factor 106, which corresponds to a reduction of
masses by the same factor 106, if the densities are the same in the model and
in the real system.

Dimensional analysis is of great help in this task, because it accounts for
the influence of the reduction of base units on the values of derived quanti-
ties. In particular, dimensionless quantities, such as relative density or more
specialized quantities (e.g., the Reynolds number or the Mach number) are
very effective, because their values do not depend on scale factors.

Problems

2.1. The unit of mechanical work is the joule in the International System,
and the erg in the cgs systems. Calculate the conversion factor between joule
and erg.

2.2. The measure of a plane angle in degrees is θ = 25◦ 7′ 36′′. Express the
measure of the angle in radians.

2.3. The mass of an iron atom is 55.847 atomic mass units (average value of
the masses of the different isotopes, weighted by their natural abundance).
Calculate the mass, in kilograms, of three moles of iron atoms.
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2.4. The interaction between the two atoms of a hydrogen molecule H2 can
be assimilated, to a good approximation, to an elastic harmonic spring. The
potential energy is Ep(x) = kx2/2, where x = r − r0 is the deviation of the
instantaneous distance r from the equilibrium distance r0 = 0.74 Å, and k is
the elastic constant, whose value is k = 36 eV/Å2.

In classical mechanics, the elastic constant of a spring is the ratio between
force and deformation, k = −Fe/x. Express the elastic force k of the hydrogen
molecule in the SI unit, newton/meter.

The frequency of oscillation is ν = (k/µ)1/2/2π, where µ = 2m is the
reduced mass of the molecule, andm is the mass of the hydrogen atom. Taking
into account that a hydrogen atom contains one proton and one electron,
calculate its mass m (using Table C.2 of Appendix C.2), and verify that the
frequency of oscillation is ν = 1.3× 1014 Hz.

2.5. Dimensional analysis. The gravitational interaction between two masses
m1 and m2 gives rise to an attractive force, proportional to the product of
the masses and inversely proportional to the square of their distance: F ∝
m1m2/r

2. Verify that the equation F = m1m2/r
2 is dimensionally wrong.

The right expression is F = Gm1m2/r
2, where G is the gravitational

constant; determine the dimensions of G.



3 Measuring Instruments

The measurement of physical quantities is done by means of measuring in-
struments. In the everyday practice of scientific research or technological
applications, many different instruments are used. The instruments are gen-
erally produced in series, but sometimes they are expressly built for specific
purposes. This chapter is dedicated to the introduction of some general cri-
teria for classifying instruments and evaluating their performance.

3.1 Functional Elements

In principle, the operation of an instrument can be schematized as in
Fig. 3.1: the quantity G is compared with the unit standard U ; the result
of the measurement, say the measure X, is often transformed into the value
Z of an easily readable output quantity M (such as the displacement of an
index on a dial). In Fig. 3.1, the fourth arrow (E) represents energy, which
often has to be fed to the instrument.

G

U

M

E

Fig. 3.1. Schematic representation of a
measuring instrument: G andM are the in-
put and output quantities, respectively, U
is the standard unit, and E is energy.

A few instruments have a simple logical structure, where the quantity G
is directly compared with the standard U .

Example 3.1. A ruler for length measurements. The input quantity G is the
length to be measured. The unit standard U (typically a millimeter) and its
multiples are engraved on the ruler. The measure X(G) is directly readable
on the rule.

In the great majority of instruments, the logical structure is more complex:
the comparison with the unit standard is made through a calibration, which

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 27
to Data Analysis in the Physics Laboratory, DOI 10.1007/978-0-387-78650-6 3,
c© Springer Science+Business Media LLC 2008
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is generally performed by the manufacturer. The quantity G can undergo
various manipulations and transformations to other quantities.

Example 3.2. The mercury-in-glass thermometer. The input quantity G is
the temperature of the external environment. The output quantityM is the
height of the mercury column. The instrument is calibrated in such a way
that the values of the input quantity X(G) can be directly read on the scale.

MG

Fig. 3.2. Schematic representation of an instrument as a chain of functional ele-
ments. G and M are the input and output quantities, respectively.

It can often be convenient to represent the instrument as a measuring
chain, decomposing its logical structure into a sequence of functional ele-
ments, each one devoted to a well-defined task (Fig. 3.2).

Input Element (Sensor)

The sensor is the first element of the measurement chain, and is directly
affected by the input quantity G.

Examples of sensors are the bulb of a mercury-in-glass thermometer, the
two-metal junction of a thermocouple thermometer, and the pair of terminals
of an instrument for measuring electrical currents or potential differences.

Output Element

The last element of the measurement chain conveys the value Z(M) of the
output quantity, which gives information on the value X(G) of the input
quantity. The output element can be directly readable by an operator, such as
an index on a dial, a digital display, the pen of a plotter, or a printing device.
Alternatively, the output element can produce signals, typically electrical,
suitable to be fed to another mechanical or electrical instrument, such as an
actuator or a computer.

Example 3.3. An ambient thermostat measures the temperature of a room
and compares it with a preset value. The measurement result is sent, as an
electric signal, to an actuator or a computer, which controls a pump or a
valve of the air conditioning system.
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Intermediate Elements: Transducers, Amplifiers, Manipulators

Within a measuring chain, the measured quantity can undergo various trans-
formations to other quantities, which can be more easily manipulated, trans-
mitted, or displayed. Frequently, mechanical quantities are transformed into
electrical quantities. The transforming element is called a transducer. The
value of a quantity can also be amplified, or undergo mathematical opera-
tions, such as addition, integration, and so on. The flexibility of electrical
signals for this kind of manipulation is one of the reasons for converting
mechanical or thermal quantities into electrical quantities.

Example 3.4. In a resistance thermometer, the sensor is an electrical resistor
carrying a constant current. A variation of temperature induces a variation of
electrical resistance, which in turn induces a variation of potential difference.
The weak variations of potential difference are amplified in order to drive the
displacement of an index on a calibrated dial.

Example 3.5. An electronic scale is designed to measure masses m. To this
purpose, the scale transforms the weight mg into an electrical quantity, a
current or a potential difference. The variations of the electrical quantity are
amplified in order to drive a calibrated display.

It is worth noting that the logical decomposition of an instrument into a
chain of elements does not necessarily correspond to a real physical situation.
Frequently, a single physical component performs the logical functions of two
or more functional elements.

3.2 Classifications of Instruments

Different classifications of instruments are possible, in relation to their oper-
ating properties.

Absolute and Differential Instruments

In absolute instruments, a variation of the value X of the input quantity G
is transformed into a corresponding variation of the value Z of the output
quantity M (such as the deviation of an index on a dial). The measuring
chain is open (Fig. 3.3, left). Examples of absolute instruments are the spring
dynamometer and the mercury-in-glass thermometer.

In differential instruments, the unknown value X of the input quantity G
is compared with a known value Y of the same quantity. In some cases, it is
the difference X −Y which is of interest, and is output from the instrument.
In other cases, the known value Y is varied until the difference X−Y is zero.
The output element of the measuring chain is then a zero detector (e.g., a
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dial centered on zero). In this second type of instrument, the measuring chain
is closed, and is characterized by a feedback element, typically a manual or
automatic actuator that varies the known value Y (Fig. 3.3, right). The in-
struments with the output centered on zero are generally more accurate than
the absolute instruments, but less suitable for measuring quantities varying
in time.

Example 3.6. The analytical equal-arms balance is a simple example of a
differential instrument. The measurement of an unknown mass m on one
scale-pan requires us to manually change the number of standard masses on
the other scale-pan, until mechanical equilibrium is achieved.

5

0 10

X

0

X-Y

Y feedback

Fig. 3.3. Schematic comparison of an open chain instrument (left) and a closed
chain instrument (right).

Analog and Digital Instruments

In analog instruments, the input value X is transformed, at the end of the
measuring chain, into an analog signal, which can assume a continuous range
of values, such as the deviation of an index or the value of an electric current
(Fig. 3.4, left).

In digital instruments, the input value X is transformed, at the end
of the measuring chain, into a number, directly readable on a display (Fig.
3.4, right), or codified as an electric signal, suitable as input to a computer.
The transformation of the analog input signal into a digital output signal
is generally obtained by means of electronic devices, called analog to digital
converters (ADC).

5

0 10

2 5 8 6 4.

Fig. 3.4. Displays of an analog instrument (left)
and of a digital instrument (right).
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Displaying and Recording Instruments

In displaying instruments, the output value is available to the observer only
during the measurement. Examples are the analytical equal-beam balance
and the mercury-in-glass thermometer.

In recording instruments, the output value is stored, in analog or digital
form, on suitable supports, such as paper, magnetic disks, semiconductor
memories, and so on.

Active and Passive Instruments

Passive instruments get the energy necessary to their working directly from
the system on which the measurement is done.

Active instruments are instead fed from an energy source external to the
system under measurement (such as a battery).

Example 3.7. A mercury-in-glass thermometer is a passive instrument, a re-
sistance thermometer is an active instrument.

3.3 Static Characteristics of Instruments

In Sects. 3.3 and 3.4, attention is focused on the performance of instruments
for the measurement of physical quantities that are constant in time. The
dynamical properties of instruments, relative to measurement of quantities
variable in time, is considered in Sect. 3.5.

Measurement Range

The measurement range is the interval of values X of the input quantity G
within which the instrument operates within a specified degree of accuracy.
The measurement range is included between a lower limit and an upper limit.
The upper safety limit is the maximum value of the input quantity that can be
supplied without damaging the instrument. In some instruments, the range
can be varied by means of suitable selectors, such as rotating knobs.

Example 3.8. In the mercury-in-glass thermometer, the measurement range
is defined by the minimum and maximum values on the scale (e.g., −10◦C
and +100◦C). The upper limit generally is also the safety limit, higher tem-
peratures can cause the breakdown of the thermometer.
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Fig. 3.5. In the mercury-in-glass thermometer, the relation between temperature
and height of the mercury column is linear (left). In a semiconductor thermometer,
the relation between temperature and electrical resistance is nonlinear (right).

Linearity

An instrument is said to be linear if the relation connecting the values Z of
the output quantity M to the values X of the input quantity G is linear.

Example 3.9. The mercury-in-glass thermometer is, to a good approximation,
a linear instrument. Within the usual measurement range, the thermal ex-
pansion coefficient of mercury is constant, and the height of the mercury
column linearly increases with temperature (Fig. 3.5, left).

Example 3.10. A thermometer with a semiconductor probe (thermistor) is a
good example of a nonlinear instrument. The input quantity is temperature,
the output quantity is the electrical resistance of the thermistor. When tem-
perature increases, the thermistor resistance decreases such as in Fig. 3.5,
right.

Sensitivity

The sensitivity is the ratio ∆Z/∆X between the variations of the values of
the output and input quantities.

Example 3.11. In a mercury-in-glass thermometer, the input quantity is tem-
perature, and the output quantity is the height of the mercury column. In
Fig. 3.6, thermometer A has a sensitivity five times higher than thermome-
ter B, because the same variation of temperature gives rise to a variation
of the mercury column height five times larger in thermometer A than in
thermometer B.

In linear instruments, the sensitivity ∆Z/∆X is constant over the full
measurement range.

Example 3.12. The thermometer on the left of Fig. 3.5 has a constant sensi-
tivity ∆h/∆θ = 0.33 cm/◦C.
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Fig. 3.6. Two mercury-in-glass thermometers with differ-
ent sensitivities.

In nonlinear instruments, the sensitivity varies within the measurement
range, such as the slope of the curve Z(X). The sensitivity is thus defined as
the first derivative dZ/dX.

Example 3.13. In the semiconductor thermometer of Fig. 3.5 (right), the ab-
solute value |dR/dθ| of sensitivity varies from 18.4 kΩ/◦C at 0◦C to 0.18
kΩ/◦C at 100◦C.

In analog instruments, the display generally consists of a graduated scale.
The sensitivity ∆Z/∆X is often expressed taking the number of divisions
on the scale as ∆Z. In this case, sensitivity is the inverse of resolution (see
below).

Example 3.14. A ruler with resolution ∆X = 1 mm has a sensitivity 1/∆X.
In digital instruments, the sensitivity is evaluated by considering the ana-

log quantity M immediately before the analog/digital converter.
The sensitivity threshold is the smallest value of the input quantity G that

can induce a variation of the output quantity M.

Display Resolution

The display resolution is the smallest variation ∆X of the input quantity
G that can be measured, corresponding to the smallest variation ∆Z of the
output quantity M that can be detected.

ΔX
2 5 8 6 4.

LSD

Fig. 3.7. Display resolution of an analog
instrument (left) and of a digital instru-
ment (right).

In analog instruments, the display resolution generally corresponds to the
minimum distance between two ticks of the graduated scale (Fig. 3.7, left).

In digital instruments, the display resolution corresponds to the unit value
of the least significant digit (LSD) (Fig. 3.7, right).
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Example 3.15. The display resolution of common rulers generally is ∆X =
1 mm. The display resolution of micrometer gauges generally is ∆X =
0.01 mm.

Sensitivity and display resolution are strictly correlated properties. To
reduce the display resolution of an instrument, it is generally necessary to
increase its sensitivity. In analog instruments, the sensitivity is sometimes
expressed as the inverse of resolution, 1/∆X.

There is still no complete agreement on nomenclature. The term resolv-
ing power is frequently used for the inverse of resolution, 1/∆X, but some-
times also to express the ratio between measurement range and resolution.
Also common, although incorrect and misleading, is the use of resolution for
resolving power. The actual meaning of terms is generally clarified by the
context.

Transparency

In general, an instrument perturbs the system under measurement. As a con-
sequence, the value X of the input quantity G is modified by the instrument.
One speaks of transparency to qualify the degree of this disturbance.

Example 3.16. Measuring a mass with an equal-arms balance does not alter
the value of the mass. The equal-arms balance is a transparent instrument.

Example 3.17. Measuring the temperature of a system requires a heat ex-
change between the system and the thermometer, which intrinsically alters
the thermodynamic state of the system, and hence its temperature. The ther-
mometer is not a transparent instrument.

In Sect. 3.2, active and passive instruments have been distinguished. Pas-
sive instruments perturb the systems subject to measurement, by extracting
the energy necessary for their working. One should, however, notice that
not even the perturbation induced by active instruments can be completely
eliminated, although, in macroscopic measurements, it can often be reduced
below acceptable levels. For measurements on systems at atomic or subatomic
scales, the perturbation induced by measuring instruments and procedures is
never negligible.

Operating Conditions

The performance of an instrument depends on the environmental conditions.
In addition to the quantity G to be measured, other influence quantities can
contribute to modify the measurement result: temperature, pressure, humid-
ity, mechanical vibrations, acceleration, electromagnetic fields, and the like.

The operating conditions define the intervals of the influence quantities
within which the instrument can perform the measurements within a specified
degree of accuracy.
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Example 3.18. From the technical characteristics of an electronic balance:

Operating temperature 0 ÷ 40◦C
Under/over sea-level −3400 m · · ·+ 6000 m
Relative air humidity 15% ÷ 85%
Vibrations 0.3 m/s2

Performing measurements outside the specified operating conditions in-
troduces errors in measured values and can damage the instrument.

3.4 Accuracy of an Instrument

It has been pointed out in Sect. 1.3 that the result of the measurement of a
physical quantity is never a single value X. In fact, any instrument is char-
acterized by a finite display resolution ∆X, and cannot give information on
variations smaller than ∆X. As a consequence, the result of a single mea-
surement is represented by a continuous interval of values, of width ∆X. By
convention, the measure of a physical quantity is generally quoted as

X = X0 ± δX , (3.1)

where X0 is a central value giving the position of the interval on the X-axis
and δX is the uncertainty due to the display resolution.

For the time being, the uncertainty is expressed as δX = ∆X/2. Later
on, in Chap. 4, after a thorough investigation on the origin of uncertainty, it
will appear more convenient to express δX in a slightly different way.

In digital instruments, the central value X0 of (3.1) is directly read on
the display. Resolution ∆X and uncertainty δX are given by the unit value
of the least significant digit (LSD) and its half, respectively.

Example 3.19. A time interval τ is measured by means of a digital stop-
watch. A value 34.27 s is read on the display. The unit LSD value is 0.01 s.
The measure has to be quoted as τ = (34.27 ± 0.005) s.

In analog instruments, the evaluation of the central value X0 can depend
on the position of an object or an index with respect to the ticks of a grad-
uated scale. Two typical situations, encountered when measuring lengths,
are exemplified in Fig. 3.8. In the first case (center of figure) the value X0

can be directly read in correspondence to the scale tick. In the second case
(right of figure), one can attribute to X0 a value intermediate between those
corresponding to the two nearest ticks.

Assuming a resolution ∆X smaller than the distance between two con-
tiguous ticks can be an imprudent choice, although sometimes apparently
acceptable. In fact, the display resolution of an instrument is generally re-
duced by the manufacturer to the minimum value consistent with overall
accuracy.
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∆X

0 1 2 3 4 5

X
0

X
0

Fig. 3.8. Measurement by means of an analog instrument. Left: the graduated
scale, with resolution ∆X = 1 (in arbitrary units). Center: X = 3 ± 0.5. Right:
X = 3.5± 0.5.

Example 3.20. The height of a paper sheet is measured by a ruler with res-
olution ∆X = 1 mm. The end of the sheet is equidistant from the ticks
corresponding to 296 and 297 mm. It is reasonable to take X0 = 296.5 mm as
the central value, but it can be imprudent to assume an uncertainty smaller
than half the distance between the ticks, δX = 0.5 mm

In addition to the finite display resolution, other instrumental factors can
influence the result and the quality of a measurement. These factors depend
on the instrument structure, the accuracy of its manufacture, the degree of
maintenance, the environmental conditions, and so on. Let as give here some
examples:

– Calibration defects, such as the limited accuracy of the reference standard
and/or of the calibration procedure

– Defects of the zero calibration (e.g., in electronic instruments the zero can
drift in time)

– Friction or mechanical plays
– Effects of influence quantities, such as temperature, humidity, and so on

In general, the effects of these different factors on the performance of an
instrument are classified in two main categories:

(a) Systematic errors are the effects that are always reproduced to the same
extent when the measurement is repeated.

(b) Random fluctuations or random errors are effects that contribute differ-
ently and randomly at each repetition of the measurement.

Sometimes, it is also important to take into account the stability, say the
ability of an instrument to give similar results for measurements of the same
quantity repeated over time intervals (typically days or weeks) much longer
than the time duration of a single measurement.

The term accuracy is used to quote the global performance of an in-
strument. Accuracy depends on the display resolution, on the influence of
systematic and random errors, as well as on long-term stability.

The accuracy of an instrument is generally quoted, in its operation man-
ual, by means of the numerical value of the global uncertainty, say in the
form ±δX.

When accuracy is not explicitly quoted directly on the instrument or in
its operation manual, one can assume that the effects of systematic errors,
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random fluctuations, and long-term instability are negligible with respect to
the resolution ∆X. In such cases, one can quote the global uncertainty as
δX = ∆X/2.

Example 3.21. In rulers of common use, with display resolution ∆X = 1 mm,
accuracy is not quoted. This means that the manufacturer guarantees that
the measurement uncertainty due to the instrument cannot be larger than
0.5 mm.

Example 3.22. In the operation manual of a digital thermometer with display
resolution ∆T = 0.1◦C, the accuracy is quoted as δT = ±0.4◦C within the
interval from −25 to +75◦C. In this case, the overall uncertainty is clearly
larger than half the resolution.

In this section, some important concepts concerning the evaluation of in-
strument accuracy have been introduced. In Chap. 4, it is made clear that the
uncertainty does not depend only on instruments, but also on other relevant
factors, and the problem of accuracy is accordingly treated within a more
general framework.

3.5 Dynamical Behavior of Instruments

In previous Sects. 3.3 and 3.4, the performance of instruments has been con-
sidered for the measurement of constant quantities. In this section, an in-
troductory account is given of the behavior of instruments when measuring
time-dependent quantities.

Time-Dependent Quantities

Different kinds of time dependences of physical quantities can be distin-
guished. Three of them, particularly important, are considered in the fol-
lowing examples and in Fig. 3.9.

Example 3.23. Let us consider an oscillating pendulum. The amplitude Φ0 of
the oscillations decreases with time, because of friction. For small oscillations,
however, the variation is slow, and Φ0 can be considered as constant during
many periods of oscillation (Fig. 3.9, left).

Example 3.24. A mercury-in-glass thermometer is initially in air at tempera-
ture T = 20◦C; at the time t = t0, the thermometer is immersed in water at
temperature T = 80◦C. The environment temperature T thus varies in time
according to a step law (Fig. 3.9, center):

T (t) =
{

20◦C for t < t0
80◦C for t ≥ t0

. (3.2)
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Fig. 3.9. Three particularly important time dependences of physical quantities:
constant (left), Example 3.23; step (center), Example 3.24; sinusoidal (right),
Example 3.25.

Example 3.25. The electric potential difference in domestic distribution net-
works varies sinusoidally in time according to the law V (t) = V0 sin(2πν+φ),
where ν = 50 Hz in Europe and ν = 60 Hz in the USA (Fig. 3.9, right).

When a physical quantity is not constant in time, its measurement re-
quires an instrument able to follow its time variations with suitable speed.
Knowing the dynamical behavior of an instrument means knowing how the
value of the output quantity Z(t) is modified by the variation of the value of
the input quantity X(t).

The above examples 3.23–3.25 refer to quite simple behaviors (constant,
step, and sinusoidal, respectively). Much more complicated time dependences
can be found in the real world. One can, however, demonstrate that periodic
or nonperiodic functions can be expressed as a series (Fourier series) or an
integral (Fourier integral), respectively, of sinusoidal functions of different fre-
quencies. The relationship connecting the sinusoidal input signal X(t) to the
output signal Z(t) as a function of frequency is called the response function of
an instrument. The knowledge of the response function of an instrument al-
lows one, in principle, to know its dynamic behavior for any time dependence
of the measured quantity.

Mathematical Models of Instruments

Mathematical models of instruments are useful to study the relation between
input values X(t) and output values Z(t).

The simplest case is represented by zero-order instruments, whose math-
ematical model is a relation of direct proportionality between X(t) and Z(t):

a0 Z = b0X , say Z =
b0
a0
X . (3.3)

The proportionality constant k = b0/a0 corresponds to the static sensitivity
introduced in Sect. 3.3. According to (3.3), the response Z(t) is instantaneous,
independently of the speed of variation of X(t). A zero-order instrument is
obviously an ideal model; it is, however, a good approximation for instruments
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whose response is fast with respect to the time variations of the input quantity
X(t).

In first-order instruments, the relation between X(t) and Z(t) is described
by a first-order differential equation:

a1
dZ
dt

+ a0 Z = b0X . (3.4)

The presence of the term a1(dZ/dt) in (3.4) implies that Z cannot instanta-
neously follow the variations of X. A variation of X initially reflects on the
term a1(dZ/dt); the smaller is the coefficient a1, the larger is the derivative
(dZ/dt), and the faster is the variation of Z.

In second-order instruments, the relation between X(t) and Z(t) is de-
scribed by a second-order differential equation, corresponding to the equation
of motion of a damped and forced harmonic oscillator:

a2
d2Z

dt2
+ a1

dZ
dt

+ a0 Z = b0X . (3.5)

In general, the mathematical model of many instruments consists of a
linear differential equation with constant coefficients, whose order represents
the order of the instrument:

an
dnZ
dtn

+ an−1
dn−1Z

dtn−1
+ · · · + a1

dZ
dt

+ a0 Z = b0X . (3.6)

Example 3.26. The mercury-in-glass thermometer can be described, with
good approximation, by a first-order model. Let Tin and T be the input and
output values of temperature, respectively. A difference between the ambient
temperature Tin and the temperature T of the thermometer bulb induces a
heat flux

d̄Q
dt

= − k S
d

(T − Tin) , (3.7)

where t is time, k is the thermal conductivity of the bulb glass, S is the surface
area of the bulb, and d is the glass thickness. The heat transfer induces a
variation of the bulb temperature,

dT = d̄Q/C , (3.8)

where C is the heat capacity of mercury within the bulb. By eliminating d̄Q
from (3.7) and (3.8), one obtains the first-order differential equation relating
T to Tin:

C
dT
dt

+ k
S

d
T = k

S

d
Tin . (3.9)

An experimental test of the validity of the first-order model for the mercury
thermometer is proposed in Experiment E.7 of Appendix E.
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Example 3.27. The spring dynamometer, used for measuring forces, can be
described by a second-order model. The input quantity is the force Fin to
be measured, the output quantity is the displacement Z of the spring end.
The model is based on the equation of motion

∑
Fi = m (d2Z/dt2). The

active forces, in addition to Fin, are the elastic force Fel = −kZ and the
damping force Ffr = −η(dZ/dt). The differential equation connecting Fin to
Z is second-order:

m
d2Z

dt2
+ η

dZ
dt

+ k Z = Fin . (3.10)

First- and Second-Order Instruments

Once the time dependence of the input quantity X(t) is known, the behavior
of the output quantity Z(t) is found by integrating the differential equation
of the instrument. Attention is focused here on the first- and second-order
instruments. Let us first summarize some basics on differential equations; a
more detailed treatment is given in Appendix D.1.

Equations (3.4) and (3.5) are inhomogeneous, because the second member
X(t) is different from zero. By setting X(t) = 0 in (3.4) and (3.5), one obtains
the corresponding homogeneous equations.

The general solution Z(t) of a linear differential equation with constant
coefficients is the sum of two functions:

Z(t) = Ztr(t) + Zst(t) , (3.11)

Ztr(t) being the general solution of the homogeneous equation (the index “tr”
means “transient”)

Zst(t) being one particular solution of the in-homogeneous equation (the in-
dex “st” means “stationary”)

The transient functions Ztr(t), solutions of homogeneous equations, only
depend on the instrument, not on the input quantity X(t).

For the first-order homogeneous equation,

dZ
dt

+ γ Z = 0 , where γ = a0/a1 , (3.12)

one can easily verify that

Ztr(t) = Z0 e−γt . (3.13)

The second-order homogeneous equation can be written in the standard
form of the damped harmonic oscillator:

d2Z

dt2
+ 2γ

dZ
dt

+ ω2
0 = 0 ,

(
2γ = a1/a2; ω2

0 = a0/a2

)
, (3.14)
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where ω0 is the proper angular frequency, and γ is the damping factor. One
can have three different solutions, depending on the relation between γ and
ω0:

γ < ω0 ⇒ Ztr(t) = Z0 e−γt sin(ωst + φ) ,
[
ω2
s = ω2

0 − γ2
]
, (3.15)

γ = ω0 ⇒ Ztr(t) = (Z1 + Z2t) e−γt , (3.16)

γ > ω0 ⇒ Ztr(t) = Z1 e−(γ−δ)t + Z2 e
−(γ+δ)t,

[
δ =

√
γ2 − ω2

0

]
. (3.17)

The parameters γ and ω0 depend on the instrument characteristics. The
parameters Z0, Z1, Z2 depend on the initial conditions.

The solutions Ztr(t) always contain a damping factor, such as exp(−γt).
As a consequence, for t→∞, Ztr(t)→ 0, so that Z(t)→ Zst(t); the solutions
of homogeneous equations have a transient behavior.

The γ parameter measures the quickness of the instrument, say the rate at
which the transient solution dies away and the instrument adjusts its output
to the input quantity. The parameter τ = 1/γ has the dimension of time and
is called the time constant of the instrument. The damping factor is often
expressed as exp(−t/τ).

The stationary solutions Zst of the inhomogeneous equations (3.4) and
(3.5) depend on the input function X(t), and describe the asymptotic behav-
ior for t→∞.
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Fig. 3.10. Response of a first-order instrument to a step input. Top: two possible
inputs. Bottom: the corresponding outputs (continuous lines).
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Response to a Step Input

Let us consider the simple case of a step input (Fig. 3.10, top left),

X(t) =
{
X0 for t < 0 ,
X1 for t ≥ 0 , (3.18)

and suppose that, for t < 0, the instrument is stabilized at the stationary
response Z = (b0/a0)X0.

Example 3.28. A mercury thermometer is initially (for t < 0) in equilibrium
with the environment at temperature T0; at the time t = 0, it is immersed in
a fluid at temperature T1.

Example 3.29. A spring dynamometer is initially unloaded. At time t = 0, a
mass m is suspended from the dynamometer.

Let us inquire about the behavior of the instrument for t > 0. After a
long enough time, mathematically for t → ∞, the transient solution Ztr(t)
dies out and only the stationary solution remains,

Zst =
b0
a0

X1 , (3.19)

which is the same for both first- and second-order instruments.
Let us now sum up the transient and stationary solutions.
For first-order instruments, the transient solution Ztr(t) (3.13) contains

the constant Z0, which depends on the initial conditions, and can be de-
termined by considering the behavior of Z(t) for t = 0. The total solution
is

Z(t) =
b0
a0

(X0 −X1) e−t/τ +
b0
a0
X1 . (3.20)

The output value Z(t) exponentially approaches the stationary value (Fig.
3.10, bottom).

For second-order instruments, the transient solutions Ztr(t) (3.15) through
(3.17) contain two constants (Z0 and φ, or Z1 and Z2), which can be deter-
mined by studying the behavior of both Z(t) and its derivative dZ/dt for
t = 0. Three different behaviors can be distinguished, depending on the rela-
tion between γ and ω0 (Fig. 3.11).

– For γ < ω0, the output Z(t) oscillates around the asymptotic value Zst(t);
the more similar is γ to ω0, the faster is the damping of oscillations.

– For γ > ω0, the output Z(t) exponentially approaches the asymptotic
value Zst(t), without crossing it; the more similar is γ to ω0, the faster is
the approach.

– For γ = ω0, one has the ideal condition of critical damping : the output
Z(t) approaches the asymptotic value Zst(t) in the fastest way, without
crossing.



3.6 Counters 43

0

1

2

3

4

5

-2 0 2 4 6 8 10

In
pu

t  
X

 (
t)

time  (s)

0

1

2

3

4

5

-2 0 2 4 6 8 10

R
es

po
ns

e 
 Z

 (
t)

time  (s)

γ = 0.4 ω
0

0

1

2

3

4

5

-2 0 2 4 6 8 10

time  (s)

γ = ω
0

0

1

2

3

4

5

-2 0 2 4 6 8 10

time  (s)

γ = 2ω
0

Fig. 3.11. Response of a second-order instrument to a step input. Top: input X(t).
Bottom: responses Z(t) for γ = 0.4ω0 (left), γ = ω0 (center, critical damping),
γ = 2ω0 (right). A static sensitivity (b0/a0) = 1 has been always assumed.

3.6 Counters

The instruments considered in previous sections, based on the direct mea-
surement of physical quantities, such as lengths, times, and masses, do not
exhaust all the requirements of a physics laboratory.

As observed in Sect. 1.5, some physical phenomena consist of events ran-
domly distributed in time and/or space. Typical examples are radioactive
decays or elementary particle collisions. However, in spite of the absolute
randomness (or better, as clearer in subsequent chapters, just because of the
absolute randomness), if a large enough number of events is observed, it is
possible to extract regular and significant average properties. These average
properties are physical quantities. Typical examples are the disintegration
constants of radioactive isotopes.

Specific instruments have been devised for measuring physical quantities
connected to random events. Such instruments are obviously based on the
counting of random events, and are characterized by peculiar operating prin-
ciples and performance parameters.

Example 3.30. The Geiger counter is used to count high-energy particles,
such as cosmic rays or products of radioactive decays. The instrument consists
of a metal vessel filled with gas and containing a tungsten filament (Fig.
3.12). Vessel and filament are at different electrical potentials. A high-energy
particle can ionize one or more gas molecules, giving rise to an avalanche of
secondary ionizations. The electrons so produced are collected by the filament
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(anode) and produce a pulse signal, which can be detected as a potential
difference across the resistor R.

R

V

a b

Fig. 3.12. Geiger counter. A potential dif-
ference V is maintained across vessel and
filament. Tracks a and b represent the tra-
jectories of two particles.

A counter transforms every random event into an electrical pulse. The
number of electrical pulses is counted by suitable electronic circuits during a
given time interval.

It is from the number of counts per unit time that one gets the values of
relevant physical quantities. To this aim, because one is dealing with random
events, one needs to use peculiar probabilistic methods, which are treated in
Sect. 6.4. Physical quantities obtained from the counting of random events
are affected by uncertainty, as is any other quantity. The uncertainty due to
the randomness of the events, of purely statistical origin, is studied in Sect.
6.4 as well.

We only observe here that counters, as with any other instrument, can
introduce distortions, and consequently uncertainties. Without going deep
into technical details, it is worth remembering that not all the input random
events are transformed into output pulses, for the following basic reasons.

(a) Some random events can completely escape detection (in the case of
Geiger counters, a particle can cross the vessel without interacting with
the gas molecules).

(b) Two or more events can happen simultaneously, and be counted as a single
event.

(c) After the detection of a random event, a counter requires a finite amount
of time (dead time) before being able to detect a new event; events spaced
by a time interval shorter than the dead time are not distinguished.

The detection efficiency is the ratio between the average number of events
detected in a unit time and the average number of events occurred:

detection efficiency =
counted events
occurred events

.



4 Uncertainty in Direct Measurements

Since Chap. 1, it was stated that a measurement is always affected by un-
certainty. In this chapter, after a general introduction to the different causes
of uncertainty in direct measurements (Sect. 4.1), the different expressions
for uncertainties due to resolution (Sect. 4.2), to random fluctuations (Sect.
4.3), and to systematic errors (Sect. 4.4) are considered separately. At last,
in Sect. 4.5, the different sources of uncertainty are critically compared and
the rules for a standard expression of uncertainty are given.

4.1 Causes of Uncertainty

In Sect. 3.4, a first connection was made between the display resolution ∆X
of an instrument and the measurement uncertainty δX. Actually, the uncer-
tainty is in general influenced by many different factors, which cannot be
reduced to the instrument characteristics:

– difficulty in defining the quantity to be measured
– operating characteristics of the instrument
– interaction between instrument and system under measurement
– interaction between instrument and experimenter
– measurement methodology
– environmental conditions

Example 4.1. The thickness of a metal foil is measured by a micrometer with
display resolution ∆X = 0.01 mm. The measure can be influenced by the
presence of dust between the micrometer rods and the foil (interaction be-
tween instrument and system). If the micrometer has been calibrated at 20◦C
and is used to perform measurements at much lower or much higher temper-
atures, nonnegligible errors can be introduced (environment influence). The
thickness of the metal foil can be different in different parts of the foil (diffi-
culty in defining the physical quantity).

Example 4.2. The period of a pendulum is measured by a manual stopwatch
with display resolution ∆t = 0.01 s. The measure will depend on the quick-
ness of reflexes of the experimenter (interaction between instrument and ex-
perimenter). Moreover, the result can be different according to whether the

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 45
to Data Analysis in the Physics Laboratory, DOI 10.1007/978-0-387-78650-6 4,
c© Springer Science+Business Media LLC 2008
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duration of a single period is measured, or the duration of ten periods is
measured and then divided by ten (measurement methodology).

The different factors that can influence a measure can be classified within
three main categories:

– measurement resolution
– random fluctuations (or “random errors”)
– systematic errors

These three causes of uncertainty are analyzed separately in the following
three sections. A unified procedure for comparing and combining the uncer-
tainties due to different factors is introduced in Sect. 4.5.

It is worth noting that the terms random error and systematic error have
here a particular meaning, and should not be confused with trivial mistakes
(parasitic errors) that are due to carelessness or inexperience, such as ex-
changing a mass of 50 g for a mass of 100 g on a two-pan balance, the wrong
reading of a display, or a calculus error in an indirect measurement. Although
not at all negligible, parasitic errors are not susceptible to formal treatment,
and are not taken into consideration in the following. Their presence has to
be avoided by carefully planning and performing the experiments.

4.2 Measurement Resolution

A first cause of uncertainty is the measurement resolution.

Instrument Resolution and Measurement Resolution

In Sect. 3.4, the display resolution of an instrument was introduced; let us
label it here ∆Xinst. It is convenient to introduce the more general concept of
measurement resolution ∆Xmeas. In many cases, the measurement resolution
corresponds to the display resolution of the instrument.

Example 4.3. The period of a pendulum is measured by a stopwatch with
display resolution ∆tinst = 0.01 s. The measurement resolution is equal to
the instrument display resolution, ∆tinst = ∆tmeas = 0.01 s.

Sometimes, however, the measurement resolution can be reduced with
respect to the instrument resolution by suitable methodologies. Typically,
instead of measuring the quantity X, one measures a multiple nX. The in-
strument display resolution ∆Xinst refers now to the value nX; the mea-
surement resolution of X is n times smaller than the instrument resolution:
∆Xmeas = ∆Xinst/n.

Example 4.4. The period T of a pendulum is again measured by a stopwatch
with display resolution ∆tinst = 0.01 s. The duration ∆T of n = 10 consec-
utive oscillations is measured, and the period is calculated as T = ∆T/10.
The measurement resolution of the period T is thus n = 10 times smaller
than the instrument resolution: ∆tmeas = ∆tinst/10 = 0.001 s.
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Uncertainty Due to Resolution

The result of a measurement is an interval of values whose extension corre-
sponds to the measurement resolution. If Xmin and Xmax are the lower and
upper limits of the interval, respectively:

Xmin ≤ X ≤ Xmax . (4.1)

All X values within the resolution interval are equivalent. One can also say
that they are distributed according to a uniform probability distribution. The
graphical representation of the uniform probability distribution is a rectangle
of width ∆X and unit area (Fig. 4.1). The concepts of probability and prob-
ability distributions, here introduced in a heuristic way, are systematically
treated in Chaps. 5 and 6.

Fig. 4.1. Graphical representation of
the link between resolution interval
and uniform probability distribution,
as well as of the difference between
maximum uncertainty and standard
uncertainty.

As anticipated in Sect. 3.4, the result of a measurement is generally ex-
pressed as

X = X0 ± δX , (4.2)

where:
X0 is the central value of the resolution interval
δX is the uncertainty.

A reasonable choice for the uncertainty δX is the half-width of the reso-
lution interval (Fig. 4.1):

δXmax = ∆X / 2 . (4.3)

The uncertainty defined in (4.3) includes all possible values of X within
the resolution interval; that’s why it is called maximum resolution uncertainty
δXmax.

In Sect. 4.5, it is shown that, in order to guarantee a consistent comparison
with uncertainty due to random errors, a conventional choice different from
(4.3) is preferable, the so-called standard resolution uncertainty
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δXres = ∆X /
√

12 . (4.4)

Maximum uncertainty and standard uncertainty have different meanings, and
their numerical values are different. When quoting a value of uncertainty due
to resolution, it is thus necessary to specify whether the value δX refers to
maximum or standard uncertainty.

Example 4.5. The period T of a pendulum is measured by a stopwatch with
resolution ∆t = 0.01 s. The display shows the value 1.75 s. The measure is
expressed as T = (1.75 ± 0.005) s if the maximum uncertainty is quoted,
according to (4.3), or as T = (1.75 ± 0.003) s if the standard uncertainty is
quoted, according to (4.4).

One can easily verify that, in the above example, the uncertainty cal-
culated through (4.4) has been expressed as a rounded value: 0.01/

√
12 =

0.00288675 ' 0.003. A measurement uncertainty should always be expressed
with one or two significant digits. A larger number of significant digits is
meaningless. A thorough treatment of significant digits and rounding proce-
dures is given in Appendix A.1.

4.3 Random Fluctuations

A second cause of uncertainty is due to random fluctuations (which for his-
torical reasons are often called “random errors”).

Repeated Measurements

Let us consider a physical quantity constant in time, and repeat its measure-
ment many times. Two cases can occur:

(a) All measures fall within the same resolution interval (Fig. 4.2 a).
(b) Different measures randomly fall within different resolution intervals (Fig.

4.2 b).

(b)

(a)

∆X
Fig. 4.2. Schematic representation of two
different situations that can be encountered
when repeating the measurement of a phys-
ical quantity (∆X is the measurement reso-
lution).
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Example 4.6. The height of a paper sheet is measured by a ruler with resolu-
tion ∆X = 1 mm. When the measurement is repeated, all values fall within
the same resolution interval (case (a)).

Example 4.7. The period of a pendulum is measured by a manual stopwatch
with resolution ∆t = 0.01 s. When the measurement is repeated, different val-
ues are randomly obtained, falling within different resolution intervals (case
(b)).

In case (a), the uncertainty δX only depends on the resolution ∆X, and
is quoted as δXmax = ∆X/2 (maximum uncertainty) or δXres = ∆X/

√
12

(standard uncertainty).
In case (b), the discrepancies between different measures of the same

quantity depend on the simultaneous and random influence of many small
factors, each one acting independently of the others on the single measure.
For example:

– Reading errors: inadequacy of the eye separating power, parallax errors,
interpolation errors, synchronization errors, and so on

– Background noise, say the effect of very small variations of influence quan-
tities, like temperature, pressure, humidity, vibrations, and so on

– Inversion errors (difference between results of measurements performed
while the value of the measured quantity is increasing or decreasing)

In case (b), the measurements are said to be affected by random fluctua-
tions (or random errors), which cause an uncertainty larger than the uncer-
tainty due to resolution.

Actually, one can assume that random fluctuations are always present.
Their effect is, however, unnoticed when it is globally smaller than the mea-
surement resolution (Fig. 4.3, a). If, however, the resolution is suitably re-
duced, the effect of random fluctuations becomes dominant (Fig. 4.3, b).

(a)

(b)
Fig. 4.3. Random fluctuations and different
measurement resolutions.

In the remainder of this section, the effect of random fluctuations is con-
sidered as larger than the effect of resolution, and the following question is
faced: how can the uncertainty due to random fluctuations be quantitatively
evaluated in order to express the measure as X0 ± δX?
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To answer this question, it is convenient to introduce some techniques for
representing and treating experimental data, such as histograms and their
statistical parameters, as well as the concept of limiting distribution.

Histograms

Let us suppose that a constant physical quantity X has been measured N
times. Each measure is labeled by an index i (i = 1, . . . , N). Different mea-
sures xi can fall within the same resolution interval. Histograms are a con-
venient way to describe this situation (Fig. 4.4 and Appendix A.4). Every
column of the histogram has a width ∆X equal to the measurement resolu-
tion. The columns are labeled by an index j. The height of the jth column
is proportional to the number n∗j of values within the jth interval (Fig. 4.4,
left). If N is the number of columns, it is easy to check that

N∑
j=1

n∗j = N . (4.5)
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Fig. 4.4. Left: histogram for N = 12 measures; the height of the jth column gives
the number n∗j of measures having value xj . Right: the same histogram, normalized
in height; the height of the jth column gives the sample frequency p∗j = n∗j/N .

The heights of the histogram columns depend on the total number N of
measures. To compare histograms based on different numbers N of measures,
it is convenient to introduce height normalization. In a height-normalized
histogram (Fig. 4.4, right), the height of each column is proportional to the
corresponding sample frequency

p∗j = n∗j/N . (4.6)

One can easily verify that, for whichever number N of measures,

N∑
j=1

p∗j = 1 . (4.7)
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The meaning of the term sample is clarified below in this section. In this
book, the asterisk (*) conventionally labels sample quantities.

Sometimes it is necessary to compare two sets of values of the same quan-
tity obtained from measurements performed with different resolutions, so
that the corresponding histograms have columns of different widths ∆X. In
these cases, it is convenient to introduce the area normalization. In an area-
normalized histogram (Fig. 4.5), the height of each column is proportional to
the sample density

f∗j =
n∗j

N ∆Xj
. (4.8)

It is easy to verify that, for whichever number N of measures, the total area
of the columns is one:

N∑
j=1

f∗j ∆Xj = 1 . (4.9)

The sample frequency p∗ is always dimensionless, while the sample density
f∗ defined in (4.8) always has the dimension of 1/X.

f
j
*

X

f
j
*

X

Fig. 4.5. Two area-normalized histograms for the same set of measures. In the
right-handside histogram, data have been grouped into columns of width double
than in the left-handside histogram.

Statistical Parameters of Histograms

A histogram contains all the amount of information that can be obtained by
measuring a physical quantity N times. Sometimes, however, it is sufficient
to synthesize the main properties of a histogram by a few numerical param-
eters. Only two such parameters are considered here, the first one giving the
average position of the histogram on the x-axis, and the second one giving
the dispersion of the measured values. These two parameters are sufficient
for conveniently expressing the results of measurements affected by random
fluctuations.
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Position Parameter

The position of the histogram (Fig. 4.6, left) is given by the sample mean
m∗, corresponding to the arithmetic average of the N values xi:

m∗ =
1
N

N∑
i=1

xi . (4.10)

Alternatively to (4.10), one can sum over the N histogram columns, charac-
terized by the sample frequencies p∗j :

m∗ =
1
N

N∑
j=1

xjn
∗
j =

N∑
j=1

xj
n∗j
N

=
N∑
j=1

xjp
∗
j . (4.11)

Different equivalent symbols are chosen to represent mean values,

m∗ ≡ m∗x ≡ 〈x〉∗ ≡ m∗[x] ,

in order to guarantee the better readability of the current formula.

Dispersion Parameters

To measure the dispersion of a histogram, one first defines the deviation si
of each value xi from the sample mean:

si = xi − m∗ . (4.12)

The average value of the deviations si is unsuited to measure the dispersion,
because it is identically zero:

〈s〉 =
1
N

N∑
i=1

si =
1
N

N∑
i=1

(xi−m∗) =
1
N

N∑
i=1

xi −
1
N
N m∗ = 0 . (4.13)

A conventional measure of the histogram dispersion is the sample variance
D∗, defined as the average value of the squared deviations s2

i . As with the
sample mean, the sample variance can also be calculated by summing over
all N measured values or over the N histogram columns:

D∗ =
〈
(xi −m∗)2

〉
=

1
N

N∑
i=1

(xi −m∗)2 =
N∑
j=1

(xj −m∗)2 p∗j . (4.14)

The sample variance has the dimension of the square of the quantity X. The
square root of the sample variance, the sample standard deviation σ∗, has
the same dimension of X, and can be directly visualized on the graph (Fig.
4.6, right):

σ∗ =
√
D∗ =

√√√√ 1
N

N∑
i=1

(xi −m∗)2 =

√√√√ N∑
j=1

(xj −m∗)2 p∗j . (4.15)
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Fig. 4.6. Sample mean m∗ (left) and sample standard deviation σ∗ (right) of a
histogram.

Example 4.8. The period of a pendulum is measured N = 20 times by a
stopwatch with resolution ∆t = 0.01 s. The results, grouped in histogram
columns, are listed in Table 4.1. Sample mean, sample variance, and sample
standard deviation are, respectively, m∗ = 1.25 s, D∗ = 2.25 × 10−4 s2, and
σ∗ = 1.5× 10−2 s.

Table 4.1. Distribution of the values of the period of a pendulum (Example 4.8).

Tj [s] n∗j p∗j f∗j [s−1]

1.22 1 0.05 5
1.23 2 0.1 10
1.24 4 0.2 20
1.25 6 0.3 30
1.26 3 0.15 15
1.27 3 0.15 15
1.28 1 0.05 5∑

20 1.00 100

One can easily verify that the variance D∗ is the difference between the
average of the squared values x2

i and the square of the average value 〈x〉:

D∗ =
1
N

N∑
i=1

(xi − 〈x〉)2 =
1
N

N∑
i=1

[
x2
i − 2xi〈x〉+ 〈x〉2

]
=

1
N

N∑
i=1

x2
i − 〈x〉2 = 〈x2〉 − 〈x〉2 . (4.16)

The expression (4.16), alternative to (4.14), is sometimes useful to speed up
the calculations of variance D∗ and standard deviation σ∗.
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Limiting Histogram and Limiting Distribution

It has just been shown that the results of N measurements affected by ran-
dom fluctuations can be represented by a histogram, or, in a more synthetic
although less complete way, by two parameters: sample mean m∗ and sample
standard deviation σ∗.

Let us now suppose that a new set of N measurements is performed on the
same quantity X; one expects to obtain a different histogram, with different
values m∗ and σ∗. By repeating other sets of N measurements, one again
obtains different histograms and different values m∗ and σ∗. The histogram
relative to N measurements and its statistical parameters m∗ and σ∗ have
thus a random character.
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Fig. 4.7. Eight area-normalized histograms, relative to different measurements
of the same quantity. The two left histograms (N = 10 measurements) are very
different. When the number of measurements increases from N = 10 to N = 10000
(from left to right), the histograms progressively lose their random character and
tend to assume a well-defined shape.

It is, however, a matter of experience that when the number N of mea-
surements increases, the histograms tend to assume a similar shape (Fig. 4.7);
correspondingly, the differences between the values m∗ and σ∗ of different his-
tograms tend to reduce. This observed trend leads to the concept of limiting
histogram, towards which the experimental histograms are supposed to tend
when the number of measurements N increases, ideally for N →∞.

The limiting histogram is clearly an abstract idea, whose existence cannot
be experimentally verified (N is necessarily finite). Assuming the existence
of a limiting histogram corresponds to postulating the existence of a regular-
ity in natural phenomena, which justifies the enunciation of physical laws of
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general validity on the grounds of a limited number of experimental observa-
tions.

In many cases, although not always, the histograms of measurements af-
fected by random fluctuations tend to a symmetric “bell” shape when N
increases (Fig. 4.7, right). The limiting histogram is then assumed to have a
bell shape. It is convenient to describe the bell shape of the limiting histogram
by a mathematical model, expressed in terms of a continuous function. To
this aim, the further approximation of shrinking to zero the width of the his-
togram columns is made: ∆x→ 0. By that procedure, the limiting histogram
is substituted by a limiting distribution, corresponding to a continuous func-
tion of continuous variable f(X).

The Normal Distribution

According to both experimental observations and theoretical considerations,
the bell-shaped behavior of the limiting distribution is best represented by
the normal distribution, also called Gaussian distribution, after the name of
the German mathematician C. F. Gauss (1777–1855):

f(x) =
1

σ
√

2π
exp

[
− (x−m)2

2σ2

]
. (4.17)

The parameters m and σ in (4.17) have the same dimension of the variable x.
It easy to verify that m gives the position of the distribution on the x-axis,
whereas σ depends on the width of the distribution (Fig. 4.8).
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Fig. 4.8. Normal distribution (4.17). Left: two distributions with the same standard
deviation σ and different means m. Right: two distributions with the same mean
m and different standard deviations σ.

The function f(x) in (4.17) is dimensionally homogeneous to the sample
density f∗j defined in (4.8). The normal distribution is the limiting distri-
bution of an area-normalized histogram (Fig. 4.7) for both N → ∞ (num-
ber of measurements) and N → ∞ (number of columns, corresponding to
∆xj → 0). One can show thatm and σ are the asymptotic values, forN →∞,
of sample mean m∗ and sample standard deviation σ∗, respectively. To this
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aim, one substitutes p∗ = f∗∆x in the expressions (4.11) and (4.14) of m∗

and D∗, respectively. The limit for N →∞ is obtained by substituting sums
with integrals:

m∗ =
N∑
j=1

xj f
∗
j ∆xj → m =

∫ +∞

−∞
x f(x) dx , (4.18)

D∗ =
N∑
j=1

(xj −m∗)2 f∗j ∆xj → D =
∫ +∞

−∞
(x−m)2f(x) dx .(4.19)

The square root of the variance D is the standard deviation σ =
√
D. The

parameters m and σ are thus the average value and the standard deviation,
respectively, of the limiting distribution.

By substituting the sum (4.9) with an integral, one can easily show that,
like the area of area-normalized histograms, the integral of normal distribu-
tions is also one:

N∑
j=1

f∗j ∆Xj = 1 →
∫ +∞

−∞
f(x) dx = 1 . (4.20)

The properties of the normal distribution are thoroughly analyzed in
Chap. 6. There it is demonstrated that, for any values of m and σ (Fig.
4.9):

The area between m− σ and m+ σ is 0.683
The area between m− 2σ and m+ 2σ is 0.954
The area between m− 3σ and m+ 3σ is 0.997
The total area is 1
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x

m

m + σm - σ

Fig. 4.9. Normal distribution with
m = 5 and σ = 0.8. The area under
the curve between x = m − σ and
x = m + σ is always 0.68, for any
values m and σ.

As with the limiting histogram, the limiting distribution is also an ab-
stract idea, defined for N → ∞ and ∆x → 0. The limiting distribution
cannot be completely determined from experiment. One can only obtain an
approximate knowledge, based on the measurements actually performed. The
higher is the number N of measurements, the better is the approximation.
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The normal distribution (4.17) is actually the best limiting distribution in
many cases, but can never be considered an exact model, in particular in the
tail regions. In fact, the normal distribution is defined over all the real axis
(−∞ < x < +∞), and many physical quantities, such as the period of a pen-
dulum, can only assume positive values; in addition, the normal distribution
is never zero for any value of x.

In spite of these limitations, the hypothesis of existence of a limiting dis-
tribution represents a powerful tool for quantitatively evaluating the results
of a finite set of repeated measurements of a physical quantity. On more
general grounds, the hypothesis that a regular universal behavior can be ex-
trapolated from a necessarily finite number of observations can be considered
at the very basis of the scientific method.

Estimating the Parameters of the Normal Distribution

The results of N repeated measurements of a physical quantity can be con-
sidered as a finite sample of a limiting distribution that ideally corresponds
to an infinite number of measurements.

It is impossible to exactly determine the parameters m and D of a limiting
distribution from a finite sampling. Actually, the sample parameters m∗ and
D∗ have a random character, because their values depend on the particular
sample. One can instead reasonably estimate the parameters m and D of the
limiting distribution from the parameters m∗ and D∗ of a given sample of N
measures. The estimation of parameters is thoroughly treated in Sect. 7.3.
Some relevant results are anticipated here.

Let us suppose that N values of a physical quantity have been measured.

(a) The best estimate m̃ of the mean m of the limiting distribution is the
sample mean m∗:

m̃ = m∗ =
1
N

N∑
i=1

xi . (4.21)

(b) The best estimate D̃ of the variance D of the limiting distribution is not
the sample variance D∗, but

D̃ =
N

N − 1
D∗ =

1
N − 1

N∑
i=1

(xi −m∗)2 . (4.22)

It is evident from (4.22) that D̃ > D∗, the difference decreasing when N
increases. The sample variance D∗ underestimates the limiting variance
D, because it considers the deviations from the sample mean m∗ instead
of the deviations from the limiting mean m.

Starting from (4.22), one can also evaluate the best estimate σ̃ of the limiting
standard deviation σ =

√
D:
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σ̃ =

√
N

N − 1
σ∗ =

√√√√ 1
N − 1

N∑
i=1

(xi −m∗)2 . (4.23)

The value σ̃ of (4.23) is often called the experimental standard deviation, to
distinguish it from the sample standard deviation σ∗.

Example 4.9. To better grasp the difference between σ∗ and σ̃, let us con-
sider three sets containing N = 6, 4, and 2 values xi, respectively, with the
same sample mean m∗ = 5 and standard deviation σ∗ = 1. One can easily
verify that the experimental standard deviation σ̃ (4.23) increases when N
decreases, and becomes progressively larger than σ∗ = 1.

N xi m∗ σ∗ σ̃∗

6 4,4,4,6,6,6 5 1 1.095
4 4,4,6,6 5 1 1.155
2 4,6 5 1 1.410

Example 4.10. If only one measurement is performed, say N = 1, only one
value x1 is obtained, so that m∗ = x1 and σ∗ = 0. According to (4.23),
the experimental standard deviation σ̃ cannot be determined. There is no
possibility of estimating the width of the limiting distribution from only one
measurement.

Distribution of Sample Means

The limiting distribution considered above describes the dispersion of the
single values of a quantity X due to random fluctuations.

Let us now consider M different samples, each one consisting of N mea-
sures. The sample means m∗ of each one of the M samples

m∗1, m∗2, m∗3, . . . m∗M ,

can be represented in a histogram, the histogram of the sample means.
When the number M of samples increases, the histogram of sample means

tends to an increasingly regular shape. One is naturally led to the concept
of a limiting histogram of the sample means (for M →∞), and of a limiting
distribution g(m∗) of the sample means.

One can reasonably expect that the limiting distribution g(m∗) of the
sample means is narrower than the limiting distribution f(x) of the single
measures. One can also expect that the larger the number N of measures
on which each sample mean is calculated, the narrower is the distribution of
sample means (Fig. 4.10).

It is demonstrated in Sect. 6.6 that:
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Fig. 4.10. Top left: limiting normal distribution of single measures, with m = 4 and
σ = 1 (arbitrary units). Top (center and right): corresponding limiting distributions
of sample means m∗, from N = 10 and N = 20 measures, respectively. Bottom left:
an experimental sample of N = 1000 single measures x. Bottom (center and right):
samples of M = 100 mean values m∗ from N = 10 measures and M = 50 mean
values m∗ from N = 20 measures, respectively.

(a) For any limiting distribution of single values f(x) (not necessarily nor-
mal), the distribution g(m∗) of the sample means is to a good approxi-
mation normal, if the number N of measures, over which each mean m∗

is calculated, is large enough.

It is further demonstrated in Sect. 7.2 that:

(b) The mean m[m∗] of the limiting distribution of sample means is equal to
the mean m of the limiting distribution of single measures:

m[m∗] = m . (4.24)

(c) The variance D[m∗] and the standard deviation σ[m∗] of the limiting
distribution of sample means are connected to the variance D and the
standard deviation σ of the limiting distribution of single measures, re-
spectively, by the relations:

D[m∗] =
1
N

D , σ[m∗] =
1√
N
σ , (4.25)

where N is the number of measurements of each sample.

Uncertainty Due to Random Fluctuations

One can now finally solve the problem of expressing in the standard formX0±
δX the result of N repeated measurements affected by random fluctuations.
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If the limiting distribution f(x) of single measures were perfectly known,
one could quote as the true value of the physical quantity the mean of the
limiting distribution, X0 = m. The uncertainty due to random fluctuations
would then be zero, δXcas = 0 (the index “cas” means “casual”, synonymous
with “random”).

Actually, the limiting distribution is never known. One can however as-
sume its existence, and consider the N measures as a limited sample. Because
the sample mean m∗ is the best estimate of the mean m of the limiting dis-
tribution, it is reasonable to assume the sample mean m∗ as the central value
X0:

X0 = m∗ . (4.26)

The sample mean m∗ is a random variable, whose value would randomly
change if the sampling were repeated. The uncertainty δXcas depends on the
randomness of the sample mean m∗, say on the width of the distribution of
sample means.

It has been shown in Sect. 4.2 that the uncertainty due to resolution can
be described by a rectangular distribution of width ∆X (Fig. 4.1), so that a
maximum uncertainty could be defined, δXmax = ∆X/2.

The limiting distribution of sample means is instead normal, without lower
and upper limits, so that a maximum uncertainty cannot be defined. The
width of the distribution of sample means can be measured by the stan-
dard deviation σ[m∗], so that, for random fluctuations, one can only define a
standard uncertainty, proportional to the standard deviation:

δXcas ∝ σ[m∗] . (4.27)

By convention, the standard uncertainty δXcas due to random fluctuations is
assumed equal to the standard deviation of the distribution of sample means:

δXcas = σ[m∗] . (4.28)

Experimental Evaluation of Uncertainty

The procedure for evaluating the uncertainty due to random fluctuations
from a finite set of measures is based on the following logical sequence.

(a) The uncertainty due to random fluctuations is measured by the standard
deviation of the distribution of sample means: δXcas = σ[m∗].

(b) The standard deviation of the distribution of sample means σ[m∗] is in
turn connected to the standard deviation σ of the limiting distribution of
single values by the relation (4.25), σ[m∗] = σ/

√
N .

(c) The standard deviation σ of the limiting distribution of single values can
be estimated, from the finite sample, through (4.23).
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This logical sequence leads to

δXcas = σ̃[m∗] =
1√
N

σ =
1√
N

√
N

N − 1
σ∗

=

√√√√ 1
N(N − 1)

N∑
i=1

(xi −m∗)2 . (4.29)

The estimate σ̃[m∗] is called the experimental standard deviation of the mean.
It is evident that at least two measurements (N > 1) are necessary to evaluate
δXcas.

Let us now go deeper into the meaning of (4.28).
It has been stated that the area under the normal distribution, included

between the values x = m − σ and x = m + σ, is 0.68. If the normal dis-
tribution of sample means, centered in m and with standard deviation σ[m∗],
were a priori known, one would know that the mean m∗ of any sample has a
probability 0.68, say 68%, of falling within the interval m∗ ± σ[m∗].

In real cases, however, it is the sample values m∗ e σ∗ that are known,
and one estimates m. The problem is thus to calculate the probability that
m is within the interval m∗±δXcas, where δXcas is estimated through (4.29),
and not exactly known.

This problem is not trivial, and is solved in Sect. 9.2. Only the main results
are anticipated here. The probability that m is within the interval m∗ ± δX
is 68% only for N → ∞. If N is large, the probability can be assumed, to
a good accuracy, to be 68%. If, however, N is small, the probability can be
significantly less than 68%. It is thus good practice, when expressing the
uncertainty due to random fluctuations, to always quote the number N of
measurements performed.

Note. In this Sect. 4.3, the following convention has been adopted: the
parameters concerning limiting distributions and samples are m,D, σ and
m∗, D∗, σ∗, respectively, whereas m̃, D̃, σ̃ are the corresponding estimates.

4.4 Systematic Errors

Systematic errors, say errors that modify the measure by the same amount
whenever the measurement is repeated, have been introduced in Sect. 3.4
when considering the performance of instruments. Systematic errors can,
however, be due not only to the instrument, but also to the measurement
procedures (Sect. 4.1).

Example 4.11. The period of a pendulum is measured by a retarding stop-
watch. When the measurements are repeated, all measures are reduced by
the same amount (systematic error due to the wrong calibration of the in-
strument).
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Example 4.12. The period of a pendulum is measured by a manual stopwatch,
The measure depends on the difference between the reaction time of the
experimenter when the stopwatch is started and stopped. The difference of
reaction times can have both a random and a systematic component, the
former giving rise to the dispersion of measures, and the latter giving rise to
a constant variation of the measures.

The large variety of situations giving rise to systematic errors prevents
an exhaustive formal treatment. The search for systematic errors and their
elimination is a particularly difficult and delicate task. In the following, some
relevant cases are considered and commented on, without any claim of gen-
erality.

Measurements Repeated in Fixed Conditions

Let us suppose that the measurement of a physical quantity is repeated many
times in the same conditions, say by the same experimenter, by the same pro-
cedure and instrument, at the same site, and within a limited time interval.
Each measure is affected by both random fluctuations and systematic er-
rors. As pointed out in Sect. 4.3, random fluctuations cannot be completely
eliminated, but it is always possible to quantitatively evaluate their effect by
repeating the measurement, and express it through an uncertainty δXcas. On
the contrary, systematic errors cannot be evidenced by repeating the mea-
surement in the same experimental conditions. They can be singled out only
by means of an accurate analysis of the instrument performance and of the
measurement methodology. Let us consider some examples.

1. Sometimes, a careful analysis leads us to find a systematic error of the
measurement methodology. The error can then be eliminated by modify-
ing the methodology, or compensated by suitably correcting the measure.
The correction can always be affected by an uncertainty δXsys, which
contributes to the global uncertainty of the measure.

Example 4.13. One wants to measure the acceleration of gravity g by exploit-
ing the relation T = 2π(`/g)1/2 between period T and length ` of a pendu-
lum, in the small oscillation approximation (Experiment E.5 in Appendix E).
The pendulum is a metal cylinder suspended by a string. Length ` and
period T are directly measured, and then g = (2π/T )2` is calculated. A
careful analysis shows, however, that the period depends also on the os-
cillation amplitude and on the distribution of the cylinder mass. The rela-
tion T = 2π(`/g)1/2 is approximate, and the value g is thus affected by
a systematic error. A more exact, although still approximate, relation is
T = 2π (I/mg`)1/2 [1 + (1/4) sin2(θ0/2)], where I is the moment of iner-
tia of the cylinder with respect to the oscillation axis and θ0 is the oscillation
amplitude.



4.4 Systematic Errors 63

2. In some situations, the leading causes of systematic errors can be singled
out, but it is impossible to exactly evaluate and correct their effect. In
that case, one tries to estimate the extent of the possible systematic errors
and express it as an uncertainty δXsys.

Example 4.14. One wants to measure the electric current I in a branch of an
electric circuit. To this aim, an ammeter is inserted in series in the circuit
branch. The instrument has a nonzero internal resistance Ri and modifies the
characteristics of the circuit. The measured current is Im < I, the difference
Im−I being a systematic error. In principle, if the internal resistance Ri and
the circuit characteristics are known, the systematic error can be evaluated
and corrected. In practice, if the circuit characteristics are not completely
known, it is always possible to estimate an upper limit of the systematic
error.

3. Sometimes, the systematic error is due to an insufficient definition of the
quantity to be measured.

Example 4.15. One wants to measure the dependence of a pendulum period
T on the oscillation amplitude θ0 (Experiment E.6 in Appendix E). To this
aim, pairs of values (θ0, T ) are measured for different values θ0. However,
the amplitude θ0 progressively reduces in time, mainly due to air resistance.
For large θ0 values, the reduction can be nonnegligible within one period T .
The amplitude of oscillation is in this case not well defined. We can face
this situation by considering the actual measure of the amplitude as affected
by a systematic error, and attribute to its value a suitable uncertainty. The
uncertainty could be estimated by measuring the reduction of θ0 within an
oscillation.

Measurements Repeated in Different Conditions: Discrepancy

The search for systematic errors, or at least an estimate of their extent,
is facilitated by comparing measurements carried on in different conditions
(different experimenters, procedures, instruments, sites, and so on). For the
sake of simplicity, the comparison of only two measurements performed in
different conditions, labeled A and B, is considered at first.

Example 4.16. Two experimenters, A and B, measure the period of a pendu-
lum by a manual stopwatch (Experiment E.2 in Appendix E). The systematic
component of reaction times can be different for the two experimenters.

Example 4.17. The elastic constant k of a spring is measured by two pro-
cedures. Procedure A consists of measuring the ratio between applied force
F and deformation x, exploiting the relation F = kx (Experiment E.3 in
Appendix E). Procedure B consists of attaching a mass to an end of the
spring, and measuring the relation between mass m and oscillation period T ,
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exploiting the relation T = 2π(m/k)1/2 (Experiment E.4 in Appendix E).
Both procedures refer to an indirect measurement of the elastic constant
k; the evaluation of uncertainty in indirect measurements is considered in
Chap. 8.

The results of measurements performed by two different procedures A and
B can be expressed as

XA ± δXA , XB ± δXB , (4.30)

where the uncertainties δXA and δXB depend, according to the different
situations, on resolution (Sect. 4.2) or on random fluctuations (Sect. 4.3),
and can include contributions due to already found systematic errors.

Sometimes one of the two uncertainties is much larger than the other one,
δXA � δXB ; this is a typical situation in didactic laboratories, where XA

is measured by students with rudimentary instrumentation whereas XB is a
reference value, quoted in specialized journals or books. In this case, one can
set δXB = 0, and the following considerations are simplified.

The discrepancy of the two measures is the modulus of their difference:
|XA−XB |. One could suppose that the discrepancy is always due to system-
atic errors in at least one of the two measurements. Actually, before drawing
definitive conclusions, one has to compare the discrepancy with the uncertain-
ties of the two measures. An exhaustive treatment of this topic is practically
impossible in view of the large amount of different possible situations. Let us
only give here some simple limiting examples.

1. Both uncertainties of XA and XB are due to resolution, and described
by rectangular distributions of widths ∆XA and ∆XB , respectively. If
the discrepancy is comparable or smaller than the sum of the maximum
uncertainties, say to the half-sum of resolutions (Fig. 4.11, upper left),

|XA −XB | ≤
∆XA + ∆XB

2
, (4.31)

then the values XA and XB can be considered consistent. The discrepancy
|XB − XA| can be attributed to the uncertainty of the single measures
and cannot help in evaluating the systematic errors.

2. Both uncertainties of XA and XB are still due to resolution, but now the
discrepancy is larger than the sum of the maximum uncertainties, say of
the half-sum of resolutions (Fig. 4.11, upper right),

|XA −XB | >
∆XA + ∆XB

2
. (4.32)

The values XA and XB are now inconsistent, and the discrepancy can
generally be attributed to the effect of systematic errors in at least one of
the two measurement procedures.
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Fig. 4.11. Schematic comparison of the measures
of a quantity X obtained by two different pro-
cedures, A and B. The uncertainties are due to
resolution in the upper panels (rectangular distri-
butions) and to random fluctuations in the lower
panels (normal distributions). Left and right pan-
els refer to consistency and inconsistency cases,
respectively.

3. Both uncertainties of XA and XB are due to random fluctuations, and
are described by normal distributions (4.17). There is no maximum uncer-
tainty in this case. The probability of finding values outside the interval
±3σ centered on the mean m is, however, negligible. As a consequence,
if the discrepancy is larger than the sum of the two “3σ” intervals (Fig.
4.11, lower right),

|XA −XB | > 3σA + 3σB , (4.33)

we can consider the values XA and XB as inconsistent, and attribute the
discrepancy to the effect of systematic errors in at least one of the two
measurement procedures.

4. Both uncertainties of XA and XB are again due to random fluctuations,
and described by normal distributions, but now the discrepancy is smaller
than the sum of the two “3σ” intervals (Fig. 4.11, lower left),

|XA −XB | < 3σA + 3σB . (4.34)

In this case, a decision about the consistency of the values XA and XB

is less trivial than in the case of rectangular distributions. Only proba-
bilistic considerations can be done, based on a comparison between the
discrepancy and the width of the normal distributions (this topic is fur-
ther considered in Sect. 9.3). The decision is to a good extent left to the
subjective evaluation of the experimenter.

When dealing with inconsistent measures, before drawing definitive con-
clusions, it is good practice to carefully re-examine both procedures A and
B, to try to find and eliminate the possible systematic errors. To this aim, if
possible, one considers further reference measurements performed by different
experimenters and by different procedures.

Example 4.18. Let us consider again the measurement of the elastic con-
stant of a spring. The possible inconsistency between the results of the two
measurement procedures, static and dynamic (Experiments E.3 and E.4 in
Appendix E), can lead us to reconsider the dynamic procedure. In the rela-
tion T = 2π(m/k)1/2, the mass m measures the inertia of the body attached
to the spring, but does not take into account the inertia of the spring itself.
A more complete relation is T = 2π(M/k)1/2, where M = m+me, me being
an effective mass that takes into account the spring inertia.
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Weighted Average

Before going deeper into the treatment of systematic errors in the case of in-
consistent measures, let us introduce here the procedure of weighted average,
which is currently used to synthesize the results of two or more measurements
repeated in different conditions.

Let us consider at first the case of two measures:

XA ± δXA , XB ± δXB . (4.35)

To calculate a unique average value X0, it is reasonable to take into ac-
count the possible difference of uncertainties δXA and δXB : the smaller is the
uncertainty of a value, the larger should be its contribution to the average.
To this aim, the weights of the values XA and XB are defined as

wA =
1

(δXA)2
, wB =

1
(δXB)2

, (4.36)

and the value X0 is calculated as a weighted average

X0 = Xw =
XAwA + XBwB

wA + wB
. (4.37)

A formal foundation of the procedure of weighted average is given in
Sect. 7.3. There, it is shown that the weighted average (4.37) is rigorously
justified only when the uncertainties can be expressed as standard deviations
of normal distributions. For other distributions, such as the rectangular dis-
tribution describing the measurement resolution, (4.37) can be used as an
approximation, provided the uncertainty is expressed as the standard devia-
tion of the distribution (say as a standard uncertainty).

The uncertainty δXw of the weighted average of two consistent measures
XA and XB , according to the procedures of propagation of uncertainty that
are introduced in Chap. 8, is

δXw =
1√

wA + wB
. (4.38)

Example 4.19. The elastic constant k of a spring is measured both statically
and dynamically (Experiments E.3 and E.4 in Appendix E). The correspond-
ing results are: kA = 10.40 ± 0.04 kg s−2 and kB = 10.37 ± 0.08 kg s−2. The
weights of the two results are wA = 625 s4 kg−2 and wB = 156 s4 kg−2, re-
spectively. The weighted average is k = 10.39± 0.03 kg s−2.

The procedure of weighted average can be generalized to any number of
measures:

Xw =
∑
iXiwi∑
i wi

, where wi =
1

(δXi)2
, (4.39)

and the uncertainty, for consistent measures, is

δXw =
1√∑
i wi

. (4.40)
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Uncertainty Due to Systematic Errors

Let us now consider two measures XA and XB that are inconsistent, due
to the presence of nonnegligible systematic errors in at least one of the two
procedures of measurement.

An average value can always be calculated as a weighted average (4.37),
attributing a larger weight to the measure affected by the smallest uncer-
tainty.

The discrepancy of the two measures can be connected to an uncertainty
δXsys due to systematic errors. The standard uncertainty due to systematic
errors can be evaluated by the same procedure used for random fluctuations in
(4.29), say as the estimated standard deviation of the distribution of sample
means. For two values XA and XB , it is easy to verify, from (4.29), that the
standard uncertainty is

δXsys '
|XA −XB |

2
. (4.41)

This procedure can be generalized to any number of inconsistent mea-
sures XA, XB , XC , . . . , obtained in different conditions. The distribution of
the values XA, XB , XC , . . . is due to the different influence of systematic er-
rors in each experiment. The average value X0 can still be calculated by
the weighted average (4.39). The uncertainty of the weighted average δXw,
calculated through (4.40), only takes into account the uncertainties of sin-
gle measurements XA, XB , XC , . . .. The uncertainty δXsys due to system-
atic errors can instead be evaluated, in analogy with (4.41), starting from
the distribution of values, using the expression (4.29) introduced for random
fluctuations.

Otherwise stated, for a large set of measurements performed in differ-
ent conditions, the systematic errors of the single measures can be formally
treated as random fluctuations; this procedure is sometimes referred to as
randomization of systematic errors.

Example 4.20. In a university laboratory, N groups of students independently
determine the gravitational acceleration g by measuring period T and length
` of a pendulum, and using the relation T = 2π(`/g)1/2. Let gk ± δgk be the
result of the kth group (k = 1, 2, . . . , N). If the results of the different groups
are inconsistent, the discrepancies should be attributed to systematic errors.
Origin and extent of the systematic error of each group is unknown. However,
if the number N of groups is large, it happens that the distribution of values
tends to a normal shape. The uncertainty due to systematic errors can then
be evaluated from the standard deviation of the distribution of values gk.

The consistency or inconsistency of two or more measuresXA, XB , XC , . . .
obtained in different conditions can be a posteriori evaluated by comparing
the uncertainty δXw of their weighted average (4.40) with the uncertainty
calculated from the distribution of the single measures XA, XB , XC , . . . ; if
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the latter is larger, the measures are inconsistent, due to the influence of sys-
tematic errors or to the underevaluation of uncertainties of single measures.

4.5 Summary and Comparisons

Three different causes of uncertainty have been distinguished in previous
sections: the measurement resolution (Sect. 4.2), the dispersion of values due
to random fluctuations (Sect. 4.3), and the estimate of the contributions of
systematic errors (Sect. 4.4). Sometimes the effects of random fluctuations
and systematic errors of instruments are evaluated by the manufacturer, and
one has to take into account also the uncertainty quoted in the operation
manual.

Uncertainty is an intrinsic part of the measure, and must always be ex-
plicitly quoted, for example, in the form X0 ± δX. The definition of the
uncertainty δX has, however, a conventional character, and the very mean-
ing of uncertainty can be different in different situations. Let us here consider
two examples.

1. The uncertainty due to random fluctuations has been assumed equal to
the standard deviation of the distribution of sample means, δX = σ[m∗],
but it could have been instead assumed δX = 2σ[m∗] or δX = 3σ[m∗].

2. The uncertainties due to random fluctuations and to resolution are con-
nected to the width of two very different distributions, normal and rect-
angular, respectively. In the case of resolution, one can further distin-
guish between a maximum uncertainty ∆X/2 and a standard uncertainty
∆X/

√
12.

The lack of homogeneity in the definition and expression of uncertainty
can cause nonnegligible difficulties in some common situations, such as the
following.

(a) The uncertainty of a measure is due to the joint effect of different causes,
such as random fluctuations and systematic errors.

(b) The uncertainty δQ of an indirectly measured quantity has to be expressed
as a function of the uncertainties δX, δY, . . . , in general of different origin,
of the directly measured quantities X,Y, . . .

(c) One compares the measures of the same physical quantity obtained in
different laboratories, which use different conventions to quote the uncer-
tainties.

Following a suggestion of the B.I.P.M. (Bureau International des Poids et
Mesures), in 1995 the I.S.O. (International Organization for Standardization)
has issued some general recommendations for the evaluation and expression
of uncertainty.
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Statistical and Nonstatistical Uncertainty

The I.S.O. recommendations classify the uncertainties according to the meth-
ods of evaluation, rather than to their causes. Two general types of uncer-
tainties are thus distinguished:

– Type A: uncertainties evaluated through statistical methods
– Type B : uncertainties evaluated through nonstatistical methods

Example 4.21. The uncertainty δXcas due to random fluctuations is Type A,
because its evaluation is based on the statistical treatment of a set of N
repeated measurements.

Example 4.22. The uncertainty δXres due to resolution is Type B, because its
evaluation does not refer to statistical methods, but is based on the knowledge
of the resolution interval ∆X.

Example 4.23. The uncertainty δXsys due to the estimation of systematic
errors is generally considered Type B, say of nonstatistical origin. However,
when the estimate is based on the comparison between inconsistent mea-
sures, the uncertainty δXsys should be considered Type A. It is convenient to
associate with the systematic error a model distribution (normal, rectangle,
triangle, etc.) whose shape depends on the available information.

Unified Expression of Uncertainty

The following conventions have been established in order to achieve a unified
expression of uncertainty.

(a) With each cause of uncertainty, a suitable distribution is associated; the
distribution can be of statistical origin (Type A) or a priori assumed on
the base of available information (Type B).

(b) The uncertainty δX is assumed equal to the standard deviation of the
distribution, and is called standard uncertainty.

Example 4.24. The uncertainty δXcas due to random fluctuations is assumed
equal to the standard deviation of the limiting distribution of sample means

δXcas = σ[m∗] , (4.42)

and can be estimated from experimental data through (4.29):

δXcas =

√√√√ 1
N(N − 1)

N∑
i=1

(xi −m∗)2 . (4.43)

The distribution of sample averages is, to a good approximation, normal
(Fig. 4.12, right); the interval from X0 − σ[m∗] to X0 + σ[m∗] contains 68%
of the possible values.
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Example 4.25. The uncertainty δXres due to resolution is associated with a
rectangular distribution, whose base and height are ∆X and 1/∆X, respec-
tively (Fig. 4.12, left). It is shown in Sect. 6.3 that the standard deviation of
the rectangular distribution is σ = ∆X/

√
12, so that

δXres = ∆X /
√

12 . (4.44)

The interval from X0 − δX to X0 + δX corresponds to 58% of the rectangle
area.

Example 4.26. When dealing with systematic errors, the distribution is as-
sumed on the base of available information. If we only know that the value X
cannot be smaller than Xmin and larger than Xmax, it is reasonable to assume
a rectangular distribution (Fig. 4.12, left). If, however, there are good reasons
to think that the central values are more probable than the values near the
extrema Xmin and Xmax, then it is more reasonable to assume a triangular
or a normal distribution (Fig. 4.12, center and left). Once the distribution
has been chosen, its standard deviation can be calculated, according to the
rules that are introduced in Chap. 6, in order to determine δXsys.

0

0.2

0.4

2 4 6 8
X

∆X

σ

2 4 6 8
X

σ

∆X

2 4 6 8
X

σ

6 σ

Fig. 4.12. Three different distributions, normalized to unit area: rectangular (left),
triangular (center) and normal (right). To facilitate the comparison, the distribu-
tions have the same mean m = 5 and similar width. The standard deviation is
σ = ∆X/

√
12 for the rectangle and σ = ∆X/

√
24 for the triangle; for the normal

distribution, the interval of width 6σ centered on the mean includes 99.74% of the
whole area. The percent area included between X = m− σ and X = m+ σ is 58,
65, and 68% for the rectangular, triangular, and normal distributions, respectively.

There are many advantages in defining the uncertainty as the standard
deviation of a probability distribution. In particular, it is possible to com-
pare and, if necessary, coherently compose uncertainties of different origin.
Moreover, many algorithms for statistical data analysis, such as the weighted
average, are based on specific properties of the normal distribution and its
parameters m and σ. If the uncertainty is always identified with a standard
deviation, the algorithms developed for the normal distribution can be ex-
tended, to a good approximation, also to uncertainties of nonstatistical origin.
This topic is further investigated in subsequent chapters.
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The intervals defined by the standard deviation around the central value
X0 cover only part of the possible measurement values (about 68 and 58% for
the normal and rectangular distributions, respectively). In some applications,
typically referring to safety problems, one prefers to connect the uncertainty
to an interval of values corresponding to a probability near to one (proba-
bility one corresponds to certainty). In these cases, one refers to an extended
uncertainty, which corresponds to the standard uncertainty multiplied by
a suitable coverage factor (Sect. 9.3), which is typically 2 or 3 for normal
distributions. Nonstandard uncertainties do not comply with the I.S.O. rec-
ommendations; their use should be limited to cases of necessity and always
accompanied by a warning.

Comparison Between the Different Causes of Uncertainty

The uncertainty due to resolution can always be evaluated. The uncertainty
due to random fluctuations can be evaluated only if measurements are re-
peated. The two types of uncertainty are in general mutually exclusive and
can be compared according to the following considerations.

Let us suppose that a physical quantity X is measured with a resolution
∆X, corresponding to an uncertainty δXres = ∆X/

√
12. Let us further sup-

pose that random fluctuations give rise to a dispersion of values described by
a normal distribution, with standard deviation σx; the corresponding uncer-
tainty is δXcas = σ[m∗] = σx/

√
N , where N is the number of measurements.

When N increases, the uncertainty δXcas decreases as 1/
√
N . It is reasonable

to reduce the uncertainty δXcas by increasing the number N of measurements
only as long as

δXcas > δXres , say
σx√
N

>
∆X√

12
. (4.45)

The measurement resolution always represents a lower limit to uncertainty,
δX ≥ δXres. It is good practice, when possible, to reduce the resolution, or
limit the number N of measurements, so that δXcas > δXres, because the sta-
tistical treatment of random fluctuations, based on the normal distribution,
is much better established.

It is relatively easy to evaluate, and in some cases to reduce, the uncertain-
ties due to resolution and to random fluctuations. However, one should never
neglect the third source of uncertainty, the presence of systematic errors,
which can in some cases become predominant. Evaluating the uncertainty
δXsys due to systematic errors is in general not easy, and requires a critical
and skillful analysis of the full measurement procedure. For that reason, it
happens that δXsys is often underevaluated or neglected completely. In some
cases, however, as pointed out in Sect. 4.4, measurements repeated in dif-
ferent conditions allow a statistical evaluation of the influence of systematic
errors.
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Composition of Uncertainties

The uncertainty due to systematic errors is independent of the uncertainties
due to resolution or random fluctuations. When quoting the uncertainty of
a measure, it is useful to distinguish the two different contributions, δXsys

on the one hand, and δXcas or δXres. In some cases, different independent
causes of systematic errors can be further distinguished, and it can be useful
to separately quote the related uncertainties.

Sometimes, however, an overall expression of uncertainty δXtot is sought,
taking into account the contributions of the different causes (such as δXsys

and δXcas, or δXsys and δXres). In these cases, if all uncertainties have been
expressed as standard deviations of suitable distributions, the overall uncer-
tainty has to be expressed as the quadratic sum of the component uncertain-
ties. For example:

δXtot =
√

(δXcas)2 + (δXsys)2 , (4.46)

or, more generally, if δXi are the different contributions to uncertainty,

δXtot =
√∑

i
(δXi)2 . (4.47)

A justification of the quadratic sum procedure is given in Sect. 8.2.

Alternative Expressions of Uncertainty

Up to now the measures have been expressed in the form X = X0 ± δX,
where the absolute uncertainty δX has the same dimension as the central
value X0.

The uncertainty δX should always be expressed by no more than two sig-
nificant digits, a larger number of significant digits being generally meaning-
less. Correspondingly, the central value X0 should be expressed by a number
of significant digits consistent with the uncertainty (more details on signifi-
cant digits are given in Appendix A.1).

An alternative expression of uncertainty is sometimes used, where the
significant digits corresponding to the uncertainty δX are written in paren-
theses immediately after the central value X0; the uncertainty is referred to
the corresponding last significant digits of the central value X0. For example

` = 2.357(25) m corresponds to ` = (2.357± 0.025) m.
This expression of uncertainty is useful when the uncertainty is much

smaller than the central value, such as for fundamental constants of physics
(Table C.2 in Appendix C). For example, the electron mass quoted as

me = 9.10938188(72)× 10−31 kg

corresponds to

me = (9.10938188± 0.00000072)× 10−31 kg .
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Relative Uncertainty

The quality of a measurement cannot be solely determined by its absolute
uncertainty δX. For example, an absolute uncertainty δX = 1 mm has differ-
ent meaning when referring to a length X0 = 1 cm or to a length X0 = 10 m.
The quality of a measurement is better expressed by the relative uncertainty

δX

|X0|
. (4.48)

The smaller the relative uncertainty is, the higher the quality of the measure-
ment. The modulus |X0| in (4.48) gives a positive value of relative uncertainty
even if X0 is negative. By definition, the relative uncertainty is always a di-
mensionless quantity.

The relative uncertainty can be much smaller than one. To avoid the use
of many decimal digits, the relative uncertainty is sometimes multiplied by
100, and is called percent uncertainty, indicated by %.

If the absolute uncertainty is many orders of magnitude smaller than
the central value, as happens for many fundamental constants of physics
(Table C.2 in Appendix C), the relative uncertainty is multiplied by 106, and
expressed in parts per million (ppm).

Example 4.27. The length of a pendulum, ` = 1.25 m, and the elongation
of a spring, x = 1.2 cm, are measured with the same absolute uncertainty
δ` = δx = 1 mm. The relative uncertainty δ`/` = 8 × 10−4 = 0.08% in the
former case is much smaller than δx/x = 8× 10−2 = 8% in the latter case.

Example 4.28. The electron mass me = 9.10938188(72)× 10−31 kg has a rel-
ative uncertainty δm/m = 8× 10−8, corresponding to 0.08 ppm.

Qualitative Characteristics of Measures

Uncertainty is a quantitative property of a measure, and is expressed by a
numerical value.

Other terms are often used to qualitatively characterize the results of
measurements. The following definitions are consistent with the vocabulary
of metrology terms proposed by a task group of I.S.O. in 1993.

By repeatability one qualifies the closeness of agreement between the re-
sults of successive measurements of the same physical quantity carried out
under the same conditions (procedure, observer, instruments, and location)
and repeated over a short time interval. Repeatability is connected to random
fluctuations.

By reproducibility one qualifies the closeness of agreement between the
results of measurements of the same physical quantity carried out un-
der changed conditions (procedures, experimenters, instruments, sites, and
times).



74 4 Uncertainty in Direct Measurements

By accuracy one qualifies the closeness of the agreement of a measure and
a true value of a physical quantity. A true value means here a value that is
accepted, sometimes by convention, as having an uncertainty suitable for a
given application. For example, for many didactic applications, one can con-
sider as true the values of the fundamental constants of physics periodically
published by the international group CODATA (Table C.2 in Appendix C).

Problems

4.1. Calculate the variance D∗ and the standard deviation σ∗ of the following
sets of six numbers.

(a) 4, 4, 4, 8, 8, 8
(b) 2, 5, 6, 6, 7, 10
(c) 3, 6, 6, 6, 6, 9

For each set of numbers, draw the histogram and compare the difference
between the maximum and minimum values, ∆X = Xmax−Xmin, with twice
the standard deviation 2σ∗.

4.2. The length of N = 20 bolts has been measured by a wernier caliper
with resolution 0.05 mm (see Experiment E.1 of Appendix E). The following
values (in millimeters) have been obtained.

20.00 20.00 19.90 19.95 20.15 19.90 20.05 20.00 20.10 20.10
20.10 20.05 19.90 19.90 20.10 20.05 20.10 19.90 20.00 20.05

Represent the values in a handmade histogram, and calculate mean, variance,
and standard deviation. Plot the height-normalized and area-normalized
histograms.

Notice that here the histogram represents the values of 20 different quan-
tities (the lengths of the 20 bolts), not 20 measures of the same quantity.

4.3. The period of a pendulum has been measured 200 times by a stopwatch
with resolution 0.01 s (Experiment E.2 of Appendix E). The following table
lists the different values Ti of the period (top row) and the corresponding
number ni of measures (bottom row).

Ti 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05
ni 4 4 2 8 15 19 18 19 56 16 10 19 6 3 1

Plot the height-normalized and area-normalized histograms. Calculate
sample mean, sample variance and sample standard deviation.

Estimate the mean and variance of the limiting normal distribution (4.17).
Plot the normal distribution in the same graph as the area-normalized his-
togram.



4.5 Summary and Comparisons 75

Estimate the variance of the distribution of sample means. Evaluate the
uncertainty due to random fluctuations and compare it with the uncertainty
due to resolution. Express the value of the period as T0 ± δT .

4.4. Plot on the same graph the normal distributions (4.17) with m = 0 and
σ = 1, 2, 3, 4.

4.5. Evaluate and compare the relative uncertainties of the fundamental con-
stants listed in Table C.2 of Appendix C.
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The uncertainty of a measure is related to the width of the probabilistic
distribution of its possible values, such as a normal distribution, a rectangular
distribution, or a triangular distribution.

In this chapter, some basic concepts of probability theory are introduced;
they represent a necessary background for the more specific study of the
distributions of random variables and statistical techniques, to which the
subsequent Chaps. 6 and 7 are dedicated, respectively.

5.1 Random Phenomena

The casual dispersion of the results of repeated measurements (Sect. 4.3) is a
typical example of a random phenomenon. In general, a phenomenon is said
to be random or casual if, when reproduced with the same initial conditions,
it goes on with unpredictable outcomes.

Example 5.1. A die is cast many times in the same way. Its trajectory is
casual, and the outcome is unpredictable.

In many physical phenomena, one can single out some central character-
istics that can be described by deterministic laws: once the initial conditions
are known, the development and the final outcome can be precisely predicted.
There are, however, also some secondary characteristics that are impossible,
or inconvenient, to treat according to deterministic laws, and that give rise
to a random behavior; their influence can be of different extent, but is never
completely removable.

Example 5.2. The trajectory of a projectile that is thrown at an angle θ with
respect to the horizontal, with initial velocity v0, can be exactly determined
by the laws of mechanics, once the acceleration of gravity g is known; for
example, the range is s = v2

0 sin 2θ/g. The real trajectory will, however, be
influenced by random secondary factors, such as vibrations, winds, and laying
errors.

Example 5.3. The measurement of a physical quantity is, to a large extent, a
deterministic process. It is, however, impossible to completely eliminate the
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influence of casual fluctuations, and the result of a measurement is an interval
of values instead of a single value.

Some phenomena exist, for which a deterministic treatment is altogether
impossible. In some cases, this is merely due to the complexity of the pheno-
menon; in other cases, typically in atomic and subatomic physics, the phe-
nomenon has a genuine random nature.

Example 5.4. Let us consider a macroscopic volume of gas, say 1 dm3. The
trajectory of one molecule could in principle be described by the laws of classi-
cal mechanics. However, the exceedingly large number of molecules, typically
of the order of 1023, makes a deterministic treatment of their global behavior
impossible. An effective treatment is based on considering the behavior of
each molecule as perfectly random.

Example 5.5. The decay of a radioactive isotope is a genuinely random phe-
nomenon, that by no means can be deterministically predicted.

Finally, some phenomena are expressly designed in order to exhibit ran-
dom characteristics.

Example 5.6. Games of chance are typically based on phenomena whose out-
come is deterministically unpredictable, such as dice tossing or card playing.

Example 5.7. Complex physical systems can sometimes be effectively studied
by computer simulation of their behavior. Some methods are based on the
perfect randomness of the elementary choices performed by the computer at
each simulation step.

The unpredictability, the complexity, and the large number of causes that
characterize random phenomena require specific methods for their treat-
ment. Such methods are based on the theory of probability and on statis-
tics. The possibility of using the rigorous mathematical methods of proba-
bility theory to describe random phenomena is guaranteed by the following
well-established experimental evidence. The outcome of a single random phe-
nomenon is completely unpredictable; the repetition of the phenomenon will
give rise to a random distribution of outcomes. When, however, the number
of repetitions becomes very large, the outcome distribution assumes char-
acteristics of increasing regularity, and the average values of some relevant
quantities become increasingly stable.

Example 5.8. The toss of a coin is a random phenomenon: the outcome, head
or tail, is unpredictable. However, when the number of tosses increases, the
frequency of heads (as well as of tails) tends to stabilize around the value 1/2.

Example 5.9. In a volume of gas in thermodynamic equilibrium, the collisions
of the molecules with the walls of the container are randomly distributed in
space and time. However, if the number of molecules is sufficiently large, their
effect appears as a constant and uniform pressure.
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Example 5.10. The decay of a single radioactive isotope is a genuinely random
phenomenon. However, if a very large number of isotopes is considered, the
time sequence of their decays exhibits a well-defined exponential behavior.

Example 5.11. A single measurement of a physical quantity affected by ran-
dom fluctuations gives a casual value. However, if the measurement is re-
peated a large enough number of times, the distribution of measures tends
to assume a well-defined shape that can be synthesized by two numerical
parameters, the mean and the standard deviation.

5.2 Sample Space. Events

A random phenomenon can have different outcomes. The set S whose ele-
ments are all the possible outcomes of a random phenomenon is called the
sample space. The sample space can have a finite, countable infinite or un-
countable infinite number of elements.

Example 5.12. By tossing a die, one can obtain six outcomes: 1, 2, 3, 4, 5,
6. The sample space is S = {1, 2, 3, 4, 5, 6}. The number of elements of the
sample space is finite.

Example 5.13. A coin is tossed two times. Four outcomes are possible: HT,
TH, HH, TT (H = head, T = tail). The sample space is S = {HT, TH, HH,
TT}. The number of elements of the sample space is finite.

Example 5.14. An experiment consists of repeatedly tossing a coin, until
“head” is for the first time obtained. The possible outcomes are the ele-
ments of the sample space S = {H,TH, TTH, TTTH, TTTTH, . . .}, that is
in biunivocal correspondence with the set of natural numbers {1, 2, 3, 4, . . .},
and has then a countable infinite number of elements.

Example 5.15. The breakdown of the filament of an incandescent lamp is a
random phenomenon, and the lifetime is unpredictable. The sample space is
represented by all possible intervals of time ∆t ≥ 0, and has an uncountable
infinite number of elements.

Any possible subset A of the sample space S is an event : otherwise stated,
an event is a set of possible outcomes (Fig. 5.1, left). An event A is realized
if one of the outcomes belonging to it is realized. The single outcomes are
sometimes called simple events.

Example 5.16. A coin is tossed twice. The sample space is S = {TT, TH, HT,
HH}. The event “one head” is the subset A = {TH,HT} (Fig. 5.1, right).

Example 5.17. A die is tossed ten times. An outcome is a sequence of ten
numbers, included between 1 and 6. There are 610 possible different sequences,
the sample space S has thus 610 elements. Possible events are “6 appears 5
times”, “6 appears 3 times”, “3 appears 2 times and 2 appears 4 times”, and
“4 appears 3 times consecutively”.



82 5 Basic Probability Concepts

A S HH TT
HT
TH

Fig. 5.1. Left: an event A is a subset of the sample space S. Right: sample space
for two tosses of a coin; event A = “head appears once”.

Example 5.18. Let us consider the lifetime of 1000 incandescent lamps. The
sample space is the product of the sample spaces of each lamp, and every
element is represented by 1000 lifetime values. Possible events are “100 lamps
have a lifetime longer than 4000 hours”, “no lamp has a lifetime shorter than
10 hours”, “20 lamps break down within the first 10 hours”.

It is convenient to single out two particular events:

– The certain event A = S (A coincides with the sample space).
– The impossible event A = ∅ (∅ is the empty set).

Example 5.19. A die is tossed. The event “the outcome is a number larger
than 0 and smaller than 7” is certain. The event “the outcome is 8” is im-
possible.

5.3 Probability of an Event

The outcome of a single random phenomenon cannot be predicted in a de-
terministic way. Common experience, however, shows that different events
related to the same phenomenon can happen more or less easily.

Example 5.20. A coin is tossed ten times. We expect that the realization of
the event “the outcomes are 6 tails and 4 heads” is easier than the realization
of the event “the outcomes are 10 heads”.

To quantitatively express the ease of realization, one associates with ev-
ery event a real number P, that is called the probability of the event. By
convention, the extremum values of P are:

P = 1 for the certain event.
P = 0 for the impossible event.

The probability of an event is thus a number included between 0 and 1
(0 ≤ P ≤ 1).

Note 1. The possibility of attributing a probability to every event is rela-
tively easy if the outcomes are a discrete set; if the outcomes are a continuous
set, a less intuitive approach is necessary, that is considered in Chap. 6.
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Note 2. If an event is impossible, its probability is by definition P = 0. On
the contrary, an event with probability P = 0 is not necessarily impossible:
this is the case of continuous events that are treated in Chap. 6.

The problem of attributing a reasonable value of probability P to random
events has been solved through several different empirical rules, which are
considered below in this section. These rules allow the evaluation of the prob-
ability of simple events. Once the probabilities of simple events are known,
the probabilities of complex events can be rigorously calculated by the meth-
ods of the theory of probability, whose basic concepts are considered shortly
in the next sections. The theory of probability is based on an axiomatic def-
inition of probability, that is introduced in Sect. 5.5.

Classical Probability

The first rule for calculating the probability of an event was introduced by
P. S. Laplace (1749–1828). According to this rule, the probability of an event
is evaluated “a priori”, without performing experiments, as the ratio between
the number of outcomes that correspond to the event and the total number
of possible outcomes in the sample space:

P(A) =
number of favorable outcomes

total number of outcomes
=

m

M
. (5.1)

Example 5.21. A die is tossed. The probability that the outcome is “3” is
P(3) = 1/6. In fact, there are M = 6 possible outcomes, m = 1 of which is
favorable.

Example 5.22. A box contains 5 marbles, 2 white and 3 brown. One marble
is drawn: the probability that it is white is P(white) = 2/5. In fact, there are
M = 5 possible outcomes, m = 2 of which are favorable.

The classical rule can be used only if the following requirements are ful-
filled.

1. Of all possible outcomes, one and only one is realized.
2. The possible outcomes have equal likelihood: a given outcome has no

particular advantages with respect to any other outcome.

These requirements can be considered a priori fulfilled only for phenomena
affected by peculiar symmetries. The classical rule is actually inadequate for
many scientific and technological problems. In addition, the requirement of
equal likelihood of the outcomes implies a certain circularity of the classical
rule.
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Statistical Probability

An alternative rule for attributing a probability to a random event, with a
larger range of applications, is connected to the concept of statistical fre-
quency. This rule is called “a posteriori”, because it requires the previous
performance of a number of experiments. Let us suppose that an experiment
is repeated N times, and the event A is realized in n∗ of the N experiments
(n∗ ≤ N); the statistical frequency (or sample frequency) of the event A
relative to the N experiments is the ratio:

p∗(A) =
n∗

N
. (5.2)

The statistical frequency has a random character. If the set of N experiments
is repeated many times, the frequency p∗ assumes different values at each
repetition, in an unpredictable way.

Example 5.23. A coin is tossed 100 times, and the statistical frequency of
“head” is p∗1 = 45/100. The same coin is again tossed 100 times, and now the
statistical frequency is p∗2 = 52/100. And so on.

It is, however, a matter of experience that the relative amplitude of the
random fluctuations of the values p∗ of statistical frequency tends to decrease
when the number N of experiments increases. Otherwise stated, when N
increases, the value of p∗ tends to stabilize. For the cases where the classical
rule (5.1) can be used (such as tossing of dice), one can experimentally verify
that the statistical frequency tends to the probability value of the classical
rule.

Following these considerations, R. von Mises (1883–1953) proposed con-
sidering the probability P(A) of an event A as the limiting value of the
statistical frequency p∗(A) = n∗/N , for N → ∞. This proposal does not
correspond to an operative definition of probability, because N is necessarily
finite in a real experiment. Anyway, it is common practice to express the
probability as

P(A) ' p∗(A) =
n∗

N
, (5.3)

with the understanding that the larger N is, the better is the probability
evaluated through (5.3).

Subjective Probability

Both rules, the classical one (5.1) and the statistical one (5.3), are affected
by logical incoherences and practical difficulties. A tentative solution of these
difficulties is represented by subjective probability (F. P. Ramsay, 1903–1930;
B. de Finetti, 1906–1985), that is, a measure of the degree of confidence that a
given person has in the realization of a given event. Obviously, the subjective
evaluation has always to take into account, although not in a deterministic
way, the results of both classical and statistical rules.
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Example 5.24. A person attributes the probability P = 1/6 to the outcome
“5” when a die is tossed, on the basis of symmetry considerations and of the
experience gained in previous repeated experiments. He thus expects that the
frequency of “5” approaches 1/6 when the number of tosses increases.

Examples

The meaning of the different rules for calculating the probability can be better
grasped by considering some examples.

Example 5.25. A village has M = 2000 inhabitants, of whom m1 = 500 are
younger than 20, m2 = 1100 are between 20 and 60, and m3 = 400 are
older than 60. One name is chosen by chance from the list of the inhabitants.
What is the probability that the chosen person is younger than 20? We can
use here the classical rule, because the outcomes are equivalent and mutually
exclusive. One gets P = m1/M = 500/2000 = 1/4.

Example 5.26. A box contains 2 white and 3 brown marbles. Two marbles
are drawn by chance. We seek the probability that both marbles are brown.
Three different procedures of extraction can be envisaged: (a) the first mar-
ble is repositioned in the box before drawing the second one; (b) the two
marbles are drawn in sequence, without repositioning; (c) the two marbles
are contemporarily drawn. The sample space can be built up for the three
procedures (Fig. 5.2) and the classical rule can be used. The probability that
both marbles are brown is:

(a) P = 9/25 for the drawing with reposition.
(b)P = 3/10 for the drawing in sequence without reposition.
(c) P = 3/10 for the simultaneous drawing.

1 2 3 4 5

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

  12 13 14 15

21    23 24 25

31 32    34 35

41 42 43    45

51 52 53 54

  12 13 14 15

     23 24 25

        34 35

           45

Without repositionWith reposition Contemporarily

Fig. 5.2. Illustrating Example 5.26. The box with the five marbles (left), and the
three sample spaces relative to the three different drawing procedures.

Example 5.27. Mr. White and Mr. Brown agree to meet at a given place be-
tween 11 and 12 a.m. Each of them will arrive at a random time between
11 and 12, and will wait exactly 20 minutes. What is the probability that
Mr. White and Mr. Brown succeed in meeting? The sample space S is rep-
resented by all possible pairs of arrival times of Mr. White and Mr. Brown
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(tW , tB); the event A is the subset of the pairs that satisfy |tW − tB | ≤ 20
minutes. Both sets S and A have an uncountable infinite number of elements.
The probability of meeting can be calculated by the classical rule through a
geometrical argument. Let us consider a Cartesian plane, and represent the
time of arrival of Mr. White and Mr. Brown on the horizontal and vertical
axes, respectively (Fig. 5.3). The sample space S is represented by a square
whose basis is ∆t = 60 minutes, and the event A is represented by the grey
zone. The probability is the ratio between the two surfaces: P = 5/9.

11
11

12

12Mr.White

M
r.

B
ro

w
n

Fig. 5.3. Illustrating Example 5.27. On the hor-
izontal and vertical axes, the times of arrival of
Mr. White and Mr. Brown, respectively.

Example 5.28. The period T of a pendulum is measured N times. The results
are shown in a histogram with column width ∆T = 0.1 s (Fig. 5.4, left and
center). One wants to evaluate the probability that the result of a further
measurement is included between the values 2.2 and 2.3 s. The classical rule
cannot be used here, and one has to rely on the statistical rule. From the
histogram, one can calculate the statistical frequency of the values between
2.2 and 2.3 s, p∗ = 0.223. To evaluate the probability, one assumes P = p∗ =
0.223. A more accurate evaluation of probability is based on the hypothesis
that the limiting distribution is normal (Fig. 5.4, right); mean value m and
standard deviation σ of the normal distribution can be estimated from the
experimental values (Sect. 4.3). The probability P is the area under the
normal distribution corresponding to the interval from 2.2 to 2.3 s; in this
case, P = 0.241. The hypothesis that the limiting distribution is normal
depends, to a certain extent, also on subjective evaluations.

Example 5.29. In a laboratory report, the effect of systematic errors on the
result of a measurement is quoted by simply assessing that the result is
included between the values Xmin and Xmax; no further information is given
on the shape of the distribution of the values X. A reader of the report
assumes that all values within the interval between Xmin and Xmax have the
same probability. This is a typical example of subjective probability.
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Fig. 5.4. Illustrating Example 5.28. Left: height-normalized experimental his-
togram; the heights of the columns correspond to the statistical frequency. Center:
the same histogram, area-normalized; the statistical frequency now corresponds to
the area of the columns. Right: normal distribution bestfitting the experimental
histogram.

5.4 Addition and Multiplication of Events

Two basic operations can be defined on the sample space, addition and mul-
tiplication of events.

Addition of Events

Let us consider two events A and B. A third event C is said to be the sum
of the events A and B, if C occurs whenever A or B occurs. The event C is
the subset of the sample space S, that contains the elements of both the A
and B events. In the language of set theory, C is the union of the A and B
subsets (Fig. 5.5, a, b):

C = A+B or C = A ∪B . (5.4)

Similarly, one defines the sum of more than two events:

C = A1 +A2 +A3 + · · ·+An . (5.5)

Example 5.30. A card is chosen from a deck of 52 cards. If A = “the card is
heart”, B = “the card is diamond”, then C = A + B = “the card is a red
suit”.

Example 5.31. Let us consider the lifetime of an electronic device. If A = “the
lifetime is included between 500 and 2000 hours” and B = “the lifetime is
included between 1000 and 4000 hours”, then C = A + B = “the lifetime is
included between 500 and 4000 hours”.

Multiplication of Events

Let us consider two events A and B. A third event C is said to be the product
of the events A and B, if C occurs whenever both A and B occur. The event
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C is the subset of the sample space S whose elements belong to both the A
and B events. In the language of set theory, C is the intersection of the A
and B subsets (Fig. 5.5, c):

C = AB or C = A ∩B . (5.6)

Similarly, one can define the product of more than two events:

C = A1 A2 A3 · · · An . (5.7)

Example 5.32. A card is chosen from a deck of 52 cards. If A = “the card is
heart” and B = “the card is a face card”, then C = A B = “the card is a
heart face card”.

Example 5.33. Two dice are tossed. The elements of the sample space S are
the 36 possible outcomes (pairs of numbers). The event A = “the sum is
8” corresponds to 5 outcomes. The event B = “two even numbers appear”
corresponds to 9 outcomes. The event C = AB = “two even numbers appear
whose sum is 8” corresponds to 3 outcomes.

A B
A'

B'
A''

B''

)c()b()a(

Fig. 5.5. In (a) and (b), the dotted area is the sum of events A+B and A′ +B′,
respectively. In (c), the dotted area is the product of the events A′′ and B′′.

Mutually Exclusive Events

Two events A and B are said to be mutually exclusive if they cannot oc-
cur contemporarily. In the language of set theory, two events A and B are
mutually exclusive if their intersection is the empty set (Fig. 5.6):

A ∩B = ∅ . (5.8)

Example 5.34. A card is chosen from a deck of 52 cards. The event A = “the
card is heart” and the event B = “the card is a black suit” are mutually
exclusive.

Contrary Events

An event A is said to be contrary to an event A, when A occurs if and only
if A does not occur. In the language of set theory (Fig. 5.6, b):

A ∩A = ∅ , A ∪A = S . (5.9)
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Example 5.35. A die is tossed. If A = “an even number appears”, then A =
“an odd number appears”.

A B

(a) (b)

A A

Fig. 5.6. The events A and B in (a), as well as the events A and A in (b), are
mutually exclusive. The event A in (b) is contrary to the event A, and viceversa.

Complex Events

The operations of addition and multiplication of events, as well as the concept
of contrary events, are useful to decompose complex events into sums and
products of simpler events.

As an example, let us repeat the same trial three times, such as firing three
shots at a target, and suppose that the outcome of each trial is independent
of the outcomes of the other two. The sample space is

S = {123, 123, 123, 123, 123, 123, 123, 123} , (5.10)

where 1, 2, 3 label the positive outcomes, and 1, 2, 3 label the negative out-
comes.

Working on the sample space S can be of little use when there is no
certainty that its elements are equally probable. A more effective approach
consists of separately considering each trial. Let As be the event “the sth trial
has positive outcome”, and As the contrary event “the sth trial has negative
outcome”. The event B = “only one of the three trials is positive” can be
decomposed into sums and products

B = A1A2A3 + A1A2A3 + A1A2A3 . (5.11)

As shown in the next sections, probability theory gives the rules for calculat-
ing the probability of complex events, once the probability of simpler events
is known.

5.5 Probability of the Sum of Events

Let us consider the following problem. If the probability of two events A and
B is known, how can the probability of the sum A+B be evaluated?
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Sum of Mutually Exclusive Events

If the two events A and B are mutually exclusive (A∩B = ∅), the probability
of their sum A+B is the sum of their probabilities (Fig. 5.7 a):

P(A+B) = P(A) + P(B) . (5.12)

Eq. (5.12) can be easily justified in terms of classical probability (5.1):

P(A) =
mA

M
, P(B) =

mB

M
⇒ P(A+B) =

mA +mB

M
. (5.13)

When the classical rule cannot be used to calculate the probability of the
events A and B, (5.12) is considered a priori valid, and is considered one of
the postulates of the axiomatic theory of probability (see below).

The generalization of (5.12) to the sum of many mutually exclusive events
is straightforward:

P(A+B + C + · · ·+ Z) = P(A) + P(B) + · · ·+ P(Z) . (5.14)

Moreover, if A is the contrary of A, then

P(A) + P(A) = P(A+A) = 1 , P(A) = 1− P(A) . (5.15)

Example 5.36. The probability that a lamp breaks down within the first 1000
hours is P(A1) = 0.20; the probability that it works more than 1000 hours
and less than 2000 hours is P(A2) = 0.25. The probability that the lamp
works more than 2000 hours is P(A) = 1 − P(A) = 1 − P(A1 + A2) =
1− P(A1)− P(A2) = 0.55

General Rule for the Sum

If the two events are not mutually exclusive (say A∩B 6= ∅) (Fig. 5.7 b), the
probability of their sum is

P(A+B) = P(A) + P(B)− P(AB) . (5.16)

The general rule (5.16) contains (5.12) as a particular case, inasmuch as
P(AB) = 0 for mutually exclusive events.

For three events A,B,C (Fig. 5.7 c), the probability of the sum is

P(A+B + C) = P(A) + P(B) + P(C)
− P(AB)− P(AC)− P(BC)
+ P(ABC). (5.17)

The generalization to more than three events is straightforward.
To evaluate (5.16) and (5.17), it is necessary to know how to calculate

the probability of the product of events, such as P(AB) and P(ABC). This
problem is considered in Sect. 5.6.
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Fig. 5.7. In (a), the events A and B are mutually exclusive: P(A+B) = P(A) +
P(B). In (b), the events A′ and B′ are not mutually exclusive; if the probabilities
P(A′) and P(B′) are simply summed, the grey area is counted twice. In (c), if
the probabilities P(A′′), P(B′′), and P(C′′) are simply summed, the grey area is
counted twice, and the black area is counted three times.

Axiomatic Definition of Probability

In the axiomatic constructions of the theory of probability, the probability is
defined as a real number P that satisfies the following axioms.

(a) For any event A, P(A) ≥ 0.
(b) For the certain event S, P(S) = 1.
(c) For any pair A,B of mutually exclusive events,

P(A+B) = P(A) + P(B) .

These axioms are the basis for demonstrating the theorems of the theory of
probability, which allow one to calculate the probability of complex events
from the probabilities of simpler events. The probabilities of the simple events
always have to be evaluated by the empirical rules of Sect. 5.3.

5.6 Probability of the Product of Events

Let us now consider the following problem. If the probability of two events A
and B is known, how can the probability of their product AB be evaluated?
In order that the product event AB be realized, it is necessary that both
events A and B are realized. It is thus necessary to verify if and how the
realization of one of the two events, A or B, influences the realization of the
other event, B or A, respectively.

Conditional Probability

The conditional probability P(B|A) of an event B, given A, is the probability
of realization of B under the condition that A is realized. The conditional
probability of B given A is calculated by taking, as a sample space of B, the
set of the outcomes that realize A.
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Example 5.37. Let us consider the toss of a die, and focus on the two events:
A = “the outcome is an even number”, B = “the outcome is a number
less than 6”. By considering the sample space (Fig. 5.8), one can separately
calculate the probability of the two events: P(A) = 1/2 and P(B) = 5/6,
as well as the probability of their product: P(AB) = 1/3. The conditional
probability ofA givenB is P(A|B) = 2/5, whereas the conditional probability
of B given A is P(B|A) = 2/3.

1

3
5

62
4 AB

Fig. 5.8. Sample space of Example 5.37.

Example 5.38. Let us consider again Example 5.26 of Sect. 5.3. A box contains
2 white and 3 brown marbles (Fig. 5.9, left). Two marbles are drawn by chance
in sequence, without reposition. Let us focus on the two events: A = “the
first marble is brown”; B = “the second marble is brown”. By considering
the sample space (Fig. 5.9, center and right), one can easily see that P(A) =
P(B) = 3/5. The conditional probability of B given A is P(B|A) = 1/2; also
the conditional probability of A given B is P(A|B) = 1/2.

1 2 3 4 5

   12 13 14 15
21    23 24 25
31 32    34 35
41 42 43    45
51 52 53 54 A

   12 13 14 15
21    23 24 25
31 32    34 35
41 42 43    45
51 52 53 54 B

Fig. 5.9. Illustrating Example 5.38. On the left, the box containing five marbles.
On the center and on the right, the sample space, where the boxes represent the
subsets corresponding to the events A and B, respectively.

One can easily verify that the symmetric relations

P(A|B) = P(AB)/P(B) , P(B|A) = P(AB)/P(A) (5.18)

are satisfied in the two examples 5.37 and 5.38. One can demonstrate that
the equalities (5.18) have general validity.

Probability of the Product

Making use of the equalities (5.18), the probability P(AB) of the product of
two events A and B can be calculated as the product of the probability of
one of the events by the conditional probability of the other event:
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P(AB) = P(A) P(B|A) = P(B) P(A|B) . (5.19)

Example 5.39. Let us consider again Example 5.37. A die is tossed, and let
us focus on the two events: A = “the outcome is even”, B = “the outcome
is less than 6”. The probability of the product AB = “the outcome is even
and less than 6” is P(AB) = P(A)P(B|A) = P(B)P(A|B) = 1/3.

Example 5.40. Let us consider again Example 5.38. Two marbles are drawn
in sequence without reposition from a box containing 2 white and 3 brown
marbles, and let us focus on the two events: A= “the first marble is brown”;B
= “the second marble is brown”. The probability of the product AB = “both
marbles are brown” is P(AB) = P(A)P(B|A) = P(B)P(A|B) = 3/10.

The probability of the product of more than two events is

P(A1A2 · · ·An) = P(A1) P(A2|A1) P(A3|A2A1) · · · P(An|A1A2A3 · · ·An−1).
(5.20)

Example 5.41. Five cards are chosen from a deck of 52. Let A be the event
“the ith card is a diamond”. The probability that all five cards are diamonds
is P(A1A2A3A4A5) = (13/52) (12/51) (11/50) (10/49) (9/48) = 4.9×10−4.

Independent Events

An event B is said to be independent of an event A, if the probability that
B is realized is independent of the realization of A. If B is independent of A,
A is independent of B as well.

Example 5.42. A die is tossed twice. The outcome of each toss is independent
of the outcome of the other.

Example 5.43. A card is drawn from a deck of 52. The probability of it being
an ace (event B) is independent of the probability of it being a diamond
(event A).

Example 5.44. Two cards are drawn from a deck of 52. The probability that
the second card is an ace (event B) is different according to whether the
first card is an ace (event A) or not (event A). The events A and B are not
independent.

Example 5.45. Two marbles are drawn from a box containing two white and
three brown marbles. Let us focus on the two events: A = “the first marble is
brown”; B = “the second marble is brown”. If the first marble is repositioned
inside the box before drawing the second one, the two events A and B are
independent. If, on the contrary, the first marble is kept outside the box, the
events A and B are not independent.



94 5 Basic Probability Concepts

The last examples can be generalized. The drawings of two or more objects
out of a given set can be done with or without repositioning each object
before drawing the next one. The drawing with and without repositioning
are examples of independent and not independent events, respectively.

For independent events, the conditional probability reduces to the simple
probability:

P(A|B) = P(A) , P(B|A) = P(B) (independent events) , (5.21)

and the probability of the product (5.19) reduces to

P (AB) = P (A) P (B) (independent events) . (5.22)

Example 5.46. Let us consider again Example 5.45 (box containing two white
and three brown marbles). The probability of drawing two brown marbles is
P(AB) = P(A)P(B) = (3/5)(3/5) = 9/25 or P(AB) = P(A)P(B|A) =
(3/5)(2/4) = 3/10 according to whether the first marble is repositioned
within the box or not.

5.7 Combinatorial Calculus

Calculating the probability of complex events from the probabilities of simple
events can be facilitated by some techniques of combinatorial calculus, that
are briefly recalled in this section.

Dispositions

The number of different ways of choosing k objects out of a set of n objects
is called the number of dispositions of n objects of class k, and is indicated
by Dn,k.

To understand how dispositions Dn,k are calculated, it is convenient to
begin by a simple example. In how many ways is it possible to draw k = 2
objects out of a set of n = 3 objects, A,B, and C? One can easily verify that
there are six ways: AB,AC,BC,BA,CA,CB, so that the dispositions are
D3,2 = 6.

The general rule for calculating Dn,k can be found according to the fol-
lowing considerations. Given a set of n objects, there are

n distinct ways of choosing the 1st object
(n-1) distinct ways of choosing the 2nd object
· · ·
(n-k+1) distinct ways of choosing the kth object

As a consequence,

Dn,k = n× (n− 1)× (n− 2)× · · · × (n− k + 1) . (5.23)
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Utilizing the factorial notation

n! = n× (n− 1)× (n− 2)× · · · × 4× 3× 2× 1 , 0! = 1 ,

and multiplying the right-hand side of (5.23) by (n − k)!/(n − k)! = 1, one
gets the more synthetic expression

Dn,k =
n!

(n− k)!
. (5.24)

It is worth noting that two groups of objects that differ solely in the order of
elements, such as AB and BA, are counted as two different dispositions.

Permutations

The permutations Pn of n objects are the different ways of ordering them.
Permutations are a particular case of dispositions:

Pn = Dn,n = n ! (5.25)

Example 5.47. Seven people can be distributed on seven available seats in
P7 = 7! = 5040 different ways.

Example 5.48. During laboratory sessions, a class of 30 students is divided
into ten groups of three students. How many distinct ways of distributing the
students into the ten groups are possible? The permutations of the 30 students
are P30 = 30! For each group, however, 3! permutations are equivalent. The
total number of ways of forming different groups is thus

30!
3! 3! · · · 3!

=
30!

(3!)10
' 4× 1024 .

Combinations

The number of different ways of choosing k objects out of the set of n objects,
without distinguishing the groups of k objects that only differ in their order
(e.g., AB ≡ BA), is called the number of combinations of n objects of class
k, and is indicated by Cn,k.

The combinations Cn,k are calculated by dividing the dispositions Dn,k

(5.24) by the permutations Pk (5.25):

Cn,k =
Dn,k

Pk
=

n!
(n− k)! k!

=
(
n

k

)
. (5.26)

The difference between dispositions and combinations is particularly evident
for k = n, where the dispositions are Dn,n = n!, whereas the combinations
are Cn,n = 1.
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Example 5.49. Let us again consider the drawing, without reposition, of two
marbles from a box containing two white and three brown marbles. The
probability of the event C = “both marbles are brown” has been previously
calculated directly from the sample space, using the classical probability
(Example 5.26), as well as by decomposing the event C into the product
of two simpler events and using the rule for the probability of the product
(Example 5.46). We calculate now the probability of the event C according
to the classical probability, without building up the sample space, but using
the techniques of combinatorial calculus:

P(C) =
number of favorable outcomes

total number of outcomes
=

(
3
2

)
(

5
2

) =
3
10

.

Newton Binomial

An important application of combinatorial techniques is the expression of the
nth power of a binomial, (a+ b)n:

(a+ b)n = (a+ b) (a+ b) · · · (a+ b)︸ ︷︷ ︸
n factors

= an +
(
n

1

)
an−1b + · · · +

(
n

n− 1

)
abn−1 + bn

=
n∑
k=0

(
n

k

)
an−kbk . (5.27)

To understand the last equality, remember that(
n

k

)
=
(

n

n− k

)
and

(
1
0

)
=
(

1
1

)
= 1 .

With reference to (5.27), the expressions
(
n
k

)
are called binomial coefficients.

Problems

5.1. Two dice are contemporarily tossed. Build up the sample space and
verify that the probability of obtaining “7” or “5” as the sum of the two
numbers is P(7) = 1/6 and P(5) = 1/9, respectively.

5.2. Two cards are chosen from a deck of 40 cards. Calculate the total number
of possible outcomes. Verify that the probability of obtaining two aces is P =
1/130. Verify that the probability that only one card is an ace is P = 12/65.
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5.3. A die is tossed twice. Show that the probability of the event B = “the
number 4 appears at least once” is P(B) = 11/36.

Hints: B is the sum of two events: A1 = “4 appears at the first trial”;
A2 = “4 appears at the second trial”. Are the two events mutually exclusive?

5.4. A die is tossed five times. Show that the probability of the event A =
“the number 6 appears three times” is P(A) = 125/3888.

Hints: Using combinatorial techniques, calculate the number of different
equivalent ways of obtaining “6” three times out of five tosses. Then decom-
pose the event A into sums and products of simpler events.

5.5. A box contains ten white and five brown marbles. Four marbles are
extracted by chance, without reposition. Show that the probability of the
event A=“at least one marble is brown” is P(A) = 11/13.

Compare two different procedures.

1. A is the sum of four mutually exclusive events, A = A1 +A2 +A3 +A4,
where Ai= “i brown marbles are extracted”. Suitably decompose each of
the Ai events into sums and products of simpler events.

2. Consider the contrary event A = “no brown marbles are extracted”,
express it as a product A = B1B2B3B4, where Bi = “the ith marble
is white”, and calculate its probability using the rules for the product of
nonindependent events.

5.6. A coin is tossed six times. Show that the probability of the event A =
“the number of heads is larger than the number of tails” is P(A) = 11/32.

Compare two different procedures.

1. Express the event A in terms of sums and products of simpler events.
2. Exploit the symmetry properties of the problem, by comparing the prob-

abilities of the three mutually exclusive events, A = “more heads than
tails”, B = “three heads and three tails”, C = “more tails than heads”,
and directly evaluating the probability of B.



6 Distributions of Random Variables

In Chap. 5, the basic concepts of probability theory have been presented in
terms of events and probabilities of events. An alternative approach is based
on random variables and distributions of random variables. Some probability
distributions have already been phenomenologically introduced in Chap. 4. In
this chapter, the general properties of the distributions of random variables
are explored, and some of the distributions that are particularly relevant in
data analysis procedures are studied in detail.

6.1 Binomial Distribution

The binomial distribution plays a central role in probability theory. It is used
here to introduce the general topic of random variables and their distributions
in a heuristic way.

Repeated Independent Trials

Let us consider an experiment where each trial can have only two possible
outcomes, positive or negative, and let

p the probability of positive outcome.
q = 1− p the probability of negative outcome.

Let us now suppose that the experiment is repeated many times, and the
outcome of each repetition is independent of the previous outcomes. Our goal
is to evaluate the probability that, out of n experiments, k have a positive
outcome (and n− k a negative outcome). To this aim, let us first consider a
simple example.

Example 6.1. Three bullets (n = 3) are shot at a target. The probability of
hitting the target is p at each shot. What is the probability of hitting the
target two times (k = 2)? Let us introduce the notation:

Event B = two shots out of three hit the target.
Event Ai = the ith shot hits the target.
Event Ai = the ith shot does not hit the target.

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 99
to Data Analysis in the Physics Laboratory, DOI 10.1007/978-0-387-78650-6 6,
c© Springer Science+Business Media LLC 2008
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The event B can be decomposed into sums and products, B = A1A2A3 +
A1A2A3 + A1A2A3, and, because the events Ai are independent, P(B) =
pp(1− p) + p(1− p)p+ (1− p)pp = 3p2(1− p).

The problem of repeated trials can be generalized as follows. The event
Bk=“k outcomes out of n are positive” is the sum of

(
n
k

)
combinations of

mutually exclusive events. Each one of the
(
n
k

)
terms is in turn the product

of n independent events: k with positive outcome, and n − k with negative
outcome. Making use of (5.12) for the probability of the sum of mutually ex-
clusive events, and of (5.22) for the probability of the product of independent
events, one finds the probability of Bk:

P(Bk) =
(
n

k

)
pkqn−k . (6.1)

Example 6.2. A die is drawn n = 7 times. What is the probability of the event
B2 = “the number 3 appears two times”? The probability of the outcome “3”
for a die is p = 1/6. According to (6.1),

P(B2) =
(

7
2

)(
1
6

)2(5
6

)5

= 0.234 .

The Binomial Distribution

In an experiment consisting of n independent trials, each one with probability
p of positive outcome, the number k of positive outcomes can be considered
as an integer variable, assuming the values 0 ≤ k ≤ n. The probability that
k out of n outcomes are positive is thus a function of the integer variable k:

Pnp(k) =
(
n

k

)
pk qn−k . (6.2)

The probability function (6.2) is called a binomial distribution, because (6.2)
is a term of the Newton binomial expansion (5.27), or Bernoulli distribution,
after the name of the Swiss mathematician J. Bernoulli (1654–1705).

The binomial distribution depends on two parameters, n and p, that in
(6.2) appear as indexes of P. To simplify the notations, the indexes n and p,
when not strictly necessary, are omitted in the following.

By summing the terms of the binomial distribution for all values of k from
0 to n, one gets

n∑
k=0

P(k) =
n∑
k=0

(
n

k

)
pkqn−k = (p+ q)n = 1n = 1 . (6.3)

Actually, the sum of the probabilities of all the possible events is the proba-
bility of the certain event, say 1. This normalization condition holds for all
probability distributions.
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When p = 0.5, also q = 0.5, and the binomial distribution becomes P(k) =(
n
k

)
0.5n, and is symmetrical with respect to k = n/2.

Example 6.3. The binomial distributions for n = 6 repeated trials and differ-
ent values of the trial probability p are shown in Table 6.1 and in Fig. 6.1.

Table 6.1. Binomial distributions for n = 6 and different values of p (Example
6.3). Each line corresponds to one of the possible events.

p = 0 p = 0.1 p = 0.3 p = 0.5 p = 0.9

P(k = 0) 1 0.531 0.118 0.015 1×10−6

P(k = 1) 0 0.354 0.302 0.094 5×10−5

P(k = 2) 0 0.098 0.324 0.234 0.001
P(k = 3) 0 0.015 0.185 0.312 0.015
P(k = 4) 0 0.001 0.059 0.234 0.098
P(k = 5) 0 5×10−5 0.010 0.094 0.354
P(k = 6) 0 1×10−6 7×10−4 0.015 0.531

n=6

0

0.2

0.4

0.6

0 1 2 3 4 5 6

P(k)

k

p=0.1

p=0.3

0

0.2

0.4

0.6

0 1 2 3 4 5 6
k

p=0.9

p=0.5

Fig. 6.1. Binomial distributions for n = 6 and different values of p (Example 6.3).
The function P(k) is defined for integer values of k: the dashed lines are only a guide
to the eye. For p = 0.5, the distribution is symmetrical with respect to k = np = 3.

Example 6.4. When a coin is tossed, the probability of “head” is p = 0.5. We
want to evaluate the probability that, when the coin is tossed n times, one
obtains exactly n/2 “heads”. The binomial distribution giving the probability
of k “heads” out of n tosses is shown in Fig. 6.2 for different values of n. The
distributions of Fig. 6.2 (left) have the maximum for k = n/2; however, when
n increases, the probability of obtaining exactly k = n/2 “heads” progres-
sively decreases. This fact, apparently surprising, can be better understood
by considering the distribution as a function of the frequency k/n, instead of
k (Fig. 6.2, right). When n increases, the values k/n become more and more
densely packed, and the values corresponding to a nonnegligible probability
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group around the central value k/n = p = 0.5. Otherwise stated, the fluctu-
ations of the frequency k/n with respect to the central value k/n = p = 0.5
become progressively smaller.

p=0.5

0

0.1

0.2

0 10 20 30

P(k)

k

n=10

n=24

n=50

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

P(k/n)

k/n

n=10

n=24

n=50

Fig. 6.2. Illustrating Example 6.4. Left: binomial distributions with probability
p = 0.5 for different values of n. Right: the same distributions plotted as a function
of the normalized frequency k/n. (The dashed lines are only a guide to the eye.)

Example 6.5. Let us consider two segments, the first one, AD, of length `,
and the second one, BC, of length s = `/5, contained within the first one.
The probability that a point, chosen by chance within the segment AD, is
contained in BC, is p = s/` = 0.2. Let us now consider n points chosen by
chance in AD; the probability that k out of n points are contained in BC is
given by the binomial distribution

P (k) =
(
n

k

)
pk qn−k .

Some binomial distributions for p = 0.2 are shown in Fig. 6.3. The distri-
butions are asymmetrical, but the asymmetry decreases when n increases.
The problem is formally identical if AD and BC are time intervals instead of
segments, and is further considered when studying the Poisson distribution
(Sect. 6.4).

The Limiting Case n = 1

A particular case of binomial distribution is encountered when n = 1, say
when only one trial is attempted. The possible outcomes are two, positive or
negative. Correspondingly, the random variable can only assume the values
k1 = 0 or k2 = 1. The binomial distribution is:

P(0) = 1− p = q , P(1) = p . (6.4)
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p=0.2
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Fig. 6.3. Illustrating Example 6.5. Binomial distributions for p = 0.2 and different
values of n. The asymmetry decreases when n increases. (The dashed lines are only
a guide to the eye.)

Binomial Distribution for Histogram Columns

An interesting application of the binomial distribution concerns the height of
the histogram columns. Let us suppose that the measurement of a quantity
X has been repeated N times, and the corresponding histogram has been
drawn (Sect. 4.3). Consider now the jth column of the histogram, where n∗j
measurements have been recorded (Fig. 6.4). If the N measurements were
repeated, different histograms with different n∗j values would be obtained; n∗j
is then a random variable. The histogram is a sample of the limiting distri-
bution of the X variable. The probability pj that a measure x is within the
jth interval of the histogram can be calculated from the limiting distribution.
The probability that n∗j values are found within the jth interval is given by
the binomial distribution:

PNpj
(n∗j ) =

(
N

n∗j

)
p
n∗j
j q

N−n∗j
j . (6.5)

n*

X

j-th
column

n*

X

n
j
*

n
j

Fig. 6.4. Left: histogram for N repeated measurements of a quantity X. Right:
the height n∗j of the jth column is a random variable that follows the binomial
distribution.
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6.2 Random Variables and Distribution Laws

The present section is dedicated to a generalization of the concepts introduced
in the previous Sect. 6.1. A random variable (r.v.) is a quantity that, in a
given experiment, can assume an unpredictable value, within a set of possible
values.

Example 6.6. Let us consider again the problem of repeated trials that led to
the binomial distribution in Sect. 6.1. If a trial is repeated n times, N = n+1
events have to be considered, corresponding to k = 0, 1, 2, . . . , n positive
outcomes, respectively. The n + 1 events can be represented by a random
variable K, that can assume all the N integer values from 0 to n.

A discrete random variable can assume a finite or a countably infinite
number of values. For example, the number of “heads” obtained when a coin
is tossed ten times is a discrete random variable that can assume only a finite
number of values; the number of times a coin has to be tossed before “head”
is obtained for the first time, is again a discrete random variable that can,
however, assume a countably infinite number of values.

A continuous random variable can assume an uncountably infinite number
of values. The lifetime of an electronic device is an example of a continuous
random variable.

In the following, attention is mainly focused on the random phenomena
that can be described by one random variable. In Sect. 6.8, random phenom-
ena described by two or more random variables are briefly considered.

Distributions of Discrete Random Variables

A discrete random variable K can assume a finite or a countably infinite
number of values k1, k2, . . . , kj , . . .

A distribution law of a discrete random variable gives a value of proba-
bility for each value of the random variable:

P(kj) = pj . (6.6)

For a complete system of mutually exclusive events, the normalization con-
dition holds: ∑

j
pj = 1 . (6.7)

The binomial distribution Pnp(k) previously introduced in Sect. 6.1 is an
example of a distribution of discrete random variable that can assume a finite
number N = n+ 1 of possible values: k = 0, 1, 2, . . . , n.

An example of a discrete random variable that can assume a countably
infinite number of values is given in Problem 6.3. Another important case,
the Poisson distribution, is considered in Sect. 6.4.
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Distributions of Continuous Random Variables

A continuous random variable X can assume an uncountably infinite number
of possible values x. One cannot express the distribution law of a continuous
random variable in terms of a simple correspondence law such as (6.6). Ac-
tually, it is shown below that, for a single value of a continuous variable, it
is always P(x) = 0.

To express a distribution of a continuous random variable, two mathe-
matical instruments can be used:

1. The cumulative distribution function (or simply distribution function)
F (x)

2. The probability density f(x), corresponding to the first derivative of the
distribution function: f(x) = dF (x)/dx

The cumulative distribution function F (x) gives the probability that the
random variable X has a value not larger than x (Fig. 6.5, left):

F (x) = P(X ≤ x) . (6.8)

The cumulative distribution function has the following properties:

(a) F (x) is a nondecreasing function of x: x1 < x2 ⇒ F (x1) ≤ F (x2) .
(b) When x→ −∞, F (x)→ 0 .
(c) When x→ +∞, F (x)→ 1 .

The cumulative distribution function can also be defined for a discrete
random variable K (Fig. 6.5, right):

F (k) = P(K ≤ k) =
∑
ki≤k

P(ki) . (6.9)

0

0.5

1F(x)

x

Continuous random variable

0

0.5

1

0 2 4 6 8 10

F(k)

k

Discrete random variable

Fig. 6.5. Examples of cumulative distribution functions. Left, for a continuous r.v.
X. Right, for the discrete r.v. K of a binomial distribution with n = 10 and p = 0.2.

If the cumulative distribution function F (x) of a continuous random vari-
able X is known, then the probability that X is included between two values
x1 and x2 is (Fig. 6.6, left):
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P(x1 < X ≤ x2) = P(X ≤ x2)− P(X ≤ x1) = F (x2)− F (x1) . (6.10)

According to (6.10), by progressively reducing the width of the interval
x2 − x1, one finds

P(x1) = lim
x2→x1

[F (x2)− F (x1)] = 0 . (6.11)

For a continuous random variableX, the probability of a given value x1 is thus
always zero. This fact does not mean that the value x1 cannot be obtained
in a real experiment; it means instead that, when the number of repeated
experiments increases, the relative frequency of the value x1 progressively
reduces to zero.

Because the probability of a single value x is always zero, it is equivalent,
in (6.10), to write P(x1 < X ≤ x2) or P(x1 ≤ X ≤ x2).

By definition, an impossible event has zero probability, P = 0, and the
certain event has unit probability, P = 1. Notice, however, that an event
with zero probability is not necessarily impossible, and an event with unit
probability is not necessarily certain.

F(x)

x

Cumulative distribution function

x
1

x
2

x

f(x)

x
1

x
2

Probability density

Fig. 6.6. Cumulative distribution function (left) and probability density (right)
for a continuous random variable X.

The probability density f(x) of a continuous random variable X is the
first derivative of the cumulative distribution function F (x):

f(x) = lim
∆x→0

F (x+ ∆x)− F (x)
∆x

=
dF
dx

. (6.12)

The probability that the random variable X has a value included between x1

and x2 is the integral of the probability density f(x) calculated from x1 to
x2 (Fig. 6.6, right):

P(x1 ≤ X ≤ x2) =
∫ x2

x1

f(x′) dx′ = F (x2)− F (x1) . (6.13)

Conversely, the cumulative distribution function F (x) is obtained from the
probability density by integration:
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F (x) =
∫ x

−∞
f(x′) dx′ . (6.14)

One can easily verify that:

(a) The probability density f(x) is always nonnegative, f(x) ≥ 0 .
(b) The total area below the curve f(x) is one, because it corresponds to the

probability of the certain event (normalization condition):∫ +∞

−∞
f(x) dx = 1 . (6.15)

From the dimensional point of view, the probability density is the ratio be-
tween a probability, say a pure number, and the random variable. The prob-
ability density then has the inverse dimensions of the random variable.

Example 6.7. Uniform distribution. The uniform distribution (Fig. 6.7) is
characterized by the following probability density.

f(x) =

 0 for x < x1 ,
C for x1 ≤ x < x2 ,
0 for x ≥ x2 ,

(6.16)

where C is a constant whose value depends on the normalization condition:∫ +∞

−∞
f(x) dx = 1 ⇒ C =

1
x2 − x1

. (6.17)

By (6.14), one can easily verify that the cumulative distribution function is

F (x) =


0 for x < x1 ,
x− x1

x2 − x1
for x1 < x < x2 ,

1 for x ≥ x2 .

(6.18)

A uniform distribution has been used in Sect. 4.2 to represent the results of a
single measurement of a physical quantity. The width of the interval x2 − x1

corresponds to the resolution ∆x of the measurement.

Example 6.8. The normal distribution introduced in Sect. 4.3,

f(x) =
1

σ
√

2π
exp
[
− (x−m)2

2σ2

]
, (6.19)

is a probability density for the continuous random variable X. The properties
of the normal distribution are studied in Sect. 6.5.
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Fig. 6.7. Uniform distribution: probability density (left) and cumulative distribu-
tion function (right).

6.3 Numerical Characteristics of Distributions

A distribution law, such as a cumulative distribution function F (x) or a
probability density f(x), completely characterizes the behavior of a random
variable. In many cases, however, complete knowledge of the distribution is
not required, and a few numerical parameters describing its main properties
are sufficient.

Position Parameters

Several parameters can be used to characterize the position of the distribution
along the axis representing the random variable. The most important position
parameter is the mean (or average value or expected value).

For a discrete random variable K, the mean is defined as

mk = 〈k〉 =
∑

j
kjpj , (6.20)

where the index j spans the possible values of K. Eq. (6.20) is a weighted
average (Sect. 4.4): the values kj of the discrete random variable are weighted
by their probabilities pj . The sum over the weights, which appears at the
denominator of (4.39), is omitted here, because

∑
pj = 1.

The definition of the mean (6.20) is formally similar to the expression of
the sample average of N experimental values (4.10), introduced in Sect. 4.3:

m∗k =
1
N

N∑
j=1

kjnj =
N∑
j=1

kjp
∗
j , (6.21)

where index j spans the N histogram columns and p∗j is the statistical fre-
quency of the value kj . The connection between (6.21) and (6.20) is based on
the concept of statistical probability (Sect. 5.3):

lim
N→∞

p∗j = pj , whence lim
N→∞

m∗k = mk .

For N →∞, the sample mean m∗k tends to the mean mk.
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For a continuous random variable X, the mean is defined as

mx = 〈x 〉 =
∫ +∞

−∞
x f(x) dx , (6.22)

where f(x) is the probability density.
Comparing (6.20) with (6.22), one can notice that the sum is substituted

by an integral, the value kj of the discrete random variable K is substituted
by the value X of the continuous random variable, and the probability pj is
substituted by the differential probability f(x) dx.

0
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Symmetric distribution
f(x)

x
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Asymmetric distribution

x
0 2 4 6 8 10

Bimodal distribution

x

Fig. 6.8. Left: unimodal symmetric distribution; mean, mode and median coincide.
Center: asymmetric distribution, right tailed; mode (dashed line), median (dotted
line), and mean (continuous line) have different values. Right: bimodal distribution.

Two other position parameters are frequently used (Fig. 6.8).
The mode is the value of the random variable corresponding to the maxi-

mum value of the probability (for discrete random variables) or of the proba-
bility density (for continuous random variables). Distributions characterized
by two or more maxima are called bimodal or manymodal, respectively.

The median is defined as follows. The probability that the random variable
has a value smaller than the median is equal to the probability that the
random variable has a value larger than the median.

Dispersion Parameters

In addition to position, another important characteristic of a distribution is
its width. The parameters most frequently used to measure the width of a
distribution are the variance D and its square root, the standard deviation
σ =
√
D (Fig. 6.9, left).

For a discrete random variable K, the variance is defined as

Dk =
〈

(k −mk)2
〉

=
∑

j
(kj −mk)2 pj , (6.23)

and the standard deviation is defined as
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σk =
√
Dk =

√∑
j
(kj −mk)2 pj . (6.24)

As with the mean, also with the variance and standard deviation one can
notice the formal similarity of (6.23) and (6.24) with (4.14) and (4.15), which
define the sample variance D∗ and the sample standard deviation σ∗ of a
histogram, respectively.

For a continuous random variable X, the variance is defined as

Dx =
〈

(x−mx)2
〉

=
∫ +∞

−∞
(x−mx)2 f(x) dx , (6.25)

and the standard deviation as

σx =
√
Dx =

√∫ +∞

−∞
(x−mx)2 f(x) dx . (6.26)

An alternative but equivalent expression of the variance, valid for both dis-
crete and continuous random variables, can be obtained by the same proce-
dure used for the sample variance in (4.16) (Sect. 4.3):

Dk = 〈k2〉 − 〈k〉2 , Dx = 〈x2〉 − 〈x〉2 . (6.27)

It is worth noting that the standard deviation has the same dimensions as
the random variable, whereas the variance has the dimensions of the square
of the random variable.

0 2 4 6 8 10
x (arb. units)

f(x) m

σ

0 2 4 6 8 10

Γ

max

max
2

x (arb. units)

Fig. 6.9. Dispersion parameters: standard deviation σ (left) and full width at
half maximum Γ (right). For the distribution in the figure, σ = 1.96, Γ = 4.16,
γ = Γ/2 = 2.08 (arbitrary units).

Another parameter sometimes used to measure the width of a distribution
is the full-width at half maximum (FWHM) Γ , say the width of the distribu-
tion measured in correspondence to half its maximum value (Fig. 6.9, right).
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Alternatively, one sometimes quotes the half-width at half maximum γ = Γ/2.

The FWHM is typically used when the variance of a distribution cannot be
defined, because the integral (6.25) is not convergent. An important example
is the Cauchy–Lorentz distribution, that is considered in Sect. 6.7.

Moments of a Distribution

By generalizing the definitions of mean and variance, one can introduce two
families of numerical parameters, the initial moments and the central mo-
ments. The knowledge of one of the two families completely characterizes a
distribution (position, width, and shape).

The initial moment of order s, αs, is the mean value of the sth power of
the random variable. For discrete random variables,

αs = 〈ks〉 =
∑

j
ksjpj . (6.28)

For continuous random variables,

αs = 〈xs〉 =
∫ +∞

−∞
xs f(x) dx . (6.29)

The mean is the initial moment of order one: mk = α1(K); mx = α1(X).
A general method for calculating the initial moments of distributions is

presented in Appendix D.2.

The family of central moments is built up from the deviation s of the
random variable with respect to its mean:

sj = kj −mk or sx = x−mx .

The central moment of order s, µs, is the mean of the sth power of the
deviation with respect to the mean. For discrete random variables,

µs = 〈(k −mk)s〉 =
∑

j
(kj −mk)spj . (6.30)

For continuous random variables,

µs = 〈(x−mx)s〉 =
∫ +∞

−∞
(x−mx)s f(x) dx . (6.31)

Central moments µ and initial moments α are connected by simple linear
relations. For the low-order moments, the relations are given in (D.37) of
Appendix D.2.

Notice that both initial and central moments of a given order s only
exist if the integrals (6.29) and (6.31) for continuous variables, or the series
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(6.28) and (6.29) for discrete variables with an infinite number of values, are
convergent.

Let us now consider in some detail the meaning of the central moments of
low order. For simplicity, only the case of discrete random variables is consid-
ered here, the extension to continuous random variables being straightforward
(substitution of sums by integrals).

The central moment of order 0 is always equal to 1 (normalization con-
dition):

µ0 =
∑

j
(kj −mk)0pj =

∑
j
pj = 1 . (6.32)

The central moment of order 1 is always zero:

µ1 =
∑

j
(kj −mk)pj =

∑
j
kjpj − mk

∑
j
pj = 0 . (6.33)

The central moment of order 2 is the variance (6.23):

µ2 = Dk =
∑

j
(kj −mk)2pj . (6.34)
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Fig. 6.10. Two asymmetric distributions with skewness β = µ3/σ
3 positive (left)

and negative (right), respectively.

The central moment of order 3,

µ3 =
∑

j
(kj −mk)3pj , (6.35)

as with all central moments of odd order, is zero for distributions symmetrical
with respect to the mean, and can then be used to measure the asymmetry.
The standard measure of asymmetry is the dimensionless skewness coefficient,
defined as

β = µ3/σ
3 . (6.36)

The coefficient β is positive or negative according to whether the tail of the
distribution points to the right or to the left (Fig. 6.10).

The central moment of order 4,
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µ4 =
∑

j
(kj −mk)4pj , (6.37)

is used to characterize the “peakedness” of the distribution, taking as refer-
ence the normal distribution, for which the dimensionless ratio µ4/σ

4 has the
value 3. The kurtosis coefficient, defined as

γ2 = µ4/σ
4 − 3 , (6.38)

is positive or negative according to whether the distribution is more or less
peaked (less or more flat) than a normal distribution, respectively (Fig. 6.11).
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Fig. 6.11. Two symmetric distributions with kurtosis γ2 = µ4/σ
4−3 negative (left)

and positive (right). The dashed line is a normal distribution, for which γ2 = 0.

Examples

Let us now evaluate the numerical characteristics of two distributions previ-
ously introduced, the binomial distribution and the uniform distribution.

Example 6.9. For the binomial distribution (Sect. 6.1)

P(k) =
(
n

k

)
pk qn−k ,

one can demonstrate (Appendix D.3) that mean and variance are, respec-
tively,

m =
n∑
k=0

k
n!

(n− k)!k!
pkqn−k = n p , (6.39)

D =
n∑
k=0

(k −mk)2 n!
(n− k)!k!

pkqn−k = n pq . (6.40)

For a given value of p, the mean m increases proportionally to the number
n of trials (see Figs. 6.1 and 6.2). The standard deviation σ =

√
D =

√
npq

increases proportionally to the square root of n. The relative width σ/m
decreases proportionally to 1/

√
n.



114 6 Distributions of Random Variables

One can also demonstrate (Appendix D.3) that the central moments of
order three and four are

µ3 = n pq (q − p) , µ4 = n pq (1 + 3npq − 6pq) , (6.41)

respectively, so that the skewness and kurtosis coefficients are:

β =
µ3

σ3
=
q − p
√
npq

, γ2 =
µ4

σ4
− 3 =

1− 6pq
npq

. (6.42)

For p = q = 0.5, β = 0, because the distribution is symmetric. For p < q,
β > 0, the tail of the distribution points to the right.

According to (6.42), when n→∞, both skewness and kurtosis coefficients
tend to zero. Actually, it is shown in Sect. 6.6 that when n → ∞ the shape
of the binomial distribution tends to the shape of the normal distribution,
for which β = γ2 = 0.
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2 6 10 14 18

f(x)

x (arb. units)

σ

Fig. 6.12. Comparison between a uniform distribution and a normal distribution
with the same mean m = 10 and standard deviation σ = 2. The area between
x = m − σ and x = m + σ is 0.58 and 0.68 for the uniform distribution and the
normal distribution, respectively. Both distributions are symmetric, with β = 0.
The flatness parameter γ2 = µ4/σ

4 − 3 is zero for the normal distribution, and
144/80− 3, say negative, for the uniform distribution.

Example 6.10. For the uniform distribution (6.16)

f(x) =

 0 for x < x1 ,
C for x1 ≤ x < x2 ,
0 for x ≥ x2 ,

the constant C, determined by the normalization condition (6.17), is C =
1/∆x, where ∆x = 1/(x2 − x1). The mean m is

m =
∫ +∞

−∞
x f(x) dx =

1
∆x

∫ x2

x1

x dx =
x1 + x2

2
. (6.43)

By a similar procedure (Appendix D.4), one can calculate the variance and
the other central moments:
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µ2 = D =
(∆x)2

12
, µ3 = 0 , µ4 =

(∆x)4

80
. (6.44)

The area included between x = m−σ and x = m+σ is 0.58 (to be compared
with the value 0.68 of the normal distribution, Fig. 6.12). The full-width at
half maximum is Γ = ∆x. The half-width at half maximum γ = Γ/2 is
connected to the standard deviation σ by the relation: σ = γ/

√
3.

The uniform distribution has been used in Chap. 4 to describe the un-
certainty due to the resolution of a single measurement (Sect. 4.2) or due to
the estimation of systematic errors (Sect. 4.5). In both cases, the uncertainty
δX is expressed, by convention, as the standard deviation of the uniform
distribution, δX = ∆x/

√
12.

6.4 Poisson Distribution

An important distribution of a discrete random variable is the Poisson distri-
bution (after the name of the French mathematician S. Poisson, 1781–1840):

Pa(k) =
ak

k!
e−a . (6.45)

The Poisson distribution is sometimes used to approximate the binomial dis-
tribution, but its most relevant applications in physics concern the counting
of some kinds of random phenomena, such as radioactive decays.

Before examining the applications of the Poisson distribution, it is conve-
nient to study its mathematical properties. The random variable can assume
any nonnegative integer value, k ≥ 0. The set of k values is then countably
infinite. The Poisson distribution depends on only one positive parameter a.
The normalization condition is always satisfied by the Poisson distribution,
because

∞∑
k=0

ak

k!
e−a = e−a

∞∑
k=0

ak

k!
= e−a ea = 1 . (6.46)

Some Poisson distributions for different values of the a parameter are shown in
Fig. 6.13. As one can easily see, when the value of a increases, the position of
the distribution shifts towards higher k values, and the distribution becomes
progressively larger and less asymmetric. These properties are quantitatively
described by the numerical characteristics of the distribution.

Numerical Characteristics of the Poisson Distribution

One can demonstrate (Appendix D.5) that the mean and variance of the
Poisson distribution are:

m = a , D = µ2 = a . (6.47)
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Fig. 6.13. Poisson distributions for different values of the a parameter. Notice that
both horizontal and vertical scales of the two graphs are different. The dashed lines
are only a guide to the eye.

The a parameter is thus equal to both the mean and the variance. This prop-
erty characterizes the Poisson distribution, and represents a criterion often
used to evaluate whether a statistical sample is compatible with a Poisson dis-
tribution. When a increases, the standard deviation σ =

√
D =

√
a increases,

and the relative width σ/m = 1/
√
a decreases.

One can also demonstrate (Appendix D.5) that the skewness and kurtosis
coefficients are

β =
µ3

σ3
=

1√
a
, γ2 =

µ4

σ4
− 3 =

1
a
. (6.48)

When a increases, both coefficients decrease, and the shape of the Poisson
distribution tends to the shape of the normal distribution.

Poisson Distribution and Binomial Distribution

It was shown in Sect. 6.3 that the mean of the binomial distribution ism = np.
One can demonstrate that, when n→∞ and p→ 0, with the constraint that
m = np is finite, the binomial distribution tends to a Poisson distribution.
To this aim, let it be from the beginning a = m = np, so that p = a/n and
q = 1− p = 1− a/n. The binomial distribution can be expressed as

P(k) =
n(n− 1) · · · (n− k + 1)

k!

(a
n

)k (
1− a

n

)n−k
=

n(n− 1) · · · (n− k + 1)
nk

ak

k!

(
1− a

n

)n (
1− a

n

)−k
. (6.49)

The first and fourth factors in the last line of (6.49) tend to 1 when n→∞.
As for the third factor,

lim
n→∞

(
1− a

n

)n
= e−a , (6.50)

so that, for n→∞ and np = constant,
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Pn,p(k) −→ Pa(k) . (6.51)

In practice, the Poisson distribution is used to approximate the binomial
distribution when contemporarily n is large (typically n > 100) and p is
small (typically <0.05). The accuracy of the approximation can be evaluated
by the examples of Fig. 6.14.
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Fig. 6.14. Comparison between a Poisson distribution with a = 1 (squares) and
two binomial distributions (triangles) of equal mean m = np = 1 and different
values of n. Left: n = 10, p = 0.1. Right: n = 100, p = 0.01.

Example 6.11. In a factory, n = 50 similar machines are working. The proba-
bility that a machine breaks down during a shift is p = 0.04. The probability
that k = 4 machines break down during a shift is exactly given by the bino-
mial distribution,

P50,0.04(4) =
50!

46! 4!
0.044 0.9646 = 0.09016 ,

but can be approximated by the Poisson distribution, with a = np = 2:

P2(4) =
24

4!
e−2 = 0.0902 .

Stationary Poisson Processes

Let us now resume and elaborate the application of the binomial distribution
considered in Example 6.5 of Sect. 6.1. In a time (or space) interval of length
∆T , n independent events randomly occur. Two or more events cannot, how-
ever, occur at the same time. The probability that one of the n events, chosen
by chance, occurs in a subinterval ∆t is p = ∆t/∆T . The probability that k
events occur within the subinterval ∆t is given by the binomial distribution

Pnp(k) =
(
n

k

) [
∆t
∆T

]k [
1− ∆t

∆T

]n−k
. (6.52)
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Let us now suppose that the duration of the interval ∆T and the number n of
events proportionally increase, and introduce a density parameter λ = n/∆T
(average number of events per unit time interval). When ∆T increases, the
probability p = ∆t/∆T proportionally decreases, but the average number of
events within the subinterval ∆t, say m = np, is fixed. In this case, as shown
above, the binomial distribution can be replaced by a Poisson distribution.

It is, however, possible to completely give up knowledge of the parameters
∆T , n, and p, and uniquely refer to the density parameter λ = n/∆T . The
probability that k events occur within the subinterval ∆t is given by the
Poisson distribution, with mean a = np = λ∆t:

Pa(k) =
ak

k!
e−a =

(λ∆t)k

k!
e−λ∆t . (6.53)

Many natural random phenomena are characterized by an average number of
independent events per unit time (or space interval), but cannot be described
by the binomial distribution (6.52) because one cannot attribute a value to
the parameters n and p. These phenomena are called Poisson processes, and
are described by the Poisson distribution (6.53), where a = λ∆t.

Example 6.12. The calls to a telephone exchange arrive randomly in time.
The average number is λ = 150 calls per hour. The average number of calls
within the time interval ∆t = 1 minute is a = λ∆t = 150(1/60) = 2.5. The
probability that k = 6 calls arrive within the interval ∆t = 1 minute is given
by the Poisson distribution:

P(6) =
2.56

6!
e−2.5 = 0.278 .

Counting Statistics

The Poisson distribution (6.53) is frequently utilized in physics to analyze the
results of experiments based on the counting of random events (Sect. 1.4).
Let us focus on the case of cosmic rays, very fast particles (such as protons
or helium nuclei) that can traverse the atmosphere coming from space. Cos-
mic rays can be detected by suitable instruments, such as Geiger counters
(Sect. 3.6).

The number of particles detected within the time ∆t is a random variable
k. Prolonged observations have, however, led to the conclusion that the aver-
age number λ of detected particles per unit time is a constant. The random
variable k is thus governed by a Poisson distribution (6.53), with a = λ∆t. If
λ were a priori known, one would also know a = λ∆t, and one could calculate
the probability of a given number k of counts within the time interval ∆t by
(6.53).
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In practice, one faces the reverse problem. One tries to determine the
value of λ from counting experiments, and to evaluate its uncertainty. The
situation is similar to that of Sect. 4.3, where, starting from a finite num-
ber of measurements of a physical quantity, we estimated the mean value
of the limiting distribution and evaluated the uncertainty of the estimate.
Here, the random variable is discrete instead of continuous, and the limiting
distribution is Poisson instead of normal.

Single Measurements

Let us suppose that only one measurement is performed within the time
interval ∆t. The result is a number k of counts. The single measured value
k corresponds to the sample mean of the random variable: m∗k = a∗ = k. As
anticipated in Sect. 4.3 and demonstrated in Sect. 7.2, the best estimate of
the limiting mean is the sample mean; in our case, the best estimate of a is
a∗ = k, say

ã = k so that λ̃ = k/∆t . (6.54)

The estimate ã has random character, and is thus affected by uncertainty.
According to the conventions of Chap. 4, one assumes the standard deviation
of the distribution of sample means as a measure of the uncertainty. In the
present case, the sample mean coincides with the single measurement, a∗ = k,
and the limiting distribution of the sample means coincides with the limiting
distribution of single counts, say the Poisson distribution (6.53). The Poisson
distribution has the particular property that mean and variance coincide, so
that σ =

√
a. The best estimate of the standard deviation is thus:

σ̃ =
√
ã =
√
k , so that δλ =

√
k/∆t . (6.55)

The uncertainty on the number of counts is equal to the square root of the
number of counts. The relative uncertainty of the number of counts, and hence
of the parameter λ, decreases inversely to the square root of the number of
counts:

δλ/λ̃ = 1/
√
k . (6.56)

Example 6.13. The radioactive decay of an atom is a random process. If N
nuclei of a radioactive isotope are present at time t, the average variation
of the number of original isotopes in the time interval dt is dN = −N α dt,
where α is the disintegration constant. The average number of radioactive
nuclei decreases according to the exponential law: N(t) = N0 exp(−αt). The
average number λ of decays per unit time progressively decreases. If, however,
the disintegration constant α is small, the parameter λ can be considered
constant with good approximation for relatively long time intervals. In this
case, if N1 nuclei are present at the beginning of the experiment, the average
number of decays in the time interval ∆ t, a = λ∆t, is given by

a = N1 [1− e−α∆t] ' N1 [1− 1 + α∆t] = N1 α∆t , (6.57)
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where the exponential has been approximated by its expansion truncated at
the second term: exp(−α∆t) ' 1−α∆t. The number k of decays in the time
interval ∆t is a random variable obeying the Poisson distribution (6.53), with
a = N1 α∆t. If k events are counted in the interval ∆t, then one can estimate
ã = k ±

√
k.

It is worth noting that, in counting Poisson events, the uncertainty can
be estimated from a single measurement, because mean and variance of the
Poisson distribution have the same value. On the contrary, to estimate the
uncertainty due to random fluctuations of the measure of a constant quantity
(Sect. 4.3), it is necessary to measure at least two values, because mean and
variance of the limiting distribution, typically normal, are uncorrelated.

Repeated Measurements

Let us now suppose that the counting is repeated N times, each time during
a time interval ∆t. N values ki will be obtained, and one can calculate the
sample mean and variance

m∗k =
1
N

N∑
i=1

ki , D∗k =
1
N

N∑
i=1

(ki −m∗k)2 . (6.58)

The degree of agreement between the values m∗k and D∗k is a first test to
verify whether the limiting distribution can be assumed as a Poisson distri-
bution. We again assume the sample mean m∗k as the best estimate of the a
parameter, and the standard deviation of the distribution of sample means
as its uncertainty:

ã = m∗k , δã = σ[m∗k] =
σ[k]√
N
'
√
D∗k√
N

. (6.59)

When N increases, the uncertainty decreases. It is, however, completely
equivalent to repeat the counting N times in a short time interval ∆t, or
to perform a unique counting during a long time interval N∆t.

Example 6.14. A Geiger counter records the impulses due to cosmic rays and
natural radioactivity every ∆t = 15 seconds.

In a first experiment, the counter works for about 1.5 hours, corresponding
to N = 361 intervals ∆t. The sample frequency of the count values k is
shown by the vertical bars in Fig. 6.15, left. Sample mean and variance are
m∗k = 4.629 and D∗k = 4.931, respectively. The best estimate (6.59) of the
mean value is ã = 4.63± 0.11, corresponding to ã/∆t = 0.308± 0.007 counts
per second; the corresponding Poisson distribution is shown as full circles in
Fig. 6.15, left.

In a second experiment, the counter works for about eight hours, corre-
sponding to N = 28613 intervals ∆t. The sampling frequency of the count val-
ues k is shown by the vertical bars in Fig. 6.15, right. Sample mean and vari-
ance are m∗k = 4.592 and D∗k = 4.638, respectively. The best estimate (6.59)
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Fig. 6.15. Illustrating Example 6.14. Two different samplings of a Poisson distri-
bution relative to the counts recorded in ∆t = 15 s by a Geiger counter (vertical
bars): sampling for 1.5 hours (left) and 8 hours (right). The full circles are the
Poisson distribution estimated from the samples (the dashed lines are a guide to
the eye).

of the mean value is ã = 4.59± 0.01, corresponding to ã/∆t = 0.306± 0.0007
counts per second; the corresponding Poisson distribution is shown as full
circles in Fig. 6.15, right. By increasing the number N of time intervals ∆t,
the uncertainty of the estimated values of a has been reduced. The a values
obtained in the two experiments are consistent.

Alternatively, if in both experiments a unique count had been done (one
hour and a half long or eight hours long, respectively) the values k = 1671
and k = 131385 would have been obtained, respectively, corresponding to
0.308 ± 0.007 and 0.306 ± 0.0008 counts per second, in agreement with the
previous procedure.

Poisson Distribution for Histogram Columns

It has been shown in Sect. 6.1 (Fig. 6.4) that, if a histogram is built up from
a fixed number N of measurements, the distribution of the values n∗j within
a given column is binomial.

In some cases, however, instead of fixing the number N of measurements,
one prefers to establish the time interval ∆t during which the measurements
are performed. In this case, the n∗j values obey the Poisson distribution. The
mean value is a = nj , where nj is the number of counts in the jth column,
according to the limiting distribution of the quantity X: nj = pjN .

A generic experimental value n∗j approximates the limiting value nj with
an uncertainty δnj equal to the standard deviation of the Poisson distribu-
tion, σj =

√
a = √nj , that can be estimated as σ̃j '

√
n∗j .

6.5 Normal Distribution

The normal distribution (or Gauss distribution, after the name of the German
mathematician C. F. Gauss, 1777–1855) is a distribution of a continuous
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random variable that plays a fundamental role in probability theory and in
data analysis procedures. It has already been noted in Sect. 4.3 that the nor-
mal distribution is generally a good approximation of the limiting distribution
of histograms relative to measurements of physical quantities.

The probability density of the normal distribution,

f(x) =
1

σ
√

2π
exp
[
− (x−m)2

2σ2

]
, (6.60)

depends on two parameters, m (real) and σ (real and positive). For any
values of the parameters m and σ, the graph of the normal distribution is
bell-shaped, and symmetric with respect to the value x = m (Fig. 6.14).
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Fig. 6.16. Normal distributions: with the same value σ and different values m at
the left, with the same value m and different values σ at the right.

Normalization Condition of the Normal Distribution

Let us first verify that the probability density (6.60) is normalized to one:

1
σ
√

2π

∫ +∞

−∞
exp
[
− (x−m)2

2σ2

]
dx = 1 . (6.61)

To this aim, by substituting

t =
x−m
σ
√

2
, whence dx = σ

√
2 dt , (6.62)

one transforms (6.61) into

1√
π

∫ +∞

−∞
e−t

2
dt = 1 . (6.63)

The integral in (6.63) is the Eulero–Poisson integral, whose value is calculated
in Appendix D.6: ∫ +∞

−∞
e−t

2
dt =

√
π . (6.64)
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Numerical Characteristics of the Normal Distribution

The numerical characteristics of the normal distribution can be easily calcu-
lated by means of substitution (6.62) and taking into account the Eulero–
Poisson integral (6.64). The details of the calculations are given in Appendix
D.6; here the main results are synthesized.

The mean of the distribution is equal to the parameter m (Fig. 6.16, left).
For the central moments, the following recurrence relation holds:

µs = (s− 1)σ2 µs−2 (s ≥ 2) . (6.65)

Because µ1 = 0, according to (6.65) all central moments of odd order are
zero as well; this is not surprising, inasmuch as the normal distribution is
symmetric with respect to x = m.

Because µ0 = 1 (normalization integral), from (6.65) one can see that the
variance of the normal distribution is D = µ2 = σ2, hence the parameter σ
in (6.60) represents the standard deviation.

The maximum of the normal distribution corresponds to the value x = m.
One can easily check that

fmax(x) = f(m) =
1

σ
√

2π
=

0.399
σ

; (6.66)

when σ increases, the distribution becomes larger and lower (Fig. 6.16, right).
At a distance σ from the mean m, the value of the distribution is:

f(m+ σ) = f(m− σ) =
1

σ
√

2π
e−1/2 = 0.6 f(m) . (6.67)

Again from (6.65), one can see that µ4 = 3σ4. The kurtosis coefficient
γ2 = µ4/σ

4 − 3 is zero.
Finally, it is easy to verify that the full-width at half maximum is Γ =

2.35σ, whence γ = Γ/2 = 1.17σ.

Calculating Probabilities for the Normal Distribution

In practical applications, it is required to calculate the probability that the
random variable x is included between two given values α and β:

P(α < x < β) =
1

σ
√

2π

∫ β

α

exp
[
− (x−m)2

2σ2

]
dx . (6.68)

The integral in (6.68) depends on the parameters m and σ, as well as on the
values α and β. To evaluate the integral, let us first make the substitution

z =
x−m
σ

whence dx = σ dz . (6.69)
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Notice that the substitution (6.69) differs from the previous substitution
(6.62) by a factor

√
2. The new variable z in (6.69) is the standard devi-

ation of the old variable x with respect to the mean m, measured in units σ;
it is called the standard normal variable. The standard normal variable is di-
mensionless, because it is defined in (6.69) as the ratio between two quantities
with the same dimensions.

To determine the distribution φ(z) of the variable z, one can notice that
the probability elements must be equal with respect to both variables, x and
z, say f(x) dx = φ(z) dz. The distribution of z, the standard normal density,
is thus

φ(z) =
1√
2π

exp
[
−z

2

2

]
. (6.70)

The standard normal density has zero mean, mz = 0, and unit standard
deviation, σz = 1 (Fig. 6.17, left).
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Fig. 6.17. Standard normal distribution: probability density φ(z) (left) and cumu-
lative distribution function (right).

Once the limits of the integral have been substituted,

α→ zα =
α−m
σ

, β → zβ =
β −m
σ

, (6.71)

the probabilities can be calculated as

P(α < x < β) =
1√
2π

∫ zβ
zα

exp
[
−z

2

2

]
dz . (6.72)

The integral in (6.72) cannot be analytically calculated, so its values are
tabulated in various ways.

(a) The standard cumulative distribution (Fig. 6.17, right)

Φ(z) =
1√
2π

∫ z
−∞

exp
[
−z
′2

2

]
dz′ , (6.73)

can be tabulated, so that

P(α < x < β) = Φ(zβ)− Φ(zα) . (6.74)
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(b) Alternatively, one can find the tables of the function

Φ∗(z) =
1√
2π

∫ z
0

exp
[
−z
′2

2

]
dz′ . (6.75)

(c) For measurement uncertainties, an interval symmetric with respect to the
mean is considered, and one frequently makes use of the function

Φ̃(z) =
1√
2π

∫ z
−z

exp
[
−z
′2

2

]
dz′ . (6.76)

The meaning of the three functions Φ(z), Φ∗(z), and Φ̃(z) is schematically
illustrated in Fig. 6.18.
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Fig. 6.18. Integrals of the standard normal distribution. The grey area represents
the value of the three functions Φ(z) (left), Φ∗(z) (center), and Φ̃(z) (right) for
z = 1.

By using the tables of the integrals of the standard normal density
(Appendix C.3), one can easily find that, for any normal distribution:

P (m < x < m+ σ) = P (0 < z < 1) = Φ∗(1) = 0.3413 ,
P (m < x < m+ 2σ) = P (0 < z < 2) = Φ∗(2) = 0.4772 ,
P (m < x < m+ 3σ) = P (0 < z < 3) = Φ∗(3) = 0.4987 .

The probabilities that the random variable x is included within an interval
centered on m, of width 2σ, 4σ, and 6σ are, respectively (Fig. 6.19):

P (m− σ < x < m+ σ) = P (−1 < z < 1) = Φ̃(1) = 0.6826 ,
P (m− 2σ < x < m+ 2σ) = P (−2 < z < 2) = Φ̃(2) = 0.9544 ,
P (m− 3σ < x < m+ 3σ) = P (−3 < z < 3) = Φ̃(3) = 0.9974 .

The integrals of the standard normal density are frequently referred to
as the error function, erf(y). There is, however, no clear agreement on the
definition of the error function: the y variable can correspond to the variable
t of (6.62) or to the variable z of (6.69), and the integral extrema can be
(0, y) or (−y, y).
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Fig. 6.19. The probability that −1 < z < +1 is 0.6826 (left); the probability that
−2 < z < +2 is 0.9544 (center); the probability that −3 < z < +3 is 0.9974 (right).

6.6 Meaning of the Normal Distribution

The normal distribution plays a fundamental role in probability theory be-
cause it represents a limiting distribution in a number of relevant situations.

One can demonstrate that, when a random variable S can be decomposed
into a sum of a large number of other random variables Yi, the distribution
of the variable S is in many cases normal. The conditions under which the
sum S has a normal distribution are defined by a group of theorems, globally
called the central limit theorem.

Central Limit Theorem

A version of the central limit theorem, particularly suited to data analysis
applications, is given here.

Let us suppose that a random variable S can be expressed as a linear
combination of n independent random variables Yi,

S = α1Y1 + α2Y2 + · · · + αnYn =
n∑
i=1

αiYi . (6.77)

Let us further suppose that the means mi and variances Di of the variables
Yi exist and are of the same order of magnitude for the different variables Yi,
and also the coefficients αi are of the same order of magnitude. One can then
demonstrate (with some restrictions of limited practical relevance) that, when
the number n of terms in the sum (6.77) increases, the distribution of the
random variable S tends to a normal distribution, whose mean and variance
are

mS =
∑

i
αimi , DS =

∑
i
α2
i Di , (6.78)

respectively, independently of the shape of the distributions of the random
variables Yi.
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Example 6.15. It was shown in Sect. 4.1 that the histograms of repeated mea-
surements of a physical quantity tend to become bell-shaped when the num-
ber of measurements increases. Gauss invented the normal distribution to
give a theoretical interpretation of this behavior. His argument can be recast
as follows. The single measure x differs from the true value Xv by an error E:
x = Xv +E. The error E is due to many random factors εi, independent and
of the same extent, E = ε1 + ε2 + ε3 + · · ·, and can thus be considered as an
example of the variable S of (6.77). The distribution of E is normal, as well
as the distribution of x = X0 + E. The possibility of decomposing the error
E into the sum of a sufficiently large number of elementary contributions εi
is generally not evident, and the Gauss argument has no general validity.

Example 6.16. Let us consider the sample mean m∗ of a set of N measures
of a physical quantity (Sect. 4.1):

m∗ =
1
N

N∑
i=1

xi =
N∑
i=1

1
N
xi . (6.79)

The mean m∗ can be identified with the variable S of (6.77), with αi = 1/N .
In this case, all terms xi have the same distribution, that generally, but not
necessarily, is normal. The central limit theorem states that the distribution
of sample means m∗ can be assumed to be normal, if the number N of
measurements is large enough.

Example 6.17. An experiment consists of n independent repetitions of the
same trial, according to the scheme leading to the binomial distribution of
Sect. 6.1. A two-valued random variable Y is associated with each trial: Y = 0
if the trial has negative outcome, and Y = 1 if the trial has positive outcome.
The binomial random variable K, corresponding to the number of positive
outcomes out of n trials, can be expressed as a sum

K =
n∑
i=1

Yi ,

and can be identified with the variable S of (6.77). One thus expects that
the binomial distribution of the random variable K tends to a normal shape
when n increases.

Discrete and Continuous Random Variables

In many applications of the central limit theorem, one deals with the sum
of discrete random variables, whereas the limiting normal distribution is a
distribution of a continuous random variable. The comparison of distributions
of discrete and of continuous random variables was already considered in
Sect. 4.3, when the relation between experimental histograms and limiting
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distributions was treated. The problem is studied here in a more systematic
way.

The distributions of discrete and continuous random variables are intrin-
sically different. For a discrete random variable, the distribution law directly
gives the probability P(kj), whereas for a continuous random variable the
distribution law is represented by a probability density f(x). To compare a
distribution of a discrete random variable with a distribution of a continuous
random variable, different procedures can be used, which are listed below
and illustrated in Fig. 6.20. To facilitate the comparison, the values of the
discrete random variables are here indicated by xj instead of kj .

(a) The distribution of the discrete variable P(xj) (Fig. 6.20, left) is substi-
tuted by an area-normalized histogram. With each value xj of the discrete
variable, a column of area equal to P(xj) and base ∆xj = (xj+1−xj−1)/2
is associated (Fig. 6.20, center). The histogram can now be directly com-
pared with the probability density f(x) of the continuous variable (Fig.
6.20, right).

P(xj)

xj
xj-1 xj+1 xj

∆xj

∆xj

P(xj)
P(xj)

f(x)

x
j

P
j
(x)

Fig. 6.20. Illustrating the comparison between a distribution of a discrete random
variable (left) and a distribution of a continuous random variable (right).

(b) The previous procedure is simplified when the values of the discrete vari-
able are equally spaced by ∆x. The values P(xj)/∆x are the heights of
the histogram columns, and can be directly compared with the probabil-
ity density f(x) of the continuous variable. For the binomial and Poisson
distributions, ∆x = 1, and the comparison with a probability density is
particularly simple (Figs. 6.21 and 6.22).

(c) The interval of possible values of the continuous variable is divided in
subintervals, each one centered on a value xj of the discrete variable, and
of width ∆xj . Let Pj(x) be the value of the integral of the probability
density f(x) calculated within the jth subinterval. The values Pj(x) can
be directly compared with the values P(xj) of the discrete variable.

The Normal Distribution as a Limit of Other Distributions

As a consequence of the central limit theorem, the binomial distribution (6.2)
tends to a distribution of normal shape when the number of trials n → ∞,
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the mean np remaining finite. A graphical illustration is given in Fig. 6.21. In
Sect. 6.1, it was also shown that the skewness and kurtosis coefficients of the
binomial distribution tend to zero when n → ∞. An interesting application
has been given in Example 6.17.
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Fig. 6.21. Comparison among three binomial distributions P(xj) and the corre-
sponding normal distributions f(x) with the same mean and variance. The skewness
of the binomial distribution with p = 0.2 progressively decreases when n increases.
The binomial variable has equally spaced values, ∆x = 1, and it is possible to rep-
resent both the distribution P(xj) and the probability density f(x) on the same
vertical axis.

As a consequence again of the central limit theorem, the Poisson distri-
bution (6.45) tends to a distribution of normal shape when the parameter
a→∞ (remember that a is both mean and variance of the Poisson distribu-
tion). A graphical illustration is given in Fig. 6.22. In Sect. 6.4, it was also
shown that the skewness and kurtosis coefficients of the Poisson distribution
tend to zero when a→∞.
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Fig. 6.22. Comparison among three Poisson distributions P(xj) and the corre-
sponding normal distributions f(x) with the same mean and variance. The skewness
of the Poisson distribution progressively decreases when a increases. The Poisson
variable has equally spaced values, ∆x = 1, and it is possible to represent both the
distribution P(xj) and the probability density f(x) on the same vertical axis.

The probability calculations for the binomial and Poisson distributions
can become rather lengthy when the parameters n and a, respectively, become
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large. In these cases, it can be convenient to substitute the binomial or Poisson
distributions with the normal distribution of the same mean and variance,
taking care to check that the substitution guarantees the required degree of
accuracy.

Example 6.18. A coin is tossed n = 10 times, and one seeks the probability
of obtaining a number of heads included between k = 3 and k = 6. The exact
solution is given by the binomial distribution with p = q = 0.5:

P(3 ≤ k ≤ 6) =
6∑
k=3

(
10
k

)
0.510 = 0.7734 .

An approximate solution can be obtained by using the normal distribution
f(x) with the same mean m = np = 5 and variance σ2 = npq = 2.5. Attention
has to be paid to the transition from the discrete to the continuous variable.
The area of a histogram column has to be substituted to each discrete value
P(kj). The base of the first histogram column, centered at k = 3, begins at
k = 2.5; the base of the last column, centered at k = 6, ends at k = 6.5. Using
the normal distribution, the sought probability is the integral of the density
f(x) calculated from xα = 2.5 to xβ = 6.5, that corresponds to the integral
of the standard density from zα = −1.58 to zβ = 0.95. From the tables of
Appendix C.3, one finds:

P(3 ≤ k ≤ 6) =
∫ 6.5

2.5

f(x) dx =
∫ 0.95

−1.58

φ(z) dz = 0.7718 .

Other examples of distributions that asymptotically tend to the normal
distribution are encountered in the next chapters.

6.7 The Cauchy–Lorentz Distribution

The Cauchy distribution (after the name of the French mathematician and
engineer A. L. Cauchy, 1798–1857) is interesting for its particular mathe-
matical properties. It finds many applications in physics, where it is more
frequently known as the Lorentz distribution (after the name of the Dutch
physicist H. Lorentz, 1853–1928) or also the Breit–Wigner distribution.

The Cauchy–Lorentz (or Breit–Wigner) distribution is a distribution of a
continuous random variable, whose density is expressed by the function

f(x) =
1
π

γ

(x− µ)2 + γ2
. (6.80)

The distribution depends on two parameters, µ and γ, and one can show
that it is normalized to one (Appendix D.7). The distribution (Fig. 6.23,
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Fig. 6.23. Left: two Cauchy–Lorentz distributions with equal mode µ = 10 and
different half-width, γ = 1 and γ = 2. Right: comparison between a Cauchy–Lorentz
distribution and a normal distribution with equal mode µ = 10 and half-width at
half maximum γ = 2 (corresponding, for the normal distribution, to σ = 1.709).

left) is symmetrical with respect to x = µ, and asymptotically goes to zero
for x→ ±∞. The value x = µ corresponds to the mode of the distribution.

The Cauchy–Lorentz distribution has certain pathological properties. In
fact, one cannot define the variance, because the corresponding integral does
not converge; for subtler reasons, one cannot define the mean as well (see
Appendix D.7 for more details). The position of the distribution is thus de-
fined by the mode µ (which is sometimes improperly called the mean). To
measure the dispersion of the distribution one refers to the full-width at half
maximum Γ . One can easily evaluate the density (6.80) in correspondence of
x = µ and x = µ+ γ:

f(µ) =
1
πγ

, f(µ+ γ) =
1

2πγ
=

1
2
f(µ) . (6.81)

The parameter γ represents the half-width at half maximum, so that Γ = 2γ.
The Cauchy–Lorentz distribution is intrinsically different from the normal

distribution, as one can verify by comparing the two distributions with the
same values of mode and half-width at half maximum (Fig. 6.23, right): the
Cauchy–Lorentz distribution is lower in correspondence to the mode, but is
higher at the tails (this is basically the reason why the variance integral does
not converge).

Some important applications of the Cauchy–Lorentz distribution in
physics are illustrated by the following examples.

Example 6.19. A radioactive sample is in position P (Fig. 6.24), at a distance
s from a row of detectors placed along the x-axis. The decay products are
emitted by the radioactive sample in an isotropic way, so that the probability
density as a function of the angle θ is constant: φ(θ) = C. To determine the
probability density f(x) as a function of the position x along the detector
row, one first notices that the variables θ and x are connected by

x = s tgθ , dx =
dx
dθ

dθ =
s

cos2 θ
dθ =

x2 + s2

s
dθ .
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The probability elements must be equal, φ(θ) dθ = f(x) dx, therefore one
gets

f(x) = φ(θ)
dθ
dx

= C
s

x2 + s2
. (6.82)

The probability density f(x) has a Cauchy–Lorentz shape (6.80), with µ = 0,
γ = s, and C = 1/π.

s

0

P

θ

x

Fig. 6.24. Illustrating Example 6.19.

Example 6.20. Many physical systems can be described as forced and damped
harmonic oscillators; the power P absorbed by the oscillator depends on
the excitation frequency according to a law that, for small enough damping
constant γ, has a Lorentzian shape

P (ω) ∝ γ

(ω − ω0)2 + γ2
, (6.83)

where ω0 is the proper frequency. For ω = ω0, one observes the resonance
phenomenon. In this example, Equation (6.83) describes a deterministic be-
havior, and is not a probability distribution. Other phenomena of physics
are governed by the resonance equation (6.83) where, however, P (ω) has the
meaning of a probability density. For example, the quantum emission of elec-
tromagnetic radiation by excited atoms is a random phenomenon, where the
frequency ω of the emitted radiation is randomly distributed around a central
frequency ω0 according to (6.83).

6.8 Multivariate Distributions

In the previous sections, attention has been focused on random phenomena
that can be described by one random variable. There are, however, many cases
where the use of two or more random variables is required. The distributions
of two or more random variables are called multivariate distributions.

Example 6.21. The measurement of a physical quantity is repeated N times,
with sufficiently low resolution ∆X to allow the dispersion due to random
fluctuations. The result xi of a single measurement is a random variable,
whose limiting distribution f(x) is generally normal. In some cases, it is
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useful to collectively consider the set of all N results, and seek the probability
density of a given N -fold of values x1, x2, x3, . . . , xN . This problem leads to
a multivariate distribution with respect to N random variables.

The treatment of multivariate distributions is by far more complex than
the treatment of univariate distributions. In this section, attention is limited
to a few basic concepts, necessary for the applications of subsequent chap-
ters. Only distributions of two random variables (bivariate distributions) are
considered, the extension to multivariate distributions being straightforward.

Multivariate Distributions for Discrete Random Variables

Let us consider two discrete random variables, H and K, whose possible
values are h1, h2, . . . , hi, . . . , and k1, k2, . . . , kj , . . . , respectively.

The bivariate distribution is represented by the values of probability for
all possible pairs (hi, kj) of values of the variables H and K.

Table 6.2. Graphical representation of a bivariate distribution for discrete random
variables.

h1 h2 . . . hi . . .
∑

i

k1 P(h1, k1) P(h2, k1) . . . P(hi, k1) . . . Pk(k1)
k2 P(h1, k2) P(h2, k2) . . . P(hi, k2) . . . Pk(k2)
. . . . . . . . . . . . . . . . . . . . .
kj P(h1, kj) P(h2, kj) . . . P(hi, kj) . . . Pk(kj)
. . . . . . . . . . . . . . . . . .∑

j
Ph(h1) Ph(h2) . . . Ph(hi) . . . 1

A bivariate distribution for discrete random variables can be represented
as in Table 6.2. The first row and the first column contain the values hi and ki
of the two variables, respectively. The central part contains the probabilities
P(hi, kj) for all pairs of values (hi, kj). The normalization condition over all
possible pairs of values must hold:∑

i

∑
j
P(hi, kj) = 1 . (6.84)

The probability that the variable H has a given value hi, independently of
the values of the variable K, is given by the sum over all values of K:

Ph(hi) =
∑

j
P(hi, kj) . (6.85)

Similarly, the probability that the variable K has a given value kj , indepen-
dently of the values of the variable H, is given by the sum over all values
of H:
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Pk(kj) =
∑

i
P(hi, kj) . (6.86)

The values Ph(hi) (6.85) and Pk(kj) (6.86) are generally listed in the last line
(inferior margin) and last column (right margin) of the table, respectively, as
in Table 6.2. For that reason, the probabilities Ph(hi) and Pk(kj) are called
marginal probabilities.

If all values P(hi, kj) are known, it is possible to calculate all the marginal
probabilities Ph(hi) and Pk(kj) by (6.85) and (6.86), respectively. Conversely,
if the marginal probabilities Ph(hi) and Pk(kj) are known, it is generally
impossible to recover the distribution P(hi, kj), unless the random variables
H and K are independent (see below).

Multivariate Distributions for Continuous Random Variables

For two continuous random variables X and Y , the bivariate distribution is
generally expressed by a double probability density, say a function f(x, y) of
two variables.

The probability that the random variable X has a value included in the
interval a–b and the random variable Y has a value included in the interval
c–d is given by the double integral

P (a < X < b, c < Y < d) =
∫ b

x=a

∫ d

y=c

f(x, y) dxdy . (6.87)

The normalization condition must hold:∫∫ +∞

−∞
f(x, y) dxdy = 1 . (6.88)

Also for continuous variables, as for discrete variables, one can define the
marginal probabilities. The probability density for a given value x of the
random variable X, independent of the value of the variable Y , is

fx(x) =
∫ +∞

−∞
f(x, y) dy . (6.89)

Similarly, the probability density for a given value y of the random variable
Y , independent of the value of the variable X, is

fy(y) =
∫ +∞

−∞
f(x, y) dx . (6.90)

If the double density f(x, y) is known, one can calculate the marginal den-
sities fx(x) and fy(y) through (6.89) and (6.90), respectively. Conversely, if
the marginal densities fx(x) and fy(y) are known, it is generally impossi-
ble to recover the double density f(x, y), unless the variables X and Y are
independent.
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Independent Random Variables

Two random variables are said to be independent if the distribution law of
one of them does not depend on the value of the other, and viceversa. If two
random variables are independent, it is possible to factorize their bivariate
distribution as a product of the marginal distributions.

For discrete random variables

P(hi, kj) = Ph(hi)Pk(kj) (independent r.v.) . (6.91)

For continuous random variables

f(x, y) = fx(x) fy(y) (independent r.v.) . (6.92)

Numerical Characteristics, Covariance

As for univariate distributions, also for multivariate distributions one can
define numerical characteristics, such as initial and central moments. Only
the lowest-order moments of bivariate distributions are defined here, and only
continuous random variables are considered, the extension to discrete random
variables being trivial.

The means of the two variables X and Y are defined as

mx = 〈x〉 =
∫∫ +∞

−∞
x f(x, y) dxdy , (6.93)

my = 〈y〉 =
∫∫ +∞

−∞
y f(x, y) dxdy . (6.94)

Calculating the mean of each variable requires knowledge of the bivariate
density f(x, y) and an integral over the two-dimensional space. If, however,
X and Y are independent, one can factorize the density f(x, y) according
to (6.92), and, taking advantage of the normalization condition, express the
means in terms of the one-dimensional marginal densities:

mx =
∫ +∞

−∞
x fx(x) dx (independent r.v.) , (6.95)

my =
∫ +∞

−∞
y fy(y) dy (independent r.v.) . (6.96)

The variances of the two variables X and Y are defined as

Dx = σ2
x =

〈
(x−mx)2

〉
=
∫∫ +∞

−∞
(x−mx)2 f(x, y) dx dy , (6.97)

Dy = σ2
y =

〈
(y −my)2

〉
=
∫∫ +∞

−∞
(y −my)2 f(x, y) dxdy . (6.98)
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Again, if X and Y are independent, one can express the variances in terms
of the one-dimensional marginal densities:

Dx = σ2
x =

∫ +∞

−∞
(x−mx)2 fx(x) dx (independent r.v.) , (6.99)

Dy = σ2
y =

∫ +∞

−∞
(y −my)2 fy(y) dy (independent r.v.) . (6.100)

When dealing with two random variables, mixed parameters can also be
defined, involving the averages over both random variables. The lowest order
of such mixed parameters is the covariance, say the average value of the
product of the deviations of both random variables with respect to their
means:

σxy = 〈(x−mx)(y −my)〉

=
∫∫ +∞

−∞
(x−mx)(y −my) f(x, y) dxdy . (6.101)

If X and Y are independent, making use of (6.92) one can factorize the inte-
gral (6.101) into a product of two integrals over the two marginal densities:

σxy =
∫ +∞

−∞
(x−mx) fx(x) dx

∫ +∞

−∞
(y −my) fy(y)

= 〈(x−mx)〉 〈(y −my)〉 (independent r.v.) . (6.102)

According to (6.33), the central moment of order one of a univariate random
variable is zero,

〈(x−mx)〉 = 0 , 〈(y −my)〉 = 0 , (6.103)

so that the covariance of two independent variables is zero, σxy = 0.
Important applications of the covariance are found in Chaps. 8 and 10.

Problems

6.1. Binomial distribution. Calculate and plot the binomial distributions for
n = 3, p = 0.3, and for n = 9, p = 0.3.

6.2. Binomial distribution. An important application of the binomial distri-
bution is the random walk problem. Let us consider a body moving along an
x-axis at discrete steps of length d, starting from x = 0. The direction of
each step (right or left) is random and independent of the direction of pre-
vious steps. Let p be the probability that one step is towards the right, and
q = 1− p the probability that it is towards the left.

(a) Find the expression for the probability that k steps, out of n, are towards
the right.
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(b) Demonstrate that the net displacement towards the right after n steps is
L = kd− (n− k)d = (2k − n)d .

6.3. Let us consider a sequence of repeated independent trials of a random
phenomenon, and let p be the probability of positive outcome, and q = 1− p
the probability of negative outcome. The number k of trials that are necessary
for obtaining the first positive outcome is a discrete random variable that can
assume a countably infinite number of values.

(a) Verify that the distribution law is P(k) = qk−1p, and plot the distribution
for the values p = 1/2 and p = 1/6.

(b) Verify that the distribution law satisfies the normalization condition∑∞
k=1 pq

k−1 = 1.

Hints: Substitute p = 1 − q and k − 1 = s, and remember that
∑∞
s=0 q

s =
1/(1− q).

6.4. Binomial distribution. A coin is tossed n times, the probability of “head”
is p = 0.5 for each toss. The probability of k heads out of n tosses is given by
the binomial distribution. Calculate the numerical parameters of the distribu-
tion (mean m, standard deviation σ, relative width σ/m, skewness coefficient
β, and kurtosis coefficient γ2) for n = 10, n = 50, and n = 100, and verify
their trends as a function of n.

6.5. Binomial distribution. Let us again consider the one-dimensional random
walk of Problem 6.2. Each step has length d and probability p of being made
towards the right, and q = 1−p towards the left. The probability that k steps,
out of n, are made towards the right is given by the binomial distribution,
and the net displacement towards the right is a random variable L = kd −
(n− k)d = (2k − n)d.

(a) Verify that the mean and variance of L are mL = nd(p − q) and DL =
4d2npq, respectively.

(b) Consider the case p = q = 0.5, and study the behavior of the mean mL

and the standard deviation σL as a function of the number n of steps.

6.6. Poisson distribution. Calculate and plot the Poisson distributions for
a = 2 and for a = 10.

6.7. Poisson distribution. In a book of 500 pages, n = 300 printing errors
are randomly distributed. The probability that an error, chosen by chance,
is within a given page is thus p = 1/500. Calculate the probability that a
given page contains k = 2 errors using both the binomial distribution and its
approximation given by the Poisson distribution.

6.8. Poisson distribution. A harmful bacterium is present in air with the
average density λ = 100 bacteria per cube meter. Calculate the probability
that a sample volume v = 2 dm3 contains at least one bacterium.
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6.9. Normal distribution. A continuous random variable x is distributed ac-
cording to a normal law, with mean m = 3.5 and standard deviation σ = 1.7.
Making use of the tables of Appendix C.3, calculate: (a) the probability that
1 < x < 3.5, and (b) the probability that 2 < x < 5.

6.10. Central limit theorem. Let us consider a pair of vectors of unit magni-
tude |u| = |v| = 1, aligned along the same z direction, and let Y = |u+v| be
the magnitude of their sum. The two vectors have equal probability P = 0.5
of being parallel (↑↑, Y = 2) or antiparallel (↑↓, Y = 0.) (A physical example
is given by two paired electrical dipoles).

Let us now consider a set of n independent pairs, and the sum S =
∑
Yi,

where Yi = 0 or Yi = 2. S is a random variable that can assume nonnegative
integer even values. Calculate the distribution of the random variable S, the
mean m, and the variance D for selected values of n, and graphically check
that the shape of the distribution tends to the normal shape when n increases.
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In Chap. 4, when dealing with measurements affected by random fluctuations
(Sect. 4.3), the abstract concept of limiting distribution was introduced. Some
procedures for estimating the parameters of the limiting distribution from
the results of a finite number of measurements were also presented, without,
however, a rigorous justification.

After the introduction of the basic concepts of probability theory and of
the distributions of random variables (Chaps. 5 and 6), it is now possible
to give more sound foundations to those procedures, based on statistical
methods.

7.1 Parent and Sample Populations

The concepts of population and sample are basic to statistics. In this section,
their meaning is clarified, with particular attention to the applications to the
data analysis procedures.

Parent Population

Populations of a finite number of individuals are familiar to social sciences
and economics. If one focuses attention on a given property of a population
(such as the age of a group of persons or the length of a set of screws) one can
build up a parent population relative to that property. If the property can be
described by a random variable, the parent population can be represented by
a distribution of the random variable.

Example 7.1. The electronic circuits produced by a factory in a month repre-
sent a finite population, each circuit being an individual. The working time
of each circuit is a random variable. The parent population relative to the
working time can be determined by monitoring all circuits. Once the parent
population is known, one can determine the probability density that a circuit,
chosen by chance, breaks down after a given time interval.

For the applications of interest in this book, one has to deal with ab-
tract parent populations, containing an infinite number of individuals. Let
us clarify this concept with some examples.

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 139
to Data Analysis in the Physics Laboratory, DOI 10.1007/978-0-387-78650-6 7,
c© Springer Science+Business Media LLC 2008
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Example 7.2. In a random phenomenon, a given outcome (such as obtaining
“5” when a die is tossed) has the probability p, and q = 1−p is the probability
of the alternative outcomes. One describes the phenomenon by a discrete
random variable with two values: k1 = 0 for the negative outcomes, k2 = 1
for the positive outcome. Each repetition of the experiment is an individual,
and the parent population is made up of all the infinite possible repetitions
of the experiment. The distribution of the parent population is the binomial
distribution (6.2) with n = 1: P(k1) = q, P(k2) = p. Mean and variance are
m = p and D = pq, respectively.

Example 7.3. A random phenomenon consists of n repetitions of the same
trial, with probability p of positive outcome. One can describe the phe-
nomenon by a discrete random variable K, which counts the trials with
positive outcome. Each sequence of n trials is now an individual, and the
parent population is made up of all the infinite possible repetitions of n tri-
als. The distribution of the parent population is the binomial distribution
(6.2).

Example 7.4. The result of the measurement of a physical quantity affected
by random fluctuations is a random variable. The parent population con-
sists of all the infinite possible measurements. The distribution of the parent
population can often be approximated by a normal distribution.

Example 7.5. The number of cosmic rays detected by a Geiger counter in one
minute is a discrete random variable. Each measurement lasting one minute
is an individual, and the parent population consists of all the infinite possible
measurements lasting one minute. The distribution of the parent population
is the Poisson distribution.

Sample Population

The experimental determination of the properties of a parent population can
be exceedingly time consuming and expensive for large finite populations
(Example 7.1), and it is impossible for infinite populations (Examples 7.2–
7.5). In practice, one selects and examines a limited number N of individuals
of the parent population, say a statistical sample. The sampling, say the
choice of the sample, must guarantee that the sample is a good representative
of the entire population. The problem of representativeness of the sample can
be very complex in social sciences and economics; it is generally simpler in
physics, where a necessary condition for representativeness of the sample is
the randomness of its choice, and the larger is the size of the sample, the
more representative it is.

The distribution of values of the random variable within the sample is
called the sample distribution. The sample distribution has a random char-
acter, because it depends on the sample.
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The characteristics of the parent population are estimated from the ran-
dom characteristics of the sample population through the procedure of sta-
tistical inference. Let us now reconsider the previous examples.

Example 7.6. (See Example 7.1) To estimate the average lifetime of the elec-
tronic circuits produced in a month by a factory, one randomly chooses a
small number N of them: they represent the sample that will be tested for
lifetime.

Example 7.7. (See Example 7.2) For a single random phenomenon, the sample
is represented by N identical repetitions. The outcome is negative in n∗1
repetitions; it is positive in n∗2 repetitions (n∗1 + n∗2 = N). The ratios p∗ =
n∗2/N and q∗ = n∗1/N are the frequencies of realization and nonrealization,
respectively. The sample distribution consists of the two values P∗(k2) = p∗

and P∗(k1) = q∗. The frequencies p∗ and q∗ have a random character. When
the sample size increases (N →∞), one expects that the sample frequencies
tend to the probabilities, p∗ → p, q∗ → q (Fig. 7.1).
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Fig. 7.1. Sampling of a die toss. The parent population is represented by the infinite
possible tosses, and the parent distribution consists of two values of probability,
p = 1/6 (dashed line) for a given outcome, and q = 5/6 for the alternative outcomes.
The three graphs refer to three different sampling sequences, and show the sample
frequency p∗ as a function of the sample size N . When N increases, the statistical
frequency p∗ stabilizes around the probability p.

Example 7.8. Let us consider again the binomial distribution (Example 7.3).
A sample is represented by N independent repetitions of the sequence of n
single trials. At each repetition, the random variable K has a given value
k. For N repetitions, a given value k is obtained n∗(k) times. The sample
distribution is represented by the values of the sample frequencies, P∗(k) =
n∗(k)/N . When N increases (N → ∞), the sample distribution approaches
the binomial parent population, P∗(k)→ P(k) (Fig. 7.2).

Example 7.9. Let us now reconsider the measurement of a physical quantity
(Example 7.4). The N experimental values are a sample of the parent pop-
ulation represented by the outcomes of infinite possible measurements. The
sample distribution is generally represented by a histogram with N columns,
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Fig. 7.2. Sampling of a binomial distribution relative to n = 20 tosses of a die
(p = 1/6). The parent distribution is represented by open circles. The sample
populations (asterisks) refer to samples of different sizes: N = 10 (left); N = 100
(center); N = 1000 (right). The random difference between different samples (top
and bottom graphs) reduces when N increases.

whose areas are proportional to the sample frequencies p∗j = n∗j/N . When
the sample size increases (N →∞), the area of each column approaches the
area of the limiting distribution f(x) within the corresponding interval ∆xj :
p∗j → pj =

∫
f(x) dx (Fig. 7.3).

Example 7.10. Finally, let us reconsider the Poisson distribution (Example
7.5). A sample is represented by N independent repetitions of the counting
for one minute. At each repetition, the random variable K assumes a well-
defined value. For N repetitions, a given value k is obtained n∗(k) times. The
sample distribution is given by the values of the sample frequencies P∗(k) =
n∗(k)/N . When the sample size increases (N →∞) the sample distribution
is expected to approach the Poisson parent distribution: P∗(k)→ P(k).

In the following, we consider only samples of infinite parent populations,
such as those in Examples 7.7 through 7.10. When the sample size increases,
the sample distributions tend to stabilize and to become more and more sim-
ilar to the parent distributions. The convergence of the sample distributions
to the parent distributions has a random character, and is codified by a group
of theorems of probability theory, that are globally referred to as the law of
large numbers. In particular, the law of large numbers describes the conver-
gence of the statistical frequency of an event to its probability, on which the
statistical evaluation of probability is based (Sect. 5.3).

When finite parent populations are sampled, as in Example 7.6, it is nec-
essary to distinguish between samplings with and without reposition. Some
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Fig. 7.3. Parent normal distribution with m = 4 and σ = 1 (top left) and six
different sample distributions corresponding to samples of different size, N = 10
(center-left), N = 100 (center-right), N = 1000 (right).

properties of the samples of infinite populations can be extended to the sam-
ples of finite populations only if the sampling is done with reposition.

7.2 Sample Means and Sample Variances

Position and dispersion of a parent distribution can be measured by two
parameters, the parent mean (or expected value) m and the parent variance
D, that are defined (Sect. 6.3) as

m =
∑

j
xjpj , D =

∑
j

(xj −m)2 pj (7.1)

for discrete populations, and

m =
∫ +∞

−∞
x f(x) dx , D =

∫ +∞

−∞
(x−m)2 f(x) dx (7.2)

for continuous populations.
A statistical sample of size N consists of N values x1, x2, . . . , xN of the

random variable associated with the population. The sample mean m∗ and
the sample variance D∗ are defined as arithmetic averages:

m∗ =
1
N

N∑
i=1

xi , D∗ =
1
N

N∑
i=1

(xi −m∗)2 . (7.3)
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Alternatively, the sample mean and the sample variance can be expressed
as a function of the statistical frequencies p∗j , where the index j labels the
different values xj for discrete populations (Fig. 7.2) or the columns of a
histogram for continuous populations (Fig. 7.3):

m∗ =
N∑
j=1

xjp
∗
j , D∗ =

N∑
j=1

(xj −m∗)2 p∗j . (7.4)

The formal similarity between (7.4) and (7.1) enlightens the relation between
statistical frequencies p∗ and probabilities p.

Limiting Distributions of Sample Means and Variances

The sample mean m∗ and the sample variance D∗ are continuous random
variables, whose values depend on the particular sample. By repeating the
sampling many times, one can build up the histograms of sample means and
sample variances.

Example 7.11. Let us consider the toss of a die (Example 7.2). The probability
of the outcome “5” is p = 1/6. The outcome of the toss can be described by
two values of a random variable K: k1 = 0 for outcomes different from “5”,
and k2 = 1 for the outcome “5”. The parent distribution of the random
variable K has mean m = p and variance D = pq. Figure 7.4 shows the
histograms of the sample means m∗ (left) and sample variances D∗ (right)
obtained from samples of N = 50 and N = 500 tosses. Each histogram is
based on 100 repetitions of the sampling. It is evident that the width of the
histograms is smaller for N = 500 than for N = 50.
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Fig. 7.4. Sampling the population relative to the toss of a die (Example 7.11). Two
samples of N = 50 and N = 500 tosses are considered; for each sample, from the
frequency p∗ of the outcome “5”, the sample mean m∗ = p∗ and sample variance
D∗ = p∗q∗ are calculated. By repeating both sampling procedures 100 times, the
histograms of sample means (left) and sample variances (right) have been obtained.

When the number of samples is increased, the histograms of sample means
and sample variances tend to asymptotic shapes, the limiting distributions
of sample means and sample variances.
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A limiting distribution of sample means and its main properties have been
considered in Sect. 4.3, when treating the effect of random fluctuations on
measurement results.

The properties of the limiting distributions of sample means and sample
variances are now studied from a general point of view. We show that the
numerical parameters of the distributions of sample means and sample vari-
ances are connected to the parameters of the parent distribution of single
values by simple relations.

In laboratory practice, one generally performs only one sampling of a
population, so that a single value of sample mean m∗ and a single value of
sample variance D∗ are obtained. The properties of the limiting distributions
studied in this section are used in Sect. 7.3 to estimate the parameters of a
parent population from the results of a single sampling. The properties of the
distributions of means are explored in Experiment E.2 of Appendix E.

Useful Relations

Let X and Y be two random variables, and a a real constant. The mean
and variance are indicated here by m[. . .] and D[. . .], respectively. One can
demonstrate (Appendix D.8) that:

m[aX] = am[X] , (7.5)
D[aX] = a2 D[X] , (7.6)

m[X + Y ] = m[X] + m[Y ] , (7.7)
D[X + Y ] = D[X] + D[Y ] . (7.8)

The first three relations (7.5) through (7.7) are always true, whereas (7.8)
is only true if X and Y are independent variables. The equations (7.7) and
(7.8) can be immediately generalized to the addition of more than two random
variables.

Distribution of Sample Means

The mean value of the limiting distribution of sample means, m[m∗], is equal
to the parent mean m. In fact, by using (7.5) and (7.7),

m[m∗] = m
[
X1 +X2 + · · ·+XN

N

]
=

1
N
{m[X1] + m[X2] + · · ·+ m[XN ]}

=
1
N
{N m} = m . (7.9)

The variance of the limiting distribution of sample means, D[m∗], is N times
smaller than the parent variance D. In fact, by using (7.6) and (7.8),
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D[m∗] = D
[
X1 +X2 + · · ·+XN

N

]
=

1
N2
{D[X1] + D[X2] + · · ·+ D[XN ]}

=
1
N2
{N D} =

D

N
. (7.10)

The limiting distribution of sample means has the same mean m of the parent
distribution, and its variance decreases as 1/N when the sample size increases
(Fig. 7.4, left). As a consequence of the central limit theorem (Sect. 6.6), the
limiting distribution of sample means tends to the normal shape when the
sample size increases.

These properties of the distribution of sample means have already been
utilized in Sect. 4.3, when treating the uncertainty due to random fluctua-
tions.

Distribution of Sample Variances

To calculate the mean of the limiting distribution of sample variances m[D∗],
let us first consider the deviation of the ith value xi from the sample mean
m∗, and express it as a function of the deviation from the parent mean m:

(xi −m∗) = (xi −m) − (m∗ −m) , (7.11)

so that
N∑
i=1

(xi −m∗)2 =
N∑
i=1

(xi −m)2 − 2(m∗ −m)
N∑
i=1

(xi −m) +N(m∗ −m)2

=
N∑
i=1

(xi −m)2 − 2(m∗ −m)N(m∗ −m) +N(m∗ −m)2

=
N∑
i=1

(xi −m)2 −N(m∗ −m)2 . (7.12)

The sample variance is thus

D∗ =
1
N

N∑
i=1

(xi −m∗)2 =
1
N

N∑
i=1

(xi −m)2 − (m∗ −m)2 , (7.13)

and the mean of the distribution of sample variances is

m[D∗] = m

[
1
N

N∑
i=1

(xi −m)2

]
− m

[
(m∗ −m)2

]
. (7.14)

The first term of the right-handside member is the mean of the squared
deviation of the xi values from the parent mean m, say the parent variance
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D. The second term of the right-handside member is the mean of the squared
deviation of the sample mean m∗ from the parent mean m; according to
(7.9), m = m[m∗], so that the second term corresponds to the variance of
the distribution of sample means D[m∗], which in turn, according to (7.10),
is D[m∗] = D/N . In conclusion,

m[D∗] = D − 1
N
D =

N − 1
N

D . (7.15)

The mean of the limiting distribution of sample variances is smaller than the
parent variance D. The difference decreases when the sample size N increases.

It is worth noting that, in order to calculate the sample variance D∗, one
must previously calculate the sample mean m∗. The N terms of the sum in
(7.12) are thus not independent. The factor N − 1 in (7.15) is the number of
independent terms in the expression of variance, and is called the number of
degrees of freedom.

7.3 Estimation of Parameters

One of the fundamental problems of statistics, so-called statistical inference,
consists of getting the maximum amount of information on a parent distri-
bution from a finite experimental sample. This problem, phenomenologically
introduced in Sect. 4.3, is considered here from a rather general point of view.

The functional form of a parent population (normal, binomial, Poisson,
etc.) is in many cases hypothesized from theoretical considerations or from
experience in data analysis. In Chap. 11, a methodology is introduced that al-
lows an a posteriori evaluation of the soundness of an hypothesis of functional
form of a distribution.

Once the form of the distribution has been established, its numerical
parameters (mean, variance, skewness coefficient, etc.) can be estimated from
the experimental data that represent a sample population. In the following,
a generic parameter of the parent distribution and of the sample distribution
is indicated as λ and λ∗, respectively.

Example 7.12. The limiting distribution of the values of a physical quantity
affected by random fluctuations can often be approximated by a normal dis-
tribution (Sect. 4.3). The parent parameters λ1 and λ2 are the parent mean
and the parent variance, m and D = σ2, respectively. The corresponding sam-
ple parameters λ∗1 and λ∗2 are the mean and the variance of the experimental
histogram, m∗ and D∗, respectively.

Example 7.13. The histogram representing the measured values of a given
physical quantity has a bimodal shape. One hypothesizes that the physical
quantity can assume two distinct values, and that each value is dispersed
according to a normal distribution. One assumes a parent population
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f(x) = A1
1

σ1

√
2π

exp
[

(x−m1)2

2σ2
1

]
+ A2

1
σ2

√
2π

exp
[

(x−m2)2

2σ2
2

]
,

whose six parameters are: λ1 = A1, λ2 = m1, λ3 = σ1, λ4 = A2, λ5 = m2,
and λ6 = σ2 .

The sample parameters λ∗s are random variables, because they depend on
the random values x1, x2, . . . , xN of the sample. It is impossible to exactly
determine the parent parameters from a finite sample. Some procedures have,
however, been developed that allow an estimate of the parent parameters
starting from the sample parameters.

An estimator of a parameter λ is indicated here by λ̃ (a similar convention
has already been used in Chap. 4). Also the value of the estimator, say the
estimate, is indicated by λ̃.

Properties of Estimators

Different procedures, say different estimators, can be devised to estimate a
parameter λ from the N values of a sample. For any procedure, an estimate
λ̃ is always a random variable whose value randomly changes when the sam-
pling is iterated: one can thus speak of a distribution of the estimates λ̃. In
order to establish effective criteria for the comparison and choice of different
procedures for estimating parameters, one defines some properties that can
be attributed to estimators. An estimator λ̃ is

(a) Consistent, if limN→∞ λ̃ = λ, say if the estimate λ̃ tends to the parent
parameter λ when the sample size increases

(b) Unbiased, if m[λ̃] = λ, say if the mean of the limiting distribution of λ̃
corresponds to the parent parameter λ

(c) Effective, if D[λ̃] is minimum, say if the chosen estimator gives a dis-
tribution of estimates with the smallest variance with respect to all the
alternative estimators of the same parameter λ

Example 7.14. Let us consider the mean of a parent population: λ1 = m.
A possible estimator of m, based on a sample of size N , is the sample average

m̃ = m∗ =
∑

i
xi/N . (7.16)

According to (7.9), the estimator is consistent and unbiased; one can demon-
strate that it is also effective.

Example 7.15. Let us now consider the variance of a parent population: λ2 =
D. A possible estimator of D, based on a sample of size N , is the sample
variance D̃ = D∗. This estimator is consistent, but, according to (7.15), is
not unbiased, because the mean of the distribution of sample variances does
not correspond to the parent variance D. A consistent and unbiased estimator
is instead
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D̃ =
N

N − 1
D∗ . (7.17)

Criterion of Maximum Likelihood

A method that is frequently used to estimate parent parameters from a finite
sample is based on the criterion of maximum likelihood. According to this
criterion, the best estimators of the parent parameters are those that maxi-
mize the probability of obtaining exactly the sample on which the estimate
is based.

To better grasp the idea, let us focus on a continuous random variable
whose parent distribution f(x) depends on a given number of parameters λs.

Let us first make the abstract hypothesis that the parent population f(x)
and its parameters λs are perfectly known. In this case, the probability den-
sity would be known for any value of x. Consider now a sample of size N
(e.g., N measurements of a physical quantity). The probability density of
obtaining a well defined N -fold of values x1, x2, . . . , xN is the multivariate
distribution g(x1, x2, . . . , xN ) (Sect. 6.8), which is sometimes called the like-
lihood function. If the results of sampling are independent, the distribution
g(x1, x2, . . . , xN ) can be factorized into the product of N univariate marginal
distributions, all characterized by the same density f(x):

g(x1, x2, . . . , xN ) = f(x1) f(x2) · · · f(xN ) . (7.18)

Let us now consider a real case, where N sample values x1, x2, . . . , xN are
known, and one seeks an estimate of the unknown parent parameters λs. The
likelihood function (7.18) now depends on the n parameters λs, the values
xi being known: g(x1, x2, . . . , xN ;λ1, λ2, . . . , λn). According to the maximum
likelihood criterion, the best estimate of the parameters λs is given by the
values λ̃s that maximize the probability density of exactly obtaining the N -
fold of values x1, x2, . . . , xN :

max [g(x1, x2, . . . , xN ;λ1, λ2, . . . , λn)] ⇒ λ̃1, λ̃2, . . . , λ̃n . (7.19)

For example, let us suppose that the parent distribution is normal,

f(x) =
1

σ
√

2π
exp
[
− (x−m)2

2σ2

]
, (7.20)

and search for the best estimate of the parameters λ1 = m and λ2 = σ from
a sample of N values x1, x2, . . . , xN . The probability density of obtaining the
sample values x1, x2, . . . , xN is given by the likelihood function

g(x1, x2, . . . , xN ;m,σ) =
1

σN (
√

2π)N
exp

[
−

N∑
i=1

(xi −m)2

2σ2

]
, (7.21)
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where x1, x2, . . . , xN are known, and m and σ are the unknowns. The best
estimates m̃ and σ̃ of m and σ are the values that maximize the multivariate
density g(x1, x2, . . . , xN ;m,σ). To evaluate them, let us impose that the first
partial derivatives with respect to the unknowns are zero,

∂g(x1, . . . , xN ;m,σ)
∂m

= 0 ,
∂g(x1, . . . , xN ;m,σ)

∂σ
= 0 , (7.22)

and the second partial derivatives are negative. One can easily verify that:

m̃ =
1
N

∑
i
xi = m∗ , σ̃ =

√
1
N

∑
i
(xi −m)2 . (7.23)

Let us now compare (7.23) with (7.16) and (7.17). One can easily verify that
the criterion of maximum likelihood gives an unbiased estimator of the mean
m̃ = m∗. The estimate σ̃ of (7.23) is based on the deviations with respect
to the unknown parameter m; if m is substituted by its estimate m∗, one
obtains an estimator of σ consistent but not unbiased. An unbiased estimator
of D = σ2 is given by (7.17).

Weighted Average

The weighted average was used in Sect. 4.4 to synthesize two or more con-
sistent values of the same physical quantity obtained from different measure-
ments. The weighted average procedure can now be derived from the criterion
of maximum likelihood.

Let us consider the results of two sets of measurements of a physical
quantity,

XA ± δXA , XB ± δXB , (7.24)

respectively, and suppose that:

(a) The results are consistent, according to the prescriptions of Sect. 4.4.
(b) The uncertainties are due to random fluctuations and expressed as stan-

dard deviations of the (normal) distributions of the sample means:

δXA = σA[m∗A] , δXB = σB [m∗B ] . (7.25)

The two results (7.24) should now be synthesized into a unique expression
X = X0±δX0. To derive the procedure of weighted average from the criterion
of maximum likelihood, let us rely on the same approach as the previous
subsection.

If the true value Xv of the physical quantity were known (abstract hy-
pothesis), the probability densities of obtaining the central values XA and
XB by the sampling procedures A and B, respectively, would be
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fA(XA) =
1

σA
√

2π
exp
[
− (XA −Xv)2

2σ2
A

]
, (7.26)

fB(XB) =
1

σB
√

2π
exp
[
− (XB −Xv)2

2σ2
B

]
. (7.27)

Equations (7.26) and (7.27) express the limiting distributions of the sample
means (to simplify the notation, here σ stands for σ[m∗]): the distributions
are both centered on Xv, but their widths depend on the different measure-
ment procedures. We can consider (7.26) and (7.27) as two distinct parent
distributions, relative to the measurements with the two procedures A and B,
respectively (Fig. 7.5). The probability density of contemporarily obtaining
the value XA with the procedure A and the value XB with the procedure B
would be the product of fA(XA) and fB(XB), say the multivariate density:

g(XA, XB) =
1

σAσB 2π
exp
[
− (XA −Xv)2

2σ2
A

− (XB −Xv)2

2σ2
B

]
. (7.28)
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Fig. 7.5. Parent distributions relative to the measurements of the same quantity X
by two different procedures, A and B, differently affected by random fluctuations.

Let us now consider the real situation, where the values XA and XB are
known and Xv is unknown. According to the maximum likelihood criterion,
the best estimate of Xv is the value X̃v that maximizes the probability density
g(XA, XB ;Xv)(7.28) with respect to Xv. By imposing

dg(XA, XB ;Xv)
dXv

= 0 , (7.29)

and introducing, to simplify notation, the weights

wA =
1

(δXA)2
=

1
σ2
A

, wB =
1

(δXB)2
=

1
σ2
B

, (7.30)

one easily recovers the expression (4.37) of the weighted average

X̃v = X0 =
XAwA +XBwB

wA + wB
. (7.31)
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The generalization (4.39) to the case of more than two measurements,
Xi ± δXi, is immediate.

When the uncertainty of at least one of the measures is not due to random
fluctuations and cannot be expressed as the standard deviation of a normal
distribution, the previous derivation of the weighted average from the max-
imum likelihood criterion is, strictly speaking, not valid. The expression of
the weighted average can however still be used as a good approximation,
provided the uncertainties are expressed as standard deviations of suitable
distributions (Sect. 4.5).

Problems

7.1. Toss a coin N times. Plot the relative frequency of the appearance of
“head” as a function of the number of tosses.

7.2. Reconsider the logical sequence that led to the expression (4.28) of un-
certainty due to random fluctuations in Sect. 4.3. Use the data of Problem
4.3, relative to 200 measures of the period of a pendulum. The table listing
the values Ti of the period (top row) and the corresponding number ni of
measures (bottom row) is here repeated.

1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05
4 4 2 8 15 19 18 19 56 16 10 19 6 3 1

Calculate the sample mean and estimate the parent mean according to (7.16).
Calculate the sample variance and the sample standard deviation. Estimate
the parent variance and the parent standard deviation according to the crite-
rion of maximum likelihood (7.23) and compare their values with the values
of the unbiased estimator (7.17).

Estimate the mean and variance of the limiting distribution of sample
means making use of (7.9) and (7.10).



8 Uncertainty in Indirect Measurements

In Chap. 4, the causes of uncertainty in direct measurements have been ana-
lyzed, and the standard expression of the result of a measurement, X0± δX,
has been introduced. The central value X0 and the uncertainty δX have been
expressed in terms of mean value and standard deviation, respectively, of a
suitable distribution. In laboratory practice, many physical quantities are,
however, indirectly measured, by exploiting functional relations that connect
them to other directly measured quantities (Sect. 1.3).

In this chapter, the procedures for propagating the uncertainty of the
directly measured quantities to the indirectly measured quantities are pre-
sented.

8.1 Introduction to the Problem

Let the quantities X,Y, Z, . . . be directly measured, whereas the quantity Q
is indirectly measured through a functional relation Q = f(X,Y, Z, . . .); for
example, Q = X + Y , or Q = XY/Z.

Example 8.1. Length ` and period T of a pendulum are directly measured.
The acceleration of gravity g is indirectly measured through the relation
g = 4π2`/T 2.

Because the quantities X,Y, Z, . . . are affected by uncertainty, Q is also
affected by uncertainty, and has to be expressed as Q0 ± δQ, say in terms of
mean value and standard deviation of a suitable distribution.

The aim of this chapter is to find out how the central value Q0 can be
determined and the uncertainty δQ can be evaluated, from the central val-
ues X0, Y0, Z0, . . . and from the uncertainties δX, δY, δZ, . . . of the directly
measured quantities, respectively. The uncertainty δQ is sometimes called
combined uncertainty. The problem is actually rather complex, and it is here
gradually solved, starting from the simplest situation, to arrive at an approx-
imate expression of general validity. The reader only interested in final results
can skip Sects. 8.2 through 8.4, and go directly to Sect. 8.5.

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 155
to Data Analysis in the Physics Laboratory, DOI 10.1007/978-0-387-78650-6 8,
c© Springer Science+Business Media LLC 2008



156 8 Uncertainty in Indirect Measurements

Statistical Independence of Direct Measurements

A first important point to clarify concerns the statistical independence of the
directly measured quantities.

Let us, for simplicity, consider only two quantities, X and Y , directly
measured, and suppose that their limiting distributions and their means X0

and Y0 are known with good approximation. If now two single values x and
y are considered, their deviations from the mean, x−X0 and y − Y0, can be
calculated. The measures of X and Y are said to be statistically independent
if the deviations x−X0 and y− Y0 are uncorrelated, say if knowledge of the
deviation x − X0 gives no information at all on the deviation y − Y0, and
viceversa. Otherwise stated, the deviations x−X0 and y−Y0 can be consid-
ered as independent random variables (Sect. 6.8). The concept of statistical
independence can be generalized to any number of physical quantities.

The statistical independence introduced here has nothing to do with the
possible correlation between the values of the physical quantities, that is
considered in Chap. 10.

Example 8.2. Length and period of a pendulum are directly measured. It is
immediate to check that the two quantities are correlated: when the length
increases, the period increases as well. The measures of length and period are,
however, statistically independent, because their deviations from the mean
are uncorrelated.

Example 8.3. One seeks to measure the perimeter P of a polygon by a meter
stick. To this aim, one directly measures the sides a, b, c, . . . of the polygon,
and one calculates the perimeter as a sum: P = a + b + c + · · ·. Let us now
suppose that the main cause of uncertainty is the lack of confidence on the
calibration of the meter stick; one is thus induced to suppose that all measures
are similarly biased (in excess or in defect), and their uncertainties are thus
not independent.

In Sects. 8.2 and 8.3, the propagation of uncertainty for statistically inde-
pendent measures is thoroughly treated; the case of nonindependent measures
is briefly treated in Sect. 8.4.

8.2 Independent Quantities, Linear Functions

The procedure of propagation of uncertainty is relatively simple when the
functional relation between Q and X,Y, Z, . . . is linear:

Q = a + bX + c Y + dZ + · · · (8.1)

where a, b, c, d, . . . are constant coefficients. The general expression (8.1) in-
cludes the important cases
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of addition Q = X + Y ,
of subtraction Q = X − Y ,
of direct proportionality Q = bX .

If the relation connecting Q to X,Y, Z, . . . is linear, the mean and the stan-
dard deviation of the distribution of the Q values can be easily obtained from
the means and the standard deviations of the distributions of the X,Y, Z, . . .
values, by exploiting some general properties of means and variances, in-
troduced in Sect. 7.2, equations (7.5) through (7.8), and demonstrated in
Appendix D.8.

For a linear relation such as (8.1), the mean m[Q] is connected to the
means of X,Y, Z, . . . by

m[Q] = a + bm[X] + cm[Y ] + dm[Z] + · · · . (8.2)

If the values X,Y, Z, . . . are statistically independent, the variance D[Q] is
connected to the variances of X,Y, Z, . . . by

D[Q] = b2 D[X] + c2 D[Y ] + d2 D[Z] + · · · , (8.3)

and the standard deviations are connected by

σ[Q] =
√
b2 D[X] + c2 D[Y ] + d2 D[Z] + · · · . (8.4)

The central value of a quantity is expressed by the mean of the distribution,
therefore from (8.2) one gets

Q0 = a + bX0 + c Y0 + dZ0 + · · · . (8.5)

The uncertainty is expressed by the standard deviation of a suitable distri-
bution, therefore from (8.4) one gets

δQ =
√
b2 (δX)2 + c2 (δY )2 + · · · . (8.6)

The uncertainty δQ is thus obtained by quadratically summing the uncer-
tainties δX, δY, . . . weighted by the coefficients b2, c2, . . . . It is worth noting
that the quadratic sum of two numbers is smaller than their direct sum:
(s2 + t2)1/2 ≤ s+ t.

Example 8.4. The weighted average was introduced in Sect. 4.4, and further
considered in Sect. 7.3:

Xw =
∑
iXiwi∑
i wi

, δXw =
1√∑
i wi

, where wi =
1

(δXi)2
.

The expression of the uncertainty δXw can now be explained. The weighted
average is a particular case of the linear function (8.1); Xw corresponds to
Q, and the terms Xi are multiplied by the coefficients wi/

∑
wi. Using (8.6)

and remembering that wi = 1/(δXi)2, one gets
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(δXw)2 =
1

(
∑
wi)2

∑
w2
i (δXi)2 =

1
(
∑
wi)2

∑
wi =

1∑
wi
.

Let us now consider the application of (8.5) and (8.6) to some simple
cases.

Sum of Quantities: Q = X + Y

For an addition, Q = X + Y , from (8.5) and (8.6) one gets

Q0 = X0 + Y0 , (δQ)2 = (δX)2 + (δY )2 . (8.7)

The generalization of (8.7) to the sum of more than two quantities is imme-
diate.

Example 8.5. To measure the pressure of a gas in a tank, one utilizes two
instruments: a manometer to measure the gas pressure relative to the atmo-
spheric pressure, Prel, and a barometer to measure the atmospheric pressure
itself, Patm. The two measurements are statistically independent, and their
values are: Prel = (0.475 ± 0.004) bar and Patm = (0.988 ± 0.002) bar. The
gas pressure is P = Prel + Patm. According to (8.7), P0 = (0.475 + 0.998) =
1.473 bar, δP = [(δPrel)2 + (δPatm)2]1/2 = 0.0044 bar.

Example 8.6. In Sect. 4.5, it was suggested that the uncertainties of the same
quantity due to different causes should be quadratically summed (equation
4.46). The procedure is supported by (8.7) if the causes of uncertainty are
statistically independent. In fact, let us suppose that the result of a measure-
ment is X0±δXa; taking into account a further independent uncertainty δXb

is formally equivalent to summing up the quantity 0 ± δXb to the quantity
X0 ± δXa.

Difference of Quantities: Q = X − Y

For a subtraction, Q = X − Y , from (8.5) and (8.6) one gets

Q0 = X0 − Y0 , (δQ)2 = (δX)2 + (δY )2 . (8.8)

The central values are subtracted, but the uncertainties are quadratically
summed, as with additions.

Example 8.7. The mass of an empty calorimeter is mc = (257.3 ± 0.1) g.
After an amount of water has been poured into the calorimeter, the total
mass becomes mt = (298.5 ± 0.1) g. The net mass of water can be obtained
by difference, m0 = mt − mc = 298.5 − 257.3 = 41.2 g. The uncertainty is
δm = [(0.1)2 + (0.1)2]1/2 = 0.14 g.

Great attention must be paid when subtracting two very similar values X0

and Y0: it can happen that the difference is comparable with the uncertainty.
For example, (251± 1)− (250± 1) = 1± 1.4.
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Direct Proportionality: Q = b X

For a direct proportionality, Q = bX, from (8.5) and (8.6) one gets

Q0 = bX0 , δQ = |b| δX . (8.9)

Example 8.8. The wavelength λ and the period T of an electromagnetic wave
that propagates in vacuum are connected through the relation λ = c T , where
the speed of light c is an exact constant (Appendix C.2). The uncertainty δT
of the period propagates to the wavelength as δλ = c δT .

The coefficient b in (8.9) is the first derivative of Q with respect to X,
b = dQ/dX. For a linear relation, the coefficient b is constant, and measures
the slope of the straight line representing the function Q = bX (Fig. 8.1).
The propagation of the uncertainty from X to Q thus depends on the slope
of the straight line.

Q

X

Q

X

Q

X

Fig. 8.1. Illustrating the propagation of uncertainty for the direct proportionality
Q = bX. The uncertainty δQ depends on δX and on the slope b of the straight
line: δQ = |b| δX (left and center). The uncertainty δQ is instead independent of
the value X0 (right).

8.3 Independent Quantities, Nonlinear Functions

If Q is connected to X,Y, Z, . . . by a nonlinear relation, calculating the central
value Q0 and the uncertainty δQ is a rather complex problem, that can only
be approximately solved.

Functions of One Variable: Q = f(X)

To better understand the origin of the difficulties and the philosophy under-
lying their solution, it is convenient to begin with the simplest case, say a
nonlinear function Q = f(X) of only one variable X. Let us suppose that
X0 ± δX is known through a direct measurement, and let us try to answer
the following questions. Is it reasonable to set Q0 = f(X0)? And how can
δQ be calculated from δX? As a working example, let us focus on the simple
case Q = βX2.
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Example 8.9. From the direct measurement of the diameter 2R, the radius
R0±δR of a cylinder is determined. The section S of the cylinder can now be
indirectly measured as S = πR2. How can the value of the cylinder section
be expressed in the standard form S0 ± δS ?

The graph of the function Q = βX2 is a parabola (Fig. 8.2). Let us
consider a generic value X0 and the uncertainty interval 2δX centered on
X0. The uncertainty interval 2δQ corresponding to 2δX can be graphically
determined (dotted lines in Fig. 8.2, left): the value Q0 at the center of
the uncertainty interval 2δQ does not correspond to βX2

0 . Also, the same
uncertainty δX corresponds to different uncertainties δQ when X0 is varied
(Fig. 8.2, center).

Q

XX
0

β(x
0
)
2

Q

X

Q

X

Fig. 8.2. Illustration of the uncertainty propagation for Q = βX2. Left: the center
Q0 of the uncertainty interval 2δQ does not correspond to βX2

0 . Center: when X0

is changed, different intervals δQ correspond to the same interval δX. Right: local
linearization of Q = βX2.

Approximation of Local Linearity

The calculation of Q0 and δQ for a nonlinear function Q = f(X) is much
simplified by the approximation of local linearity. The function f(X) is re-
placed, within the uncertainty interval 2δX, by a straight line Q = a + bX,
tangent to the curve f(X) for X = X0 (Fig. 8.2, right):

Q = f(X) → Q = a+ bX . (8.10)

Thanks to this approach, one can extend the procedure developed for direct
proportionality (8.9) also to the case of nonlinearity. The difference is that
the procedure is now approximate.

The central value Q0 is approximated as f(X0), and the uncertainty δQ is
approximated by |b| δX, where now b is the first derivative of Q with respect
to X, calculated for X = X0:

Q0 ' f(X0) , δQ '
∣∣∣∣ dQdX

∣∣∣∣
0

δX . (8.11)
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Example 8.10. Let us reconsider Example 8.9, concerning the measurement of
the radius and section of a cylinder, and suppose that the radii of two different
cylinders have been measured, with the same uncertainty δR = 0.01 mm. The
radius of the first cylinder is R1 = (0.5±0.01) mm and the section, according
to (8.11), is S1 = πR2

1 = (0.78±0.03) mm2. The radius of the second cylinder
is R2 = (5 ± 0.01) mm and the section is S2 = πR2

2 = (78.5 ± 0.3) mm2. In
spite of the uncertainties of the radii being the same, the absolute uncertainty
of the section is ten times larger for the second cylinder than for the first one.
Conversely, the relative uncertainty is ten times smaller for the first cylinder.

One can easily understand that, the smaller is the uncertainty δX with
respect to the central value X0, the better is the approximation of local
linearity.

Raising to Power: Q = Xn

A particularly important case of relation Q = f(x) is the raising to power,
Q = Xn. Using (8.11) one finds

Q0 ' Xn
0 , δQ ' n

∣∣Xn−1
0

∣∣ δX say
δQ

|Q0|
' n δX

|X0|
. (8.12)

The relative uncertainty of Q is n times larger than the relative uncertainty
of X.

General Expression

The treatment introduced for a function of one variable, Q = f(X), can
now be extended to the general case Q = f(X,Y, Z, . . .). To simplify nota-
tion without loss of generality, it is sufficient to consider a function of two
variables, Q = f(X,Y ) (typical examples are Q = XY and Q = X/Y ).

The approximate calculation of Q0 and δQ is again based on the local
linearization of the function f(X,Y ) in a surrounding of the central values
(X0, Y0), so that the actual surface f(X,Y ) is substituted by the plane tan-
gent to the surface in correspondence of (X0, Y0):

Q = f(X,Y ) → Q = a+ bX + c Y . (8.13)

The coefficients b and c in (8.13) correspond to the first partial derivatives of
Q with respect to X and Y , calculated for X = X0 and Y = Y0, respectively:

b =
(
∂Q

∂X

)
0

, c =
(
∂Q

∂Y

)
0

. (8.14)

It is worth remembering here that the first partial derivative of a functionQ =
f(X,Y, Z, . . .) with respect to one of the independent variables, for example,
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X, is calculated as a normal derivative, considering the other variables as
constant parameters.

The problem is again reduced, although locally and approximately, to the
linear case of Sect. 8.2. If the quantitiesX and Y are statistically independent,
then

Q0 ' f(X0, Y0) , (δQ)2 '
(
∂Q

∂X

)2

0

(δX)2 +
(
∂Q

∂Y

)2

0

(δY )2 . (8.15)

The uncertainty δQ is obtained from the quadratic sum of the uncertainties
δX and δY , weighted by the corresponding partial derivatives.

The generalization to Q = f(X,Y, Z, . . .) is immediate:

(δQ)2 '
(
∂Q

∂X

)2

0

(δX)2 +
(
∂Q

∂Y

)2

0

(δY )2 +
(
∂Q

∂Z

)2

0

(δZ)2 + · · · (8.16)

Again, the smaller are the uncertainties δX, δY, . . . with respect to the central
values, the better is the approximation of local linearity.

Let us now consider the application of (8.15) to some simple cases.

Product: Q = XY

For a product Q = XY , the central value is approximated by

Q0 ' X0 Y0 . (8.17)

The uncertainty of the product, according to (8.15), is

(δQ)2 '
(
∂Q

∂X

)2

0

(δX)2 +
(
∂Q

∂Y

)2

0

(δY )2 = Y 2
0 (δX)2 +X2

0 (δY )2 . (8.18)

Equation (8.18) can be recast in a simpler form if both members are divided
by Q2

0 = X2
0 Y

2
0 : (

δQ

Q0

)2

'
(
δX

X0

)2

+
(
δY

Y0

)2

. (8.19)

The relative uncertainty of the product Q is the quadratic sum of the relative
uncertainties of the factors X and Y .

Example 8.11. The two sides of a rectangle are directly measured; their values
are a = 13± 0.05 cm and b = 25± 0.05 cm, so that the relative uncertainties
are δa/a0 = 0.0038 and δb/b0 = 0.002, respectively. The area of the rectangle
is now calculated as S = ab. The central value is S0 = a0b0 = 325 cm2; to
evaluate the uncertainty, one first calculates (δS/S0)2 = (δa/a0)2+(δb/b0)2 =
1.8×10−5, then one recovers δS/S0 = 0.0043, and finally S = 325±1.4 cm2.
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Quotient: Q = X/Y

For a quotient Q = X/Y , the central value is approximated by

Q0 ' X0/Y0 . (8.20)

The uncertainty of the quotient, according to (8.15), is

(δQ)2 '
(
∂Q

∂X

)2

0

(δX)2 +
(
∂Q

∂Y

)2

0

(δY )2 =
1
Y 2

0

(δX)2 +
X2

0

Y 4
0

(δY )2 . (8.21)

Equation (8.21) can be recast in a simpler form if both members are divided
by Q2

0 = X2
0/Y

2
0 : (

δQ

Q0

)2

'
(
δX

X0

)2

+
(
δY

Y0

)2

. (8.22)

As with the product, also with a quotient, the relative uncertainty of Q is
the quadratic sum of the relative uncertainties of X and Y .

Example 8.12. The difference of electric potential across a resistor and the
electric current are directly measured; their values are V = 200 ± 0.1 V and
I = 50± 0.1 mA, respectively, so that the relative uncertainties are δV/V0 =
0.0005 and δI/I0 = 0.002, respectively. The value of the resistance R can now
be obtained as R = V/I. The central value is R0 = V0/I0 = 4 kΩ; to evaluate
the uncertainty, one first calculates (δR/R0)2 = (δV/V0)2 + (δI/I0)2 = 4.2×
10−6, then one recovers δR/R0 = 2.1× 10−3, and finally R = 4± 0.008 kΩ.

8.4 Nonindependent Quantities

Up to now, the propagation of uncertainty has been studied for statistically
independent measures. The statistical independence is, however, not always
guaranteed. Two simple examples help in understanding the difference be-
tween statistically independent and nonindependent measures.

Example 8.13. To determine the perimeter P of a square, one directly mea-
sures its side, a0 ± δa. Let us now compare two different procedures for
calculating the perimeter P and its uncertainty. By the first procedure,
the perimeter is calculated as P = 4a, and the uncertainty, according to
(8.9), is δP = 4 δa. By the second procedure, the perimeter is calculated as
P = a + a + a + a; if the uncertainty is evaluated according to (8.7), one
obtains δP = 2 δa. This second evaluation of uncertainty is, however, wrong,
because the four added quantities are identical, and then not statistically
independent, so that the use of (8.7) is incorrect.
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Example 8.14. To determine the area S of a square, one directly measures its
side, a0 ± δa. Let us again compare two different procedures for calculating
the area S and its uncertainty. By the first procedure, the area is calculated as
S = a2, and the uncertainty, according to (8.11), is δS = 2a δa. By the second
procedure, the area is calculated as S = aa; if the uncertainty is evaluated
according to (8.18), one obtains δS =

√
2a δa. This second evaluation of

uncertainty is again wrong, because the two factors are identical, and then
not statistically independent, so that the use of (8.18) is incorrect.

The two examples show that the propagation rules based on quadratic
sums are wrong if the direct measurements are not statistically independent.
In the following, a deeper understanding will be gained by considering the
particular case Q = Q(X,Y ), where the two quantities X and Y are di-
rectly and contemporarily measured, and their uncertainty is obtained from
an equal number of repeated measurements.

Repeated Direct Measurement of Two Quantities X and Y

Let us repeat N times the direct measurement of the two quantities X and
Y . The result of each measurement is a pair of values (xi, yi). The result of
the full set of measurements is a couple of sample distributions: one for the
x values, with mean m∗x and variance D∗x, the other for the y values, with
mean m∗y and variance D∗y.

According to the convention of Sect. 4.3, the central values of the two
quantities are estimated by their sample means:

X0 = m∗x , Y0 = m∗y , (8.23)

and the uncertainties are estimated by the standard deviations of the distri-
butions of sample means:

δX = σ̃[m∗x] =

√
D∗x

N − 1
, δY = σ̃[m∗y] =

√
D∗y

N − 1
. (8.24)

Let us now consider the indirect measurement of Q(X,Y ). To each pair of
values (xi, yi) corresponds a value of Q: qi = f(xi, yi). One can then build up
a sample distribution of qi values, with mean m∗q and variance D∗q , so that
the central value and the uncertainty of Q are

Q0 = m∗q , δQ =

√
D∗q

(N − 1)
. (8.25)

Our goal is now to find the functional relations between the central value
Q0 and the central values X0, Y0, and between the uncertainty δQ and the
uncertainties δX, δY , respectively. To simplify notation, we work on variances
D∗x, D

∗
y, D

∗
q instead of uncertainties δX, δY, δQ.
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Taylor Expansions

The procedure is based on the Taylor expansion. For a function Q = f(X)
of one variable X, the generic value qi = f(xi) can be expressed as a Taylor
expansion around a given value q0 = f(x0):

qi = f(xi) = f(x0) +
(

dQ
dX

)
0

(xi − x0)︸ ︷︷ ︸
linear terms

+
1
2

(
dQ
dX

)2

0

(xi−x0)2 + · · · . (8.26)

The index 0 means that the derivatives are calculated for x = x0, and the
dots · · · stay for the third- and higher-order terms. The first two terms in
(8.26) represent the linear approximation.

For a function Q = f(X,Y ) of two variables X,Y , the Taylor expansion
is

qi = f(xi, yi) = f(x0, y0) +
(
∂Q

∂X

)
0

(xi − x0) +
(
∂Q

∂Y

)
0

(yi − y0)︸ ︷︷ ︸
linear terms

+ · · · .

(8.27)

Mean, Variance, and Covariance

Let us now evaluate mean and variance of the distribution of the qi values,
by the Taylor expansion (8.27). As a first step, let us substitute m∗x,m

∗
y to

x0, y0. The expansion (8.27) can be truncated at the first-order term if the
distributions of the xi and yi values are sufficiently narrow. This corresponds
to the local linear approximation of Sect. 8.3.

If the generic value qi is expressed by (8.27), the central value Q0 can be
calculated as

Q0 = m∗q =
1
N

∑
i
qi

' 1
N

∑
i

[
Q(m∗x,m

∗
y) +

(
∂Q

∂X

)
0

(xi −m∗x) +
(
∂Q

∂Y

)
0

(yi −m∗y)
]

= Q(m∗x,m
∗
y) , (8.28)

which corresponds to the expression Q0 ' f(X0, Y0) of (8.15). In the last
equality of (8.28), one has taken into account that

∑
(xi − m∗x) =

∑
(yi −

m∗y) = 0.
The sample variance D∗q can now be evaluated by using the expression of

m∗q calculated in (8.28):

D∗q =
1
N

∑
i
(qi −m∗q)2
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' 1
N

∑
i

[(
∂Q

∂X

)
0

(xi −m∗x) +
(
∂Q

∂Y

)
0

(yi −m∗y)
]2

=
(
∂Q

∂X

)2

0

D∗x + 2
(
∂Q

∂X

)
0

(
∂Q

∂Y

)
0

σ∗xy +
(
∂Q

∂Y

)2

0

D∗y , (8.29)

where

D∗x =
1
N

∑
i
(xi −m∗x)2 and D∗y =

1
N

∑
i
(yi −m∗y)2 (8.30)

are the sample variances of X and Y . The quantity σ∗xy appearing in the last
member of (8.29) is the sample covariance of X and Y :

σ∗xy =
1
N

∑
i

(xi −m∗x)(yi −m∗y) . (8.31)

In general, the covariance depends on the degree of correlation of two random
variables; if the random variables are independent, the covariance of their
parent distributions is zero (Sect. 6.8). Here, the sample covariance measures
the degree of correlation between the deviations of the xi and yi values from
their respective means.

Statistically Independent Quantities

If the deviations of the xi and yi values from their respective means are
completely independent, the parent covariance is zero. As for the sample
covariance of (8.29), one expects that σ∗xy → 0 for N →∞. The uncertainty
is thus given by

(δQ)2 =
(
∂Q

∂X

)2

0

(δX)2 +
(
∂Q

∂Y

)2

0

(δY )2 , (8.32)

and (8.15) is recovered.

Statistically Nonindependent Quantities

If the deviations of the xi and yi values from their respective means are not
independent, the sample covariance σ∗xy in (8.29) is not zero. The sample
covariance σ∗xy can be positive or negative, but its value is always connected
to the values of the variances D∗x and D∗y by the Schwartz inequality:(

σ∗xy
)2 ≤ D∗xD

∗
y , say

∣∣σ∗xy∣∣ ≤ √
D∗xD

∗
y . (8.33)

The Schwartz inequality can be demonstrated by considering a function
A(t) of a generic variable t, defined as
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A(t) = (1/N)
∑

i

[
(xi −m∗x) + t(yi −m∗y)

]2
= D∗x + 2t σ∗xy + t2D∗y . (8.34)

For every value of t, one has A(t) ≥ 0. The Schwartz inequality is demon-
strated by substituting t = −σ∗xy/D∗y .

As a consequence of the Schwartz inequality, from (8.29) one obtains an
expression for the maximum uncertainty of the quantity Q,

(δQ) ≤
∣∣∣∣ ∂Q∂X

∣∣∣∣
0

δX +
∣∣∣∣∂Q∂Y

∣∣∣∣
0

δY , (8.35)

that can be easily extended to the general case Q = f(X,Y, Z, . . .).

8.5 Summary

Let us now summarize the main results obtained in this chapter. It is worth
remembering that all conclusions of this chapter are strictly valid only if the
uncertainties are expressed as standard deviations of suitable distributions.

If the direct measurements are statistically independent, the uncertainty
on the indirectly measured value Q(X,Y, Z, . . .) can be calculated through
the general formula (8.16):

δQ '

√(
∂Q

∂X

)2

0

(δX)2 +
(
∂Q

∂Y

)2

0

(δY )2 +
(
∂Q

∂Z

)2

0

(δZ)2 + · · · . (8.36)

– If the function Q(X,Y, Z, . . .) is linear, say Q = a+ bX + cY + dZ + · · · ,
then the equality in (8.36) is exact (' is substituted by =).

– In particular, for sums Q = X+Y and differences Q = X−Y , the absolute
uncertainty δQ is the quadratic sum of the absolute uncertainties δX and
δY ; see (8.7) and (8.8).

– If the function Q(X,Y,X, . . .) is not linear, then the equality in (8.36)
is only approximate; the smaller are the uncertainties δX, δY, . . . with
respect to the central values X0, Y0, . . . , the better is the approximation.

– In particular, for products and quotients, the relative uncertainty δQ/Q0

is the quadratic sum of the relative uncertainties δX/X0 and δY/Y0; see
(8.19) and (8.22).

– For a raising to power Q = Xn, the relative uncertainty δQ/Q0 is n times
larger than the relative uncertainty δX/X0; see (8.12).

If the direct measurements are statistically nonindependent, then (8.36) is
not valid. One can in any case demonstrate that the maximum value of the
uncertainty of Q is

(δQ)max '
∣∣∣∣ ∂Q∂X

∣∣∣∣
0

δX +
∣∣∣∣∂Q∂Y

∣∣∣∣
0

δY +
∣∣∣∣∂Q∂Z

∣∣∣∣
0

δZ + · · · . (8.37)
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Problems

8.1. The temperature of a room is measured by a thermometer with res-
olution ∆T = 1◦C. The maximum and minimum temperatures measured
during the day are Tmax = 23◦C and Tmin = 20◦C, respectively. Evaluate
the standard uncertainties and the relative uncertainties of Tmax and of the
temperature variation Tmax − Tmin. [Answer: 0.3◦C, 1.5%, 0.4◦C, 13%.]

8.2. A Geiger counter is exposed to a radioactive source during a time interval
of 10 minutes; the counts are ntot = 25. The source is then shielded, and the
counts, due to the environmental background, are nbgr = 12 in 10 minutes.
The number of counts due to the radioactive source is evaluated as nsig =
ntot−nbgr = 13. Evaluate the absolute and relative uncertainties of ntot and
nsig. [Answer: 5, 20%, 6, 46%.]

8.3. In a calorimeter, the heat capacity C of a body is indirectly measured
as the ratio Q/∆T , where Q is the heat absorbed from an electric resistor
and ∆T is the temperature variation. The heat absorbed is Q = 2010 ± 4 J
and the temperature variation is ∆T = 4±0.1 K. Calculate the heat capacity
and evaluate its standard uncertainty. [Answ.: C = 502± 13 J/K.]
To reduce the uncertainty of the heat capacity, is it more convenient to in-
crease the accuracy of the measure of heat or of the measure of temperature?

8.4. Length and period of a pendulum are directly measured. Their values
are ` = 81 ± 0.3 cm and T = 1.8 ± 0.004 s, respectively. The acceleration of
gravity is indirectly measured as g = (2π/T )2

`. Evaluate the uncertainty δg.
[Answer: δg = 0.057 m/s2.]



9 Confidence Levels

It was shown in Sect. 4.3 that a measure affected by random fluctuations can
be expressed as X = X0 ± δX, where the best estimate of the central value
X0 is the sample mean, and the uncertainty is evaluated by the standard
deviation of the distribution of sample means.

The standard deviation of the distribution of sample means can, however,
only be estimated from a finite number of measurements. The probabilistic
interpretation of the estimated uncertainty interval depends on the sample
size, as is clarified in this chapter.

9.1 Probability and Confidence

The interpretation of the uncertainty interval is based on the distinction
between probability and confidence.

Parent and Sample Populations of Measurement Values

As observed in Chap. 7, the values obtained from N repeated measurements
of a physical quantity can be considered as a finite sample of a hypothetical
infinite parent population of single measures, whose distribution can gener-
ally be approximated by a normal distribution, with mean m and standard
deviation σ. If the parent population were known, its mean m would be the
true value Xv of the physical quantity.

Actually, only the sample of N values is known, from which one can
calculate the sample mean m∗. The sample mean is a random variable, and
can in turn be considered as an individual of the infinite parent population
of the sample means (relative to a sample of N measures). It was shown in
Sect. 7.2 that the distribution of sample means has the following properties.

(a) It is centered at the true value, m[m∗] = m = Xv.
(b) It can be considered normal with very good approximation, if N is suffi-

ciently large.
(c) Its standard deviation σ[m∗] is connected to the standard deviation σ of

the parent distribution of single measures by σ[m∗] = σ/
√
N .

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 169
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Probability Interval

Let us begin our discussion with the abstract hypothesis that the parent pop-
ulation of single measures is completely known. In this case, the true value
of the quantity would be exactly known as well: Xv = m = m[m∗]. More-
over, one could answer the following question. If a sample of N measures is
available, what is the probability that the sample mean m∗ is included in a
given interval centered at the true value Xv = m = m[m∗]? It is convenient
to measure the different possible intervals taking as the unit the standard de-
viation of the distribution of sample means σ[m∗] (Fig. 9.1, left). An interval
is thus defined by the relation

m− k σ[m∗] < m∗ < m+ k σ[m∗] , (9.1)

equivalent to
|m∗ −m| < k σ[m∗] , (9.2)

or to
|m∗ −m|
σ[m∗]

< k . (9.3)

The parameter k is called the coverage factor. Because the distribution of
sample means m∗ is, to a good approximation, normal, it is convenient to
refer to the corresponding standard variable z (Sect. 6.5),

z =
m∗ −m
σ[m∗]

, (9.4)

and rewrite (9.3) as
| z | < k . (9.5)

The probability Pk that the sample mean m∗ satisfies (9.1), for a given value
k of the coverage factor, can be evaluated by the integral of the normal
standard distribution:

Pk = P { | z | < k } =
1√
2π

∫ +k

−k
exp
[
−z2/2

]
dz . (9.6)

For example, if k = 1, the probability is Pk=1 = 68.27%, calculated using
the tables of Appendix C.3. Conversely, if a value P of probability is given,
one can determine the value of k that satisfies (9.6), again using the tables
of Appendix C.3; for example, the probability P = 90% is obtained for a
coverage factor k = 1.64.

It is worth remembering that, in the abstract case considered here, the
values Xv = m and σ[m∗] are supposed to be known, whereas the random
variable m∗ is unknown. Equation (9.1) is a direct application of probability
theory, and the interval included between m − kσ[m∗] and m + kσ[m∗] is a
probability interval.
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m*m

σ[m*]

m*+σ[m*]

m*

m*-σ[m*]

m*

m*+2σ[m*]m*-2σ[m*]

Fig. 9.1. Left: distribution of sample means m∗; the arrow ↔ shows a probability
interval centered at the parent value m, of half-width σ[m∗]. Center and right:
confidence intervals centered on the experimental sample mean m∗, of half-width
σ[m∗] and 2σ[m∗], respectively.

Confidence Interval

Let us now consider a realistic case. A physical quantity has been measured
N times, and the sample mean m∗ has been calculated. The situation is now
reversed with respect to the previous abstract case: the fixed value Xv = m
is now unknown, whereas a value m∗ of a random variable is known.

It was shown, in Sect. 7.3, that the sample mean is a consistent and
unbiased estimator of the parent mean m:

m̃ = m∗ =
1
N

∑
i
xi . (9.7)

The estimate (9.7) is a point estimate, represented by a single numerical value
m∗. A point estimate of the true value is, by itself, of little interest, inasmuch
as it is a random variable, depending on the sample.

A more significant estimate should suitably take into account the degree
of randomness of the value m̃ = m∗. To this aim, it is necessary to answer
the following question. What is the probability that an interval centered on
the sample mean m∗, and of given width, contains the true value Xv = m?
Because Xv = m is not a random variable, but a fixed (although unknown)
value, it would be incorrect to refer to this interval as a probability interval.
For that reason, it is called the confidence interval, and the corresponding
probability is called the coverage probability or confidence level. The confi-
dence interval is schematically represented in Fig. 9.1 (center and right).

To proceed step by step, let us again make an abstract hypothesis, say
that, in spite of Xv = m being unknown, the standard deviation σ of the
parent population is known. In this case σ[m∗] is also known, and a confidence
interval can be defined by the relation

m∗ − k σ[m∗] < m < m∗ + k σ[m∗] , (9.8)

which is analytically equivalent to (9.2):

|m̃−m| < k σ[m∗] . (9.9)
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The coverage factor k of (9.8) can again be connected to the corresponding
standard normal variable (9.4).

The standard deviation σ[m∗] of the distribution of sample means is con-
ventionally assumed as uncertainty δX of the measure. If σ[m∗] is known, the
confidence level can again be evaluated by (9.6). For example, the probability
Pk=1 that the confidence interval ±σ[m∗] contains the true value Xv = m is
68.27%.

In real cases, the standard deviation σ[m∗] is also unknown, like the true
value Xv = m. The value of σ[m∗] can only be estimated (Sects. 4.3 and 7.2):

σ̃[m∗] =
σ̃√
N

=
σ∗√
N − 1

=

√
1

N(N − 1)

∑
(xi −m∗)2 . (9.10)

The estimate of σ[m∗] (9.10) has a random character, because it is calculated
from a particular sample: the smaller is the number N of measurements, the
larger is the degree of randomness of the estimate. The expression (9.8) of
the confidence interval is now substituted by

m∗ − k σ̃[m∗] < m < m∗ + k σ̃[m∗] , (9.11)

equivalent to
|m∗ −m|
σ̃[m∗]

< k . (9.12)

It is convenient to introduce a new random variable

t =
m∗ −m
σ̃[m∗]

, (9.13)

and rewrite (9.12) as
| t | < k . (9.14)

The random variable t is different from the standard normal variable (9.4),
because σ̃[m∗] is only a random estimate of σ[m∗].

One is interested in evaluating the probability (confidence level) that the
true value Xv = m satisfies (9.11), for a given value k of the coverage factor,
say in evaluating the probability

P ′k = P { | t | < k } . (9.15)

The prime in (9.15) is used to distinguish the confidence level P ′k from the
probability Pk of (9.6).

Approximate Evaluation of the Confidence Level

The confidence level (9.15) can still be approximately evaluated through (9.6),
by substituting σ[m∗] with the estimate σ̃[m∗]. This approximation consists
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of substituting the variable t of (9.13) with the standard normal variable z
of (9.4). This substitution gives probability values approximated in excess,
as shown below. The larger is the number N of measurements, the better is
expected to be the approximation. In fact, when N increases, the distribution
of sample means m∗ approaches the normal shape, and the dispersion of the
estimates σ̃[m∗] with respect to σ[m∗] decreases, so that the value of the
variable t approaches the value of z.

9.2 The Student Distribution

A nonapproximate evaluation of the confidence level from a finite sample of
N measures can be attempted only if the shape of the parent distribution is
known. If the parent distribution is normal, the distribution of the random
variable t, defined in (9.13), can be calculated; it is called the Student dis-
tribution (after the pseudonym of W. S. Gosset, who first introduced it in
1908).

Because, according to (9.10), the estimate σ̃[m∗] depends on the number
N of measures, the Student distribution is expected to depend on N as well.
Actually, to calculate σ̃[m∗], it is necessary to previously know m∗, which is
in turn calculated from the N measures by (9.7). Only N − 1 values xi in
(9.10) are thus independent, because, once N − 1 values are known, the Nth
value is determined by (9.7). The problem has ν = N −1 degrees of freedom.

The Student distribution depends on the number ν of degrees of free-
dom. Two Student distributions Sν(t) for two different degrees of freedom,
ν = 1 and ν = 3, are plotted in Fig. 9.2 (left), where the standard normal
distribution is also shown for comparison. One can demonstrate that the Stu-
dent distribution for ν = 1 corresponds to the Cauchy–Lorentz distribution
(Sect. 6.7). When ν increases, say when the number of measures N increases,
the shape of the distribution is progressively modified, and for ν → ∞ the
Student distribution tends to the standard normal distribution.

The integrals of the Student distribution are tabulated in Appendix C.4
for different values of ν.

From the Student distribution, one can calculate the confidence level for
a given confidence interval, say for a given value k of the coverage factor:

P ′k = P { | t | < k } =
∫ +k

−k
Sν(t) dt . (9.16)

For example, for the standard uncertainty δX = σ̃[m∗], say for the coverage
factor k = 1, the probability is the integral of the Student distribution from
t = −k = −1 to t = +k = +1. The values, calculated using the tables of
Appendix C.4, are shown in Fig. 9.2 (right) as a function of the number of
degrees of freedom ν = N − 1. The values of the confidence level P ′k=1 are
smaller than the probability 68.27% corresponding to the standard normal
distribution, but approach it for ν →∞.
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Fig. 9.2. Left: Student distributions for ν = 1 and ν = 3 (dashed and continuous
lines, respectively), compared with the standard normal distribution (dotted line);
The arrow ↔ shows the confidence interval for the coverage factor k = 1. Right:
confidence levels as a function of the degrees of freedom, calculated by integrating
the corresponding Student distributions, for coverage factors k = 1, 2, and 3, respec-
tively; the dashed horizontal straight lines show the probabilities for the standard
normal distribution.

9.3 Applications of the Confidence Level

Let us now consider some important applications of the confidence level to
the procedures of data analysis.

Uncertainty and Coverage Factor

The conventional expression of the standard uncertainty δX = σ̃[m∗] cor-
responds to a coverage factor k = 1. The corresponding confidence level
depends on the number N of measurements, say on the number ν = N − 1
of degrees of freedom (Fig. 9.2, right), and asymptotically tends to 68.26%
when N →∞. To guarantee a correct interpretation of the value of a physical
quantity, expressed as X0 ± δX, one should always explicitly also give the
number of degrees of freedom ν = N − 1, say the size of the sample.

In some applications, it can be convenient to use coverage factors larger
than k = 1; typical examples are measurements concerning safety where con-
fidence approaching 100% is desirable. To coverage factors larger than one
correspond larger confidence intervals, and one speaks of expanded uncer-
tainty. The use of coverage factors larger than one is unconventional, and
should always be accompanied by explicit warnings. The confidence levels
corresponding to coverage factors k = 2 and k = 3 are shown in Fig. 9.2
(right) as a function of the number of degrees of freedom.

Frequently, when expanded uncertainties are used, one prefers to establish
in advance the sought confidence level (such as P ′ = 90%, or P ′ = 95%),
and then determine the corresponding coverage factor k as a function of the
number ν of degrees of freedom (see Table C.6 of Appendix C.4).
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Comparison of Different Measurements of the Same Quantity

The concept of confidence intervals allows one to estimate, on probabilistic
grounds, the degree of agreement between the results of two different mea-
surements of the same physical quantity. The application is better illustrated
by an example.

Example 9.1. The measurement of a given quantity, repeated N = 20 times,
has led to the following result (in arbitrary units): X0 = m∗ = 2.5; δX =
σ̃[m∗] = 0.5. Is this result consistent with the value m = 1.8 quoted in the
current literature and assumed as the true value? The relative discrepancy is
t = (m∗ −m)/σ̃[m∗] = (2.5 − 1.8)/0.5 = 1.4. Because N is quite large, it is
reasonable to approximate t by z. According to the tables of the standard nor-
mal distribution (Appendix C.3), the probability that |m∗ −m| < 1.4σ[m∗]
because of statistical fluctuations is about 84%. Our experimental result
m∗ = 2.5 is then considered consistent with the “true” value m = 1.8, if a
16% probability of finding by chance relative discrepancies larger than t = 1.4
is considered reasonable.

Rejection of Data

In a sample of N values xi (such as N measures of a physical quantity), it
can happen that one of the values, let it be xs, appears to be inconsistent
with the other N − 1 values. To focus our attention on a concrete case, let us
suppose that the results of N = 6 measurements of a physical quantity are
(in arbitrary units)

2.7 2.5 2.8 1.5 2.4 2.9 . (9.17)

The value xs = 1.5 appears to be inconsistent with the other values. The
possible causes of discrepancy are

– A particularly large statistical fluctuation within the parent population
– An unidentified systematic error
– A new unexpected physical effect

Let us suppose that the last possibility can be excluded. We want to eval-
uate, on probabilistic grounds, whether the discrepancy is due to a statistical
fluctuation or to a systematic error. In the first case (statistical fluctuation)
the rejection of xs would be unjustified. In the second case (systematic error)
it could be reasonable to eliminate the value xs from the sample.

The six values (9.17) can be considered as a sample of a parent distribution
of single measures whose mean m and standard deviation σ can be estimated
as

m̃ = m∗ = 2.46 , σ̃ =

√
N

N − 1
σ∗ = 0.5 . (9.18)
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The relative discrepancy between xs and m̃ is

t =
xs − m̃
σ̃

= 1.92 ' 2 . (9.19)

According to Table C.5 of Appendix C.4, taking into account that the prob-
lem has ν = 5 degrees of freedom, the probability that t is by chance larger
than 2 is about 10%. Otherwise stated, out of N = 6 measurements, we ex-
pect on the average 0.6 values that differ more than 2σ from the mean, say
that are “worse” than xs.

A conventional criterion, the so-called Chauvenet criterion, consists of
considering that a value xs can be rejected from a given sample if the ex-
pected number of “worse” values is smaller than 0.5. In this situation, one
considers that the discrepancy of xs cannot be attributed to a simple sta-
tistical fluctuation. In the previous example, the value xs = 1.5 cannot be
eliminated, according to the Chauvenet criterion.

Problems

9.1. The oscillation period of an elastic spring has been measured N = 2
times, and the following values have been obtained (in seconds),

0.363, 0.362 .
Estimate the mean of the parent distribution m̃ and the standard deviation
of the distribution of sample means σ̃[m∗]. Calculate the confidence level for
the coverage factors k = 1 and k = 3.

Eight other measurements are performed, and the total N = 10 resulting
values are:

0.363, 0.362, 0.364, 0.365, 0.365, 0.367, 0.360, 0.363, 0.361, 0.364 .
Again, estimate m̃ and σ̃[m∗], and calculate the confidence level for the cov-
erage factors k = 1 and k = 3. Compare with the case N = 2.

9.2. The specific heat of iron has been measured N = 4 times by a group of
students, and the following values have been obtained (in J kg−1 K−1),

450, 449, 431, 444 .
Estimate the mean of the parent distribution m̃ and the standard deviation
of the distribution of sample means σ̃[m∗]. The value quoted in a physics
handbook, 450 J kg−1 K−1, is assumed as the true value m. Evaluate if the
relative discrepancy (m∗−m)/σ̃[m∗] can reasonably be attributed to random
fluctuations.
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Accurate measurements of single quantities are relevant in both science and
technology. Continuous efforts are, for example, devoted to reduce the uncer-
tainty of the fundamental constants of physics (Appendix C.2).

Also of basic importance is the measurement of two or more correlated
quantities and the search for functional relations between their values that
can lead to the formulation of physical laws. For example, the measurement
of the intensity of the electrical current I flowing in a metallic conductor as
a function of the difference of potential V leads to a proportionality relation
that is known as Ohm law.

The uncertainty that affects the value of any measured physical quan-
tity plays an important role when one tries to establish correlations between
two or more quantities, and express them by functional relations. The uncer-
tainties of single measures necessarily lead to uncertainties of the functional
relations between quantities. In this chapter, some techniques are introduced,
useful to recognize the existence of a correlation between two quantities, and
to express it in a functional form, properly taking into account the measure-
ment uncertainties.

10.1 Relations Between Physical Quantities

Let us consider two physical quantities X and Y . N different values xi of
X are measured, and for each value the uncertainty δxi is evaluated, for
example, by repeating the measurement many times. In correspondence with
each value xi of X, a value yi of Y is measured, and the uncertainty δyi is
evaluated. The procedure leads to N pairs of values

xi ± δxi , yi ± δyi , (i = 1, . . . ,N ) . (10.1)

The pairs of values can be listed in a table. A more effective way for iden-
tifying and studying the possible correlation between the values of X and
Y is represented by a graph, where the pairs of central values (xi, yi) are
represented by points, and the uncertainties δxi and δyi are represented by
error bars, horizontal and vertical, respectively. Useful details on tables and
graphs are given in Appendices A.2 and A.3, respectively.
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The following examples, illustrated by the graphs of Fig. 10.1, clarify some
typical situations.

40

60

80

100

150 160 170 180 190

M
as

s 
(k

g)

Height (cm)

0

5

10

15

20

0 1000 2000
E

lo
ng

at
io

n 
 (

cm
)

Force (N)

0

0.5

1

1.5

2

0 0.4 0.8 1.2

P
er

io
d 

(s
)

Length (m)

Fig. 10.1. Correlation between physical quantities. Left: the mass of a group of
persons as a function of their height (Example 10.1). Center: elongation of an
elastic spring as a function of the applied force (Example 10.2). Right: period of
a pendulum as a function of its length (Example 10.3). The error bars, when not
visible, are smaller than the symbol size.

Example 10.1. N persons are subjected to a medical examination. Height
hi ± δhi and mass mi ± δmi of each person are measured (i = 1, . . . ,N ). In
the graph of Fig. 10.1 (left), the points representing the pairs (hi,mi) are
very dispersed. One can, however, notice a weak correlation between mass
and height: when the height increases, in general the mass increases as well.
A probabilistic procedure for evaluating the degree of correlation between
two quantities is introduced in Sect. 10.2.

Example 10.2. An elastic spring is suspended from a fixed point. A variable
force is applied to the free end. To each value Fi±δFi of the force corresponds
a value yi ± δyi of deformation of the spring. From the graph of Fig. 10.1
(center), not only is it immediate to recognize a correlation between the two
quantities F and y, but it appears also reasonable to hypothesize that the
two quantities are connected by a proportionality relation y = BF , where B
is a constant. A general procedure to evaluate the coefficients A and B of a
linear relation Y = A+BX is introduced in Sect. 10.3.

Example 10.3. The distance ` of a simple pendulum from its suspension point
is varied. For each value of length `i±δ`i, a different value of period Ti±δTi is
measured. Also in this case, from the graph of Fig. 10.1 (right), it is reasonable
to hypothesize that the two quantities ` and T are connected by a functional
relation that, however, is clearly not linear. Some procedures for treating
nonlinear relations between physical quantities are considered in the following
sections.
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10.2 Linear Correlation Coefficient

In this section, a method is introduced for quantitatively evaluating the de-
gree of correlation between two physical quantities X and Y . Reference can
be made to Example 10.1 and to Fig. 10.1, left.

Sample Variance and Covariance

Once the N pairs of values (xj , yj) have been measured, the sample means,
the sample variances, and the sample standard deviations can be calculated
as

m∗x =
1
N
∑

j
xj , D∗x =

1
N
∑

j
(xj −m∗x)2 , σ∗x =

√
D∗x , (10.2)

m∗y =
1
N
∑

j
yj , D∗y =

1
N
∑

j
(yj −m∗y)2 , σ∗y =

√
D∗y . (10.3)

The sample covariance is

σ∗xy =
1
N
∑

j
(xj −m∗x)(yj −m∗y) . (10.4)

It is important to note the different meaning of variance and covariance in the
previous application of Sect. 8.4 and in the present application. In Sect. 8.4,
variance and covariance refer to the random fluctuations of two given values
xi and yi with respect to their means, and are connected to uncertainty. Here,
variance and covariance refer to N pairs (xi, yi) of different values of the two
quantities.

Definition of the Linear Correlation Coefficient

The linear correlation coefficient r of the two quantities X and Y is defined
as follows:

r =
σ∗xy
σ∗xσ

∗
y

=

∑
j(xj −m∗x)(yj −m∗y)√∑

j(xj −m∗x)2
√∑

j(yj −m∗y)2
. (10.5)

As has already been noticed in Sect. 8.4, the Schwartz inequality ensures
that |σ∗xy| ≤ σ∗xσ

∗
y . This means that the linear correlation coefficient cannot

be smaller than −1 nor larger than +1:

|r| ≤ 1 . (10.6)
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The Case of Perfect Linear Correlation

To understand the meaning of the linear correlation coefficient r, it is con-
venient to first consider a particular case. Let us suppose that the quantities
X and Y are exactly connected by a linear relation:

Y = A+BX . (10.7)

In this case, for any pair of values (xi, yi) and for the sample means m∗x,m
∗
y,

the following relations are true,

yi = A+Bxi , (10.8)
m∗y = A+Bm∗x . (10.9)

By subtracting (10.9) from (10.8), one gets

yi −m∗y = B(xi −m∗x) . (10.10)

Taking into account (10.10), one can easily verify that, for an exact linear
relation, the expression of the linear correlation coefficient (10.5) is simply:

r =
B√
B

=
B

|B|
=
{+1 if B > 0 ,
−1 if B < 0 .

(10.11)

The two extremum values r = 1 and r = −1 thus correspond to a perfectly
linear relation, with angular coefficient B positive and negative, respectively.

Interpretation of the Linear Correlation Coefficient

Let us now try to understand how a generic value −1 < r < 1 of the linear
correlation coefficient, obtained through (10.5) fromN pairs of values (xj , yj),
can be interpreted. It is worth noting that the coefficient r is calculated from
an experimental sample of finite size, subject to random fluctuations. The
correlation coefficient r is thus a random variable.

Let us hypothesize at first that the two quantities X and Y are to-
tally uncorrelated. One expects then that, when the number N of mea-
sured pairs increases, the covariance σ∗xy tends to stabilize around zero: for
N → ∞, σ∗xy → 0. Actually, for a finite number N of pairs, the sample
covariance σ∗xy is generally not zero, also when the two quantities are com-
pletely uncorrelated, its value depending on the sample. Let ro be the linear
correlation coefficient calculated through (10.5) (the index “o” here stands
for “observed”). The quantity ro is a random variable. The distribution of
the random variable r0 can be calculated as a function of the number N of
measured pairs (xj , yj). In Appendix C.6, one finds a table containing the
integrals of the distribution, for selected values of N and ro. The integrals
correspond to the probability
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PN (|r| ≥ ro) (10.12)

that the correlation coefficient r is larger than the observed value ro, for a
pair of completely uncorrelated quantities X and Y .

Let us now consider a realistic case. N pairs of values (xj , yj) of two
quantities X and Y have been measured, and one wants to evaluate their
degree of correlation. To this purpose, one calculates the observed correlation
coefficient ro through (10.5). One then looks in a table of probability values
for the distribution of r (Appendix C.6).

– If PN (|r| ≥ ro) < 5%, the correlation between the two quantities is said
to be significant.

– If PN (|r| ≥ ro) < 1%, the correlation between the two quantities is said
to be very significant.

10.3 Linear Relations Between Two Quantities

Let us now consider the case of Example 10.2 (Fig. 10.1, center), where it is
very reasonable to assume that a proportionality relation exists between the
two measured quantities. For the sake of completeness, we consider the more
general case of a linear relation:

Y = A+BX . (10.13)

Two problems have to be solved:

(a) To determine the parameters A and B of the straight line Y = A + BX
best fitting the experimental points. This problem is solved in this section.

(b) To evaluate the degree of reliability of the hypothesis that a linear rela-
tion actually fits the experimental points. This problem, the test of the
hypothesis, is solved in Chap. 11.

A first evaluation of the parametersA andB and of the order of magnitude
of their uncertainties δA and δB can often be obtained by the following
graphical method. One draws the straight lines of maximum and minimum
slope consistent with the uncertainty crosses of the experimental points (Fig.
10.2). The equations of the two straight lines are

Y = A1 +B1X , Y = A2 +B2X . (10.14)

It is reasonable to assume the values of the parameters A and B as

A =
A1 +A2

2
, B =

B1 +B2

2
, (10.15)

and to evaluate the corresponding uncertainties through the approximate
relations

δA ' |A1 −A2 |
2

, δB ' |B1 −B2 |
2

. (10.16)
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y

x
Fig. 10.2. Straight lines of maximum and mini-
mum slope compatible with the uncertainty crosses.

Linear Regression

An effective procedure for analytically calculating the coefficients A and B
of the straight line A+BX is represented by linear regression, based on the
least squares method. The procedure consists of determining the values of
the parameters A and B that minimize the global discrepancy between the
experimental points (xi, yi) and the straight line Y = A + BX, taking into
account the uncertainty of each experimental point.

For each point, the discrepancy is measured along the y-axis, considering
the square of the difference between the vertical coordinate of the point and
the straight line (Fig. 10.3, left):

(yi − A−Bxi)2 . (10.17)

The least squares method takes into account only the uncertainties δyi on
the Y quantities. We suppose, for the moment, that the uncertainties δxi are
actually negligible; below, we learn how to take into account the uncertainties
δxi as well.

For each point, the discrepancy (10.17) is divided by the uncertainty
(δyi)2, say multiplied by the weight wi = 1/(δyi)2 (Fig. 10.3, right). The
global discrepancy is measured by the sum over all points:

χ2 =
N∑
i=1

(yi −A−Bxi)2

(δyi)2
=
N∑
i=1

wi (yi −A−Bxi)2 . (10.18)

By convention, the sum is named χ2 (chi square). The values xi, yi and δyi
are known, therefore the quantity χ2 can be considered a function of the two
variables A and B. The goal is thus to determine analytically the values of
A and B that minimize the value of χ2.

Let us first consider the case of direct proportionality

Y = BX . (10.19)

The global discrepancy is measured by the sum
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Fig. 10.3. Left: Discrepancy between an experimental point and the theoretical
straight line, in correspondence of a given value xi. Right: The absolute discrepancy
is larger for the point at xj than for the point at xk; the discrepancy divided by
the uncertainty is instead smaller for the point at xj than for the point at xk.

χ2 =
N∑
i=1

(yi −Bxi)2

(δyi)2
=
N∑
i=1

wi (yi −Bxi)2 . (10.20)

The quantity χ2 is a function of the variable B. A necessary condition for χ2

to be minimum is that the first derivative with respect to B be zero:

dχ2

dB
= 0 . (10.21)

One can easily verify that (10.21) is satisfied by

B =
∑
i wixiyi∑
i wix

2
i

, (10.22)

and the value B of (10.22) actually corresponds to a minimum of χ2.
If the uncertainties δyi are the same for all points, (10.22) becomes

B =
∑
i xiyi∑
i x

2
i

. (10.23)

Let us now consider the general case of linearity (Fig. 10.4).

Y = A+BX . (10.24)

The quantity χ2 (10.18) is now a function of two variables, A and B. A neces-
sary condition for χ2 to be minimum is that its first derivatives with respect
to A and B be zero:


∂χ2

∂A
= 0

∂χ2

∂B
= 0

⇒

 (
∑
i wi)A + (

∑
i wixi)B =

∑
i wiyi ,

(
∑
i wixi)A +

(∑
i wix

2
i

)
B =

∑
i wixiyi .

(10.25)
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One thus obtains a system of two linear equations with unknowns A and
B, whose solution is

A =

(∑
i wix

2
i

)
(
∑
i wiyi) − (

∑
i wixi) (

∑
i wixiyi)

∆w
, (10.26)

B =
(
∑
i wi) (

∑
i wixiyi) − (

∑
i wiyi) (

∑
i wixi)

∆w
, (10.27)

where
∆w =

(∑
i
wi

) (∑
i
wix

2
i

)
−
(∑

i
wixi

)2

. (10.28)

One can easily verify that the values A and B of (10.26) and (10.27) actually
correspond to a minimum of χ2.

If the uncertainties δyi are the same for all points, (10.26) and (10.27)
become

A =

(∑
i x

2
i

)
(
∑
i yi) − (

∑
i xi) (

∑
i xiyi)

∆
, (10.29)

B =
N (

∑
i xiyi) − (

∑
i yi) (

∑
i xi)

∆
, (10.30)

where
∆ = N

(∑
i
x2
i

)
−
(∑

i
xi

)2

. (10.31)
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Fig. 10.4. Example of linear regression: the con-
tinuous line is the straight line best fitting the ex-
perimental points.

Taking into Account the Uncertainties of X

If the uncertainties δxi are not negligible, they can be taken into account by
a procedure based on the following steps.

1. Two approximate values A′ and B′ of the straight line parameters are
evaluated by the graphical method (10.15) or through (10.29)–(10.31).

2. The uncertainties (δxi)exp of X are transformed into contributions (δyi)tra

to the uncertainties of Y by the propagation procedures of Chap. 8, ob-
taining, for each point

(δyi)tra = |B′| (δxi)exp . (10.32)
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3. The two contributions to the uncertainty of Y , the experimental one and
the transferred one, are quadratically summed for each point:

(δyi)2
tot = (δyi)2

exp + (δyi)2
tra . (10.33)

4. The final parameters A and B are calculated through (10.26)–(10.28),
where now wi = 1/(δyi)2

tot .

Uncertainties of the Parameters A and B

Because the values yi are affected by uncertainties δyi, one expects that the
parameters A and B are affected by uncertainty as well. To evaluate the
uncertainties δA and δB, the propagation procedures of Chap. 8 are used.

Let us first consider the simpler case of direct proportionality, Y = BX.
Equation (10.22) shows that B is a linear combination of yi values, as in
(8.1):

B =
∑

i
βiyi , where βi =

wixi∑
i wix

2
i

. (10.34)

One can then apply the propagation rule (10.18), with (δyi)2 = 1/wi:

(δB)2 =
∑

i
β2
i (δyi)2 =

∑
i w

2
i x

2
i /wi

(
∑
i wix

2
i )2

=
1∑
i wix

2
i

. (10.35)

If all uncertainties δyi are equal, (10.35) reduces to

(δB)2 =
∑
i x

2
i

(δy)2
. (10.36)

Let us now consider the general case of linearity. Both parameters A and
B, (10.26) and (10.27), are linear combinations of the values yi, as in (8.1):

A =
∑

i
αiyi, where αi =

wi(
∑
i wix

2
i )− wixi(

∑
i wixi)

∆w
, (10.37)

B =
∑

i
βiyi, where βi =

wixi(
∑
i wi)− wi(

∑
i wixi)

∆w
. (10.38)

One can again use the propagation rule (8.6), with (δyi)2 = 1/wi, and taking
into account that ∆w is given by (10.28), one can verify that

(δA)2 =
∑

i
α2
i (δyi)2 =

∑
i wix

2
i

∆w
, (10.39)

(δB)2 =
∑

i
β2
i (δyi)2 =

∑
i wi

∆w
. (10.40)

If all the uncertainties δyi are equal, (10.39) and (10.40) reduce to

(δA)2 =
∑
i x

2
i

∆
(δy)2 , (δB)2 =

N
∆

(δy)2 , (10.41)

where ∆ is given by (10.31).
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Linearization of Nonlinear Relations

It is quite easy to check, by visual inspection of a graph, if N experimental
points (xi, yi) are approximately arranged along a straight line (Fig. 10.1,
center); in this case, the parameters of the straight line can be determined
by the linear regression procedure. It can instead be difficult to recognize, by
visual inspection, nonlinear functional relations (Fig. 10.1, right). It is, for
example, difficult to distinguish between a parabolic and a cubic behavior,
Y = αX2 and Y = βY 3, respectively.

In some cases, simple transformations of the graph axes allow the trans-
formation of a generic function Y = φ(X) to a straight line Y = A+BX, to
which the linear regression procedure can be applied. For example, a parabolic
behavior Y = αX2 can be transformed into a linear behavior by plotting the
Y values as a function of Z = X2. Other very effective linearization pro-
cedures are based on the use of logarithmic graphs, and are summarized in
Appendix A.3. Working examples can be found in Experiments E.4, E.5, and
E.7 of Appendix E.

10.4 The Least Squares Method

In Sect. 10.3, the linear regression procedure was founded on the least squares
method. In this section, a justification of the least squares method, based on
the criterion of maximum likelihood (Sect. 7.3), is given, and its application
extended from the case of a linear function Y = A + BX to the case of a
generic function Y = φ(X).

Introduction to the Problem

Let us suppose that N pairs of values (xi ± δxi, yi ± δyi) of two physical
quantities X and Y have been measured. A functional relation Y = φ(X),
that satisfactorily describes the relation between X and Y , is sought. In
general, the function Y = φ(X) depends on several parameters λ1, λ2, . . .
so that it will be expressed as Y = φ(X, {λk}). For example, in the case
of a linear dependence Y = A + BX (Sect. 10.3), there are two parameters
λ1 = A, λ2 = B.

The procedure for fitting a function Y = φ(X, {λk}) to a set of N points
(xi ± δxi, yi ± δyi) can be decomposed into two steps:

1. The choice of the form of the function Y = φ(X, {λk}): linear, parabolic,
exponential, sinusoidal, and so on

2. The evaluation of the parameters {λk}

As for the first step, let us suppose that the form of the function
Y = φ(X, {λk}) is known from independent considerations of theoretical or
experimental nature. The goodness of the hypothesis Y = φ(X, {λk}) can be
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a posteriori evaluated by means of tests, such as the chi square test considered
in Chap. 11.

The second step corresponds to the problem of the estimation of the pa-
rameters of a parent population from a finite sample (Sect. 7.3), and the
method of least squares can be derived from the maximum likelihood crite-
rion.

Maximum Likelihood and Least Squares

The derivation of the least squares method from the maximum likelihood
criterion is based on two hypotheses.

1. The uncertainty of X is negligible with respect to the uncertainty of Y ,
so that one can assume δxi = 0, δyi 6= 0 for each point. This hypothesis is
not particularly restrictive; the possibility of taking into account nonzero
values of δxi has already been considered in the previous section for the
linear case, and is generalized below.

2. The uncertainty of Y is expressed by the standard deviation of a suitable
normal distribution, δyi = σi. In the following, to simplify the notation,
the symbol σi is used throughout. For example, for random fluctuations,
σi here stands for σ̃i[m∗i ].

To introduce the maximum likelihood criterion, the same approach is used
as in previous applications of Sect. 7.3.

If the parameters {λk} of φ(X, {λk}) were known, once a value xi has
been given, the probability density of the corresponding value yi would be

f(yi) =
1

σi
√

2π
exp

{
− [yi − φ(xi, {λk})]2

2σ2
i

}
. (10.42)

Once a set of N values x1, x2, . . . , xN has been given, the probability density
of obtaining N independent values y1, y2, . . . , yN would be a multivariate
density that can be factorized into the product of univariate densities f(yi):

g (y1, y2, . . . , yN ; {λk}) =
N∏
i=1

1
σi
√

2π
exp
{
− [yi − φ(xi, {λk})]2

2σ2
i

}

=
1

(
∏
i σi) (2π)N/2

exp

{
− 1

2

N∑
i=1

[yi − φ(xi, {λk})]2

σ2
i

}
. (10.43)

In the real cases, the N values y1, y2, . . . , yN are known, whereas the values
of the parameters {λk} are unknown. According to the maximum likelihood
criterion, the best estimates of the parameters {λk} are the values that max-
imize the probability density g (y1, y2, . . . , yN ; {λk}) in (10.43).

Finding the maximum of g (y1, y2, . . . , yN ; {λk}) with respect to the pa-
rameters {λk} corresponds to finding the minimum of the sum in the exponent
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in the last member of (10.43). The sum is indicated by convention as χ2 (chi
square):

χ2 =
N∑
i=1

[yi − φ(xi, {λk})]2

σ2
i

. (10.44)

Each term in the sum (10.44) measures the discrepancy between experimental
points and theoretical curve, compared with the uncertainty σi. Because the
values xi, yi, and σi are known, χ2 is a function only of the p parameters
{λk},

χ2 = χ2(λ1, λ2, . . . , λp) , (10.45)

defined in a p-dimensional space.
To determine the parameters {λk} best fitting the experimental points,

it is necessary to find the absolute minimum of the function χ2 in the p-
dimensional parameter space. The minimization procedure can be performed
in various ways, depending on the form of the function φ(X, {λk}).

Minimization for Linear Functions

The minimization procedure of χ2 can be analytically performed if the func-
tion φ(X, {λk}) linearly depends on the parameters {λk}. The most general
linear expression of φ is

φ(X, {λk}) = λ1 h1(X) + λ2 h2(X) + λ3 h3(X) + · · ·

=
p∑
k=1

λkhk(X) , (10.46)

where the hk are known functions of the variable X. The χ2 is then

χ2 =
N∑
i=1

1
σ2
i

[yi − λ1h1(xi)− λ2h2(xi)− λ3h3(xi)− · · · ]2 . (10.47)

The minimum of χ2 is obtained by imposing that all its first derivatives with
respect to the p parameters λk are zero. One can easily verify that, for any
parameter λk, one obtains a first-degree equation with p unknowns λk:

∂χ2

∂λk
=
N∑
i=1

2
σ2
i

hk(xi) [yi − λ1h1(xi)− λ2h2(xi)− λ3h3(xi)− · · · ] = 0 .

(10.48)
By considering the derivatives with respect to all the parameters λk, one ob-
tains a system of p linear equations with constant coefficients and p unknowns
λk. To determine the parameters λk, one can use any of the well-established
techniques for the solution of systems of equations, such as the determinant
method.
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The linear function Y = A+BX of Sect. 10.3 is a simple case of (10.46),
with h1(X) = 1, h2(X) = X, h3(X) = h4(X) = · · · = 0. The linear regression
procedure of Sect. 10.3 is the simplest application of the least squares method.

The linear regression case can be generalized to a generic polynomial
function

Y = λ1 + λ2X + λ3X
2 + λ4X

3 + · · · (10.49)

that is again a particular case of (10.46). A polynomial of degree p− 1 has p
parameters. By imposing that the first derivatives of χ2 with respect to the
parameters are zero,

∂χ2

∂λk
=

∂

∂λk

N∑
i=1

1
σ2
i

[yi − λ1 − λ2xi − λ3x
2
i − λ4x

3
i − · · · ]2 = 0 , (10.50)

one obtains a system of p linear equations with constant coefficients and p
unknowns. The solution of the system gives the values of the p parameters
λ1, λ2, . . . , λp. The procedure is called polynomial regression (Fig. 10.5).
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Fig. 10.5. Example of polynomial regression: the
continuous line is the second-degree polynomial
best fitting the experimental points.

The parameters {λk}, analytically obtained by the regression procedures,
are a function of the values xi, yi and of the uncertainties σi. One can thus
evaluate their uncertainties {δλk} by the propagation procedures of Chap. 8,
as was done in Sect. 10.3 for the particular case of linear regression.

Note. It is important to distinguish the linearity of the function φ(X, {λk})
with respect to the parameters {λk}, which allows an analytical solution of
the minimization procedure, from the linearity with respect to the variable
X, which leads to the particular case of linear regression.

Minimization for nonlinear functions

Let us now consider the functions φ(X, {λk}) that are nonlinear with respect
to the parameters {λk}.

In some cases, one can obtain a linearization of the function by suitable
changes of variables, and then again apply the analytical methods of regres-
sion.
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Example 10.4. An exponential relation Y = a exp(bX) can be linearized by
taking the natural logarithm: lnY = ln a+ bX. The new expression is linear
with respect to the parameters λ1 = ln a and λ2 = b. By substituting Y ′ =
lnY one obtains the expression Y ′ = λ1 + λ2X, which is also linear with
respect to X, and allows the application of the linear regression procedure.

Example 10.5. A generic power law Y = aXb can be linearized by taking the
natural or decimal logarithms: log Y = log a+ b logX. The new expression is
linear with respect to the parameters λ1 = log a and λ2 = b. By substituting
Y ′ = log Y and X ′ = logX, one obtains the expression Y ′ = λ1 + λ2X

′,
that is also linear with respect to X ′, and allows the application of the linear
regression procedure.

If the function φ(X, {λk}) cannot be linearized with respect to the pa-
rameters {λk}, the minimization of χ2 cannot be performed by analytical
procedures, and requires numerical approaches.

Example 10.6. An example of a function that cannot be linearized is the law
of the damped harmonic oscillator, Y = A exp(−γX) sin(ω0X + ϑ).

The simplest method of numerical minimization consists of creating a
regular lattice in the p-dimensional space of the parameters {λk}. Each lattice
point corresponds to a set of p values {λ1, λ2, . . . , λp}. For each lattice point,
one calculates the χ2 value through (10.44), and then one searches the point
corresponding to the minimum of χ2. The search can be made progressively
more precise by increasing the density of the lattice points in selected regions
of the parameter space.

This method, in principle particularly simple, can become very slow and
ineffective when the number p of parameters {λk} increases: if n values are
considered for each parameter, the total number of lattice points to be ex-
plored is np, a number that can easily become exceedingly large. Various
alternative approaches, faster and more effective, have been developed for
searching the absolute minimum of χ2, and are implemented in easily avail-
able computer codes.

Taking into Account the Uncertainties of X.

The least squares method is based on the hypothesis that the uncertainty
of the independent variable X is negligible. If the uncertainties δxi are not
negligible, one can take them into account by the following procedure.

1. A preliminary application of the least squares method is made, taking
into account only the uncertainties σi = δyi. One obtains approximate
values {λ′k} of the parameters, and a first approximate evaluation of the
function φ′(X, {λ′k}). (For linear regression, this first step can be made
graphically, as shown in Sect. 10.3.)
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2. The uncertainties (δxi)exp are transformed into contributions (δyi)tra to
the uncertainties of Y , by the propagation procedures of Chap. 8, and one
obtains, for each point

(δyi)tra =
∣∣∣∣dφ′(X, {λ′k})dX

∣∣∣∣
xi

(δxi)exp . (10.51)

3. The two contributions to the uncertainty of Y , the experimental one and
the transferred one, are quadratically summed for each point:

(δyi)2
tot = (δyi)2

exp + (δyi)2
tra . (10.52)

4. The definitive application of the least squares method is made, where now
the uncertainties are σi = (δyi)tot.

A Posteriori Evaluation of the Uncertainty on Y

In some cases, it happens that the uncertainties δyi are underestimated. Typ-
ical cases are:

(a) Each value yi is the outcome of only one measurement, and the quoted
uncertainty δyi only takes into account resolution, not the possible effects
of random fluctuations.

(b) The uncertainty due to uncompensated systematic errors has not been
taken into account.

In such cases, if there are good reasons to trust the hypothesis of the func-
tional relation Y = φ(X, {λk}), for example from theoretical considerations
or from the results of independent experiments, then the parameters {λk}
can still be estimated, and one can attempt an evaluation a posteriori of the
average uncertainty δy = σ.

The parameters {λk} are calculated by minimizing the sum

ψ2 =
N∑
i=1

[yi − φ(X, {λk})]2 , (10.53)

that corresponds to minimizing the sum (10.44) if the uncertainties σi are
are equal.

The unknown average uncertainty σ can be now evaluated, again using
the maximum likelihood criterion, by maximizing the probability density

GN (y1, y2, . . . , yN ;σ) =
N∏
i=1

1
σ
√

2π
exp
{
− [yi − φ(X, {λk})]2

2σ2

}
(10.54)

with respect to σ2. One can easily verify that the minimum of the exponent
in (10.54) is obtained for
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σ2 =
1
N
∑

i
[yi − φ(X, {λk})]2 . (10.55)

The estimate of uncertainty given by (10.55) is not unbiased (Sect. 7.3). Let
us, for example, consider the limiting case of N experimental points to which
a polynomial with p = N parameters is fitted. In such a case, the curve
determined by the polynomial regression procedure would exactly contain all
the experimental points, and one would obtain σ2 = 0 from (10.55).

Because the p parameters are determined from the experimental data,
only N − p independent values are available to evaluate the uncertainty. The
problem is said to have N − p degrees of freedom. As a consequence, an
unbiased estimate of the uncertainty can be obtained only if N > p, and is
given by

σ2 =
1

N − p
∑

i
[yi − φ(X, {λk})]2 . (10.56)

Problems

Problem 1. The elongation x of a spring has been measured as a function of
the applied force F (Experiment E.3 of Appendix E). The following table lists
the measured pairs of values (Fj , xj). The uncertainties are δF = 3× 10−4 N
and δx = 0.4 mm.

Fj (N) 0.254 0.493 0.739 0.986 1.231 1.477 1.721
xj (mm) 25 49 73 97 121 146 170

Plot the experimental points on a linear graph. Evaluate the best fitting
straight line F = Bx by the linear regression procedure, and plot it on
the same graph of the experimental points. Calculate the uncertainty of the
parameter B.

Problem 2. The period T of a pendulum has been measured as a function
of the length ` (Experiment E.5 of Appendix E). The following table lists the
measured pairs of values (`j , Tj). The uncertainties are δ` = 6× 10−4 m and
δT = 1.5× 10−4 s.

`j (m) 1.194 1.063 0.962 0.848 0.737 0.616 0.504 0.387 0.270 0.143
Tj (s) 2.198 2.072 1.974 1.856 1.733 1.580 1.429 1.255 1.048 0.766

Plot the experimental points on a linear graph, and verify that the relation
between T and ` is not linear.

Plot the values Y = T 2 against `, and evaluate the best fitting straight
line Y = B` by the linear regression procedure, and plot it on the same graph
of the experimental points. Calculate the uncertainty of the parameter B.
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A central problem of statistical data analysis is represented by the test of
theoretical hypotheses against experimental data. Typical examples are the
test of consistency of a normal distribution with a histogram of measured
values (Sect. 4.3), or the test of consistency of a functional relation with a
set of experimental points (Sect. 10.3).

Several different procedures have been devised for performing such types
of tests. One of the most frequently used is the chi square test (after the
name of the Greek letter χ, “chi”) to which this chapter is dedicated.

11.1 Meaning of the Chi Square Test

The chi square test gives a criterion for verifying, on probabilistic grounds,
the consistency of a theoretical hypothesis with a set of experimental data.
In this chapter, the chi square test is studied for two types of problems:

(a) Comparison between a finite set of values of a random variable and a
probability distribution

(b) Comparison between a set of pairs of measured values (xk, yk) and a
functional relation Y = φ(X)

Comparison Between Expected and Observed Values

As a first step, let us introduce a general procedure for measuring the discrep-
ancy between observed experimental data and theoretical expected values.
The topic can be better introduced by some simple examples.

Example 11.1. Binomial distribution. Twenty dice (n = 20) are contemporar-
ily tossed N times. At each toss, the number of dice exhibiting the face “2”
is a discrete random variable K, whose possible values are 0 ≤ k ≤ 20. For N
tosses, a number Ok of observed outcomes is associated with each value of K.
If the dice are perfectly symmetrical, the random variable K is distributed
according to the binomial law Pnp(k) = P20,1/6(k), and the expected num-
ber of outcomes is Ek = N P20,1/6(k) for each value of K. The situation is
illustrated in Fig. 7.2 of Sect. 7.1. The comparison of the values Ok and Ek
can help in evaluating the actual degree of symmetry of the dice.

P. Fornasini, The Uncertainty in Physical Measurements: An Introduction 193
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Example 11.2. Normal distribution. A physical quantity is measured N times,
and the values are represented in a histogram with N bins; the height of the
kth bin is proportional to the numberOk of observed values. One hypothesizes
that the histogram is a finite sample of a normal distribution, with probability
density f(x); each bin of the histogram can be compared with a portion of the
area under the curve f(x), corresponding to a probability Pk. The expected
value for the kth bin is Ek = N Pk. The situation is illustrated in Fig. 7.3 of
Sect. 7.1 and Fig. 6.20 of Sect. 6.6.

Example 11.3. Functional relation Y = φ(X). N pairs of values (xk, yk) are
measured; let us suppose that the uncertainties δxk are negligible with respect
to the uncertainties δyk. One hypothesizes that the measurements can be
interpreted by a functional relation Y = φ(X). For each measured value
xk, one can compare the observed value Ok = yk with the expected value
Ek = φ(xk). The situation is illustrated in Fig. 10.3 of Sect. 10.3 for a linear
function.

The three examples refer to three rather different situations, in all of
which, however, the comparison between theory and experiment can be re-
duced to the comparison between a set of observed values Ok and a set of
corresponding expected values Ek.

The starting point of the chi square test is the expression of the global
discrepancy between theory and experiment by the sum of the squared dif-
ferences between observed and expected values,

N∑
k=1

(Ok − Ek)2

(δOk)2
. (11.1)

In (11.1), δOk is the uncertainty of the observed value Ok. The discrepancy
between each observed value and the corresponding expected value is thus
weighted by the inverse of the uncertainty of the observed value.

11.2 Definition of Chi Square

In order to formally introduce the quantity chi square, it is necessary to
discuss the nature of the uncertainties δOk appearing in (11.1).

In Examples 11.1 and 11.2, the discrete samplings of two distributions
have been described in terms of observed values Ok for each value of a random
variable K. Each observed value Ok is a discrete random variable, obeying the
binomial (Sect. 6.1) or Poisson (Sect. 6.4) limiting distribution, depending on
the procedure of measurement (constant N or constant time, respectively).
The expected value of Ok is the mean of the binomial or Poisson limiting
distribution, Ek = m[Ok]; for the Poisson distribution, mean and variance
coincide, so that Ek = m[Ok] = D[Ok].
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It was shown in Sect. 6.6 that both binomial and Poisson distributions
can be approximated by a normal distribution if their means are sufficiently
large. For the present application, this approximation can be considered valid
when Ek is of the order of 5 or larger. The uncertainties (δOk)2 of (11.1) can
then be considered as variances σ2

k of normal distributions.
In Example 11.3, if the experimental uncertainties are due to random

fluctuations, then the uncertainties (δOk)2 of (11.1) can be considered as the
variances σ2

k of the corresponding normal distributions of sample means.

When the uncertainties δOk can be expressed as variances of suitable
normal distributions, then the sum in (11.1) is referred to as chi square:

χ2 =
N∑
k=1

(Ok − Ek)2

σ2
k

. (11.2)

The values Ok are random variables, therefore the sum χ2 is a random vari-
able as well.

Approximate Interpretation of the Chi Square

A first rough interpretation of the chi square can be based on the following
arguments. Even if the theory were absolutely true, one would expect a dif-
ference between expected and observed values, because of the unavoidable
presence of random fluctuations. The difference Ok −Ek would be a random
variable, centered on the zero value; the extent of the fluctuations of Ok with
respect to Ek would be measured by the uncertainty δOk = σk of the ob-
served value. Otherwise stated, one would expect that, for each term in the
sum (11.2),

(Ok − Ek)2

σ2
k

' 1 , (11.3)

so that

χ2 =
N∑
k=1

(Ok − Ek)2

σ2
k

' N . (11.4)

Let us now suppose that, in a real case, the value of χ2 has been evaluated
through (11.2). An approximate interpretation of the χ2 value can be made
as follows.

(a) A value of χ2 of the order of N or smaller indicates that the theory is
probably (but not necessarily) correct.

(b) A value of χ2 much smaller than N generally indicates that the uncer-
tainties σk have been overestimated.

(c) A value of χ2 much larger than N generally indicates that the discrepan-
cies between observed and expected values cannot be solely attributed to
random fluctuations, and the theory is probably incorrect; however, the
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large value of χ2 could also be due to an underevaluation of the uncer-
tainties σk.

The three cases listed above are schematically illustrated in Fig. 11.1, for
the case of a linear fit to experimental data points. A rough evaluation of
the value of χ2 can often be made simply by visual inspection of the graph,
by comparing, for each point, the discrepancy theory-experiment with the
uncertainty bars.
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Fig. 11.1. The three graphs show three different situations relative to a linear fit
to a set of data points: χ2 ' N (left), χ2 � N (center), χ2 � N (right).

Chi Square and Degrees of Freedom

Let us now try to gain a deeper understanding of the interpretation of the χ2.
The expectation χ2 ' N of (11.4) is justified only if the N terms of the sum
are mutually independent. This is the case when the theory is completely
independent of experiment. In most cases of interest, however, the theory
is to some extent determined by experimental results. As a consequence,
not all the (Ok − Ek) terms in (11.2) are independent; once a number ν of
(Ok − Ek) terms are known, the remaining c = N − ν terms are univocally
determined, and lose any random character. The topic can be better clarified
by reconsidering the previous examples 11.1 through 11.3.

Example 11.4. Binomial distribution (Example 11.1). Once the characteris-
tics of the phenomenon are determined, the parameters n and p are known, so
that the binomial distribution Pnp is completely known. The expected values
Ek depend, however, also on the sample size: Ek = N Pnp. Once N − 1 val-
ues Ok are known, the N th value is univocally determined by the constraint∑
Ok =

∑
Ek = N . The sum in (11.2) thus contains ν = N − 1 independent

terms.
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Example 11.5. Normal distribution (Example 11.2). When comparing an ex-
perimental histogram with a limiting normal distribution, the constraint∑
Ok =

∑
Ek = N has again to be taken into account. Moreover, in this

case the parameters m and σ of the limiting distribution are also estimated
from the corresponding sample parameters; the two equations m = m∗

and σ = [N/(N − 1)]1/2σ∗ represent two further links between the val-
ues Ok and the values Ek:

∑
xkOk =

∑
xkEk and N

∑
(xk − m∗)2Ok =

(N − 1)
∑

(xk −m)2Ek. Globally, there are c = 3 constraints, and the sum
in (11.2) contains ν = N − 3 independent terms.

Example 11.6. Functional relation Y = φ(X) (Example 11.3). Let us first
focus attention on a linear relation Y = A+BX. If the parameters A and B
are estimated from the experimental points by linear regression (Sect. 10.3),
then (10.26) and (10.27) represent two links between the values Ok = yk and
the values Ek = φ(xk). There are thus c = 2 constraints, and the sum in
(11.2) contains ν = N − 2 independent terms. For any function φ(X), the
number of constraints is equal to the number of parameters of the function
φ(X) that are determined from experimental data.

In general, the observed values Ok and the expected values Ek are con-
nected by a number c of independent equations, named constraints. The
number of independent terms in the sum in (11.2) is thus ν = N − c, and is
named the number of degrees of freedom. Only ν terms, out of the N terms
of the sum, have random character. It is thus reasonable to expect χ2 ' ν
instead of χ2 ' N . Obviously, the chi square test is meaningful only if the
sum in (11.2) contains at least one random term, say if N > c, so that ν > 0.

Let us consider again the previous examples.

Example 11.7. Binomial distribution (Examples 11.1 and 11.4). For the bi-
nomial distribution Pn,p there is only one constraint, c = 1. The condition
ν > 0, say N − c = ν > 0, is always fulfilled. In fact, also for n = 1, the
random variable K has N = 2 possible values, k1 = 0 and k2 = 1. One
expects

χ2 =
N∑
k=1

(Ok −N Pnp)2

σ2
k

' N − 1 . (11.5)

Example 11.8. Normal distribution (Examples 11.2 and 11.5). For the normal
distribution, there are three constraints. In order that ν > 0, the number N
of bins of the experimental histogram cannot be less than four. One thus
expects

χ2 =
N∑
k=1

(Ok − Ek)2

σ2
k

' N − 3 . (11.6)
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Example 11.9. Functional relation Y = φ(X) (Examples 11.3 and 11.6). The
number of constraints is equal to the number of parameters of the function
φ(x) determined from experiment. In order that ν > 0, the number N of
experimental points has to be larger than the number of parameters.
For the direct proportionality Y = BX, there is one parameter B; if there
were only one experimental point, the best fitting straight line would cer-
tainly include it, independently of uncertainty; for the chi square test to be
meaningful, the number N of experimental points should be at least two, and
one expects

χ2 =
N∑
k=1

(yk −Bxk)2

σ2
k

' N − 1 . (11.7)

For a linear relation Y = A+BX, there are two parameters A,B; if there were
only two experimental points, the best fitting straight line would certainly
include them, independently of their uncertainties; for the chi square test to
be meaningful, the number N of experimental points should be at least three,
and one expects

χ2 =
N∑
k=1

(yk −A−Bxk)2

σ2
k

' N − 2 . (11.8)

The discrepancy between theory and experiment has a random character,
and χ2 is a random variable. A thorough probabilistic interpretation of the
meaning of χ2 is given in Sect. 11.3. Let us give here some rules of thumb for
interpreting the symbol ' appearing in (11.5) through (11.8).

(a) If χ2 ' N − c = ν (and if one is confident that the uncertainties σ2
k have

been correctly evaluated), then it is reasonable to assume that the theory
is consistent with experimental results.

(b) If χ2 � N − c = ν, then it is still reasonable to assume that the theory
is consistent with experimental results; there is, however, a nonnegligible
probability that the uncertainties σ2

k have been overestimated.
(c) If χ2 � N − c = ν, then it is probable that theory and experimental

results are inconsistent, unless the uncertainties σ2
k have been strongly

underestimated.

11.3 The Chi Square Distribution

Once a theoretical hypothesis has been made, the expected values Ek are
determined; the experimental values Ok are instead random variables. As
a consequence, χ2 is also a random variable. If the probability distribution
of the random variable χ2 is known, one can evaluate the probability of
obtaining χ2 values larger or smaller than the value actually obtained by ex-
periment. This procedure leads to a quantitative probabilistic interpretation
of the χ2 values.



11.3 The Chi Square Distribution 199

Definition of the Chi Square Distribution

To find out the χ2 distribution, it is worth observing that all terms in the sum
in (11.2) have the same form, independently of the nature of the problem:
the variable Ok is normally distributed around the value Ek, with variance
σ2. Each term of the sum in (11.2) corresponds then to the standard normal
variable (Sect. 6.5),

Z =
Ok − Ek

σk
, (11.9)

whose mean is zero and whose standard deviation is one. The χ2 is thus the
sum of N standard normal variables,

χ2 =
N∑
k=1

Z2 . (11.10)

The N terms of the sum (11.10) are generally not independent. The number
of independent terms is given by the number ν of degrees of freedom, so that
the sum in (11.10) contains ν ≤ N independent random variables Z2, all
characterized by the same distribution law.

The distribution law of the random variable χ2 defined by (11.10) can be
well approximated by the distribution law of a quantity χ2 defined as the
sum of ν independent variables Z2:

χ2 =
ν∑
k=1

Z2 . (11.11)

Strictly speaking, in probability theory the χ2 is the sum of independent Z2

variables, Z being the standard normal variable, as in (11.11). Our definition
(11.10) is a widely accepted extension of terminology. The chi square distri-
bution is the distribution of the random variable χ2 defined by (11.11) as the
sum of independent Z2 variables.

The chi square distribution depends on the number ν of terms in the sum
(11.11). There is thus a different distribution Gν(χ2) for each different value
of the number ν of degrees of freedom.

Analytical Expression of the Chi Square Distribution

It is relatively easy to evaluate the chi square distribution for one degree of
freedom, ν = 1; in this case

χ2 = z2 , where f(z) =
1√
2π

exp
[
−z2/2

]
. (11.12)

To calculate the probability density G(z2) ≡ G1(χ2), one can notice that to
each value z2 of the variable Z2 correspond two values of Z: +z and −z. The
probability that the value of Z2 belongs to an interval d(z2) is
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G(z2) d(z2) = 2 f(z) dz

= 2 f(z)
dz

d(z2)
d(z2) = 2 f(z)

1
2z

d(z2) , (11.13)

so that

G(z2) =
f(z)
z

=
1

z
√

2π
exp
[
−z2/2

]
, (11.14)

say
G1(χ2) = 1

√
2πχ2 exp

[
−χ2/2

]
. (11.15)

The function G1(χ2) diverges for χ2 → 0 (Fig. 11.2, left); one can always
verify that it is normalized to one.
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Fig. 11.2. Chi square distributions Gν(χ2) for different degrees of freedom. Notice
that the horizontal and vertical scales of the left- and right-handside graphs are
different.

For two degrees of freedom (ν = 2), one can demonstrate that the chi
square distribution is (Fig. 11.2, left)

G2(χ2) = G(Z2 + Z2) = 0.5 exp
[
−χ2/2

]
. (11.16)

The chi square distribution for a number of degrees of freedom ν is given
by the expression

Gν(χ2) =
1

2ν/2 Γ (ν/2)
(
χ2
)ν/2−1

exp
[
−χ2/2

]
, (11.17)

where the Γ function is defined as follows,

For n integer Γ (n+ 1) = n!
For n half-integer Γ (n+ 1/2) = (2n− 1)× (2n− 3) · · · 5× 3×

√
π/2n .

Some chi square distributions for different degrees of freedom ν are shown in
Fig. 11.2.
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Mean and Variance

The mean of the chi square distribution with ν degrees of freedom is:

〈χ2〉 =

〈
ν∑
k=1

Z2

〉
=

ν∑
k=1

〈Z2〉 = ν 〈Z2〉 . (11.18)

To calculate 〈Z2〉, remember that Z is the standard normal variable (11.19),
so that

〈Z2〉 =
〈

(Ok − Ek)2

σ2
k

〉
=
〈(Ok − Ek)2〉

σ2
k

=
σ2
k

σ2
k

= 1 . (11.19)

In conclusion, the mean of the chi square distribution is equal to the number
of degrees of freedom:

〈χ2〉 = ν . (11.20)

This conclusion justifies the approximate interpretation introduced at the
end of Sect. 11.2, based on the expectation that the experimental value of χ2

be equal to the number of degrees of freedom.
One can also demonstrate that the variance of the chi square distribution

is twice the number of degrees of freedom, D[χ2] = 2ν .
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Fig. 11.3. Distributions of the reduced chi square Gν(χ̃2) for ν = 2, 5, 10.

Reduced Chi Square

The reduced chi square χ̃2 is frequently utilized instead of the chi square χ2.
The reduced chi square χ̃2 is defined as the ratio of the chi square χ2 to the
number ν of degrees of freedom

χ̃2 = χ2/ν . (11.21)

The expectation χ2 ' ν corresponds then to the expectation χ̃2 ' 1.
It is also possible to calculate the distributions Gν(χ̃2) of the reduced

chi square. Some distributions are shown in Fig. 11.3. One can appreciate
that the distributions of the reduced chi square become narrower when ν
increases. Actually, the mean of the distributions is always one, and the
variance decreases as ν increases.
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11.4 Interpretation of the Chi Square

The knowledge of the chi square distributions Gν(χ2) allows a probabilistic
interpretation of the value of χ2 obtained in a given experiment.

Let us suppose that an experiment has led to N experimental values
Ok, whereas a theoretical hypothesis leads to N corresponding expected val-
ues Ek, the number of degrees of freedom being ν. The chi square, calcu-
lated according to (11.2), is labeled here as χo, the index “o” standing for
“observed”,

χ2
o =

N∑
k=1

(Ok − Ek)2

σ2
k

, (11.22)

to distinguish it from the generic value χ2.
The problem is now to evaluate whether the observed discrepancy, mea-

sured by the value χ2
o, can solely be attributed to random fluctuations of the

observed values Ok with respect to the expected values Ek, or is due to the
inadequacy of the theoretical hypothesis.

If the theoretical hypothesis were correct, the expected values of χ2 due
to random fluctuations would be distributed according to Gν(χ2).

The integral ∫ χ2
0

0

Gν (χ2) dχ2 = P
[
χ2 < χ2

0

]
, (11.23)

where the upper limit is the observed value χ2
o, is the probability of obtaining,

merely because of random fluctuations, a value smaller than the value χ2
o

actually observed. By converse, the integral∫ ∞
χ2

0

Gν (χ2) dχ2 = P
[
χ2 > χ2

0

]
(11.24)

is the probability of obtaining a value larger than the value χ2
o actually ob-

served.
Analogous expressions are obtained for the reduced chi square,∫ χ̃2

0

0

Gν (χ̃2) dχ̃2 = P
[
χ̃2 < χ̃2

0

]
, (11.25)∫ ∞

χ̃2
0

Gν (χ̃2) dχ̃2 = P
[
χ̃2 > χ̃2

0

]
. (11.26)

Calculating the integrals (11.23) through (11.26) is far from trivial; the
corresponding values are tabulated in various equivalent forms; see, for ex-
ample, Appendix C.5.

It is worth noting that the comparison between the observed values χ2
o or

χ̃2
o and the tabulated values of the integrals (11.23) through (11.26) does not
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allow a deterministic decision about the soundness of a theoretical hypothesis;
it can only lead to a probabilistic evaluation:

(a) If the probability P
[
χ̃2 > χ̃2

0

]
is considered large, then it is reasonable

to assume that the theoretical hypothesis is consistent with experimental
data.

(b) If the probability P
[
χ̃2 > χ̃2

0

]
is considered small, then it is reasonable

to doubt the soundness of the theoretical hypothesis.

By convention, if P
[
χ̃2 > χ̃2

0

]
' 0.05, one considers that there is significant

disagreement between theory and experiment; if P
[
χ̃2 > χ̃2

0

]
' 0.01 the

disagreement is said to be highly significant.
Anyway, it should be borne in mind that the reliability of the chi square

test often depends on the correct evaluation of the experimental uncertain-
ties σk.

Problems

11.1. Attempt a rough evaluation of the chi squares for the three graphs
represented in Fig. 11.1, by using a common ruler. Compare the chi square
values with the number of degrees of freedom (remember that the best fitting
straight line has been obtained by linear regression).

11.2. Consider again the three graphs of Fig. 11.1. The coordinates of the
experimental points, xk and yk = Ok, the uncertainties δyk = σk and the
yk = Ek values of the best fitting straight line A+BX for graph (a) are (in
arbitrary units):

X 1 2 3 4 5
Y 8.2 9.0 12.5 13.2 16.0
δY 0.6 1.0 1.0 0.7 0.7
A+BX 7.8 9.8 11.8 13.8 15.7

The numerical values for graph (b) are:

X 1 2 3 4 5
Y 7.5 9.0 11.6 13.2 15.0
δY 0.8 1.0 0.8 1.0 0.7
A+BX 7.5 9.4 11.3 13.3 15.2

The numerical values for graph (c) are:

X 1 2 3 4 5
Y 9.0 9.3 10.5 13.0 16.5
δY 0.3 0.3 0.3 0.3 0.3
A+BX 7.9 9.8 11.7 13.5 15.4
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For each of the three sets of values, calculate the chi square (11.2). Com-
pare the χ2 values with the rough values obtained in Problem 11.1 by the
graphical procedure.

Compare the χ2 values with the number of degrees of freedom, ν = 3, and
evaluate the soundness of the hypothesis of linearity for the three different
cases.

For each of the three graphs, evaluate the probability that the expected
value of χ2 is larger than the observed value, making use of the tables of
Appendix C.5.



A Presentation of Experimental Data

A.1 Significant Digits and Rounding

In science and technology, one sometimes deals with exact numerical values.

Example A.1. The sine function has an exact value when the argument is
π/6: sin(π/6) = 0.5 .

Example A.2. The velocity of light c, expressed in m s−1, has by convention
the exact value 299 792 458.

More often, one deals with approximate numerical values.

Example A.3. The value of the cosine function when the argument is π/6 can
be expressed only in approximate ways, depending on the required accuracy;
for example, cos(π/6) ' 0.866 , or cos(π/6) ' 0.8660254 .

Example A.4. The value of the velocity of light is often expressed in approx-
imate form, c ' 3× 108 m s−1 .

Example A.5. The measure of a physical quantity is always an approximate
value, the extent of the approximation being connected to the uncertainty.

Significant Digits

The number of significant digits of a numerical value is obtained by counting
the digits from left to right, starting from the first nonzero digit. The zeroes
to the left of significant digits have only positional character. For example:

The number 25.04 has 4 significant digits: 2 5 0 4
The number 0.0037 has 2 significant digits: 3 7
The number 0.50 has 2 significant digits: 5 0

Counting the significant digits is not unambiguous when dealing with
integer values terminating with at least one zero, such as 350 or 47000. In
these cases, it is not evident whether the zeroes are actually significant or
only positional. The scientific notation avoids ambiguities.

Example A.6. Let us consider the value 2700. Using scientific notation, one
can specify the number of significant zeroes:
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2700 = 2.7×103 (2 significant digits)
2.70×103 (3 significant digits)
2.700×103 (4 significant digits)

The following nomenclature is used for significant digits.

– The first digit on the left is the most significant digit (MSD).
– The last digit on the right is the least significant digit (LSD).

Sometimes, the measurement uncertainty is implicitly implied in the num-
ber of significant digits. For example:

X = 2.47 m instead X = (2.47 ± 0.005) m
X = 2.470 m instead X = (2.470 ± 0.0005) m

The implicit expression of uncertainty should be avoided, because in some
cases it can be equivocal.

Rules for Rounding off Numerical Values

When the number of digits of a numerical value has to be reduced, the remain-
ing least significant digit has to be rounded off, according to the following
rules.

1. If the most significant digit to be eliminated is 0, 1, 2, 3, 4, then the
remaining least significant digit is left unaltered. For example, 12.34 '
12.3 .

2. If the most significant digit to be eliminated is 6, 7, 8, 9, or 5 followed
by at least a nonzero digit, then the remaining least significant digit is
incremented by one. Examples: 12.36 ' 12.4 ; 12.355 ' 12.4 .

3. If the most significant digit is 5 followed only by zeroes, then the remain-
ing least significant digit is left unaltered if it is even; it is incremented
by one if it is odd. Examples: 12.45 ' 12.4, 12.35 ' 12.4 .

Rounding off the Results of Calculations

When calculations are performed on approximate numerical values, not all
digits of the result are necessarily significant. In this case, the result has to be
rounded off, so as to maintain only the significant digits. Although no exact
prescriptions exist, some rules of thumb can be given.

For additions and subtractions of approximate numbers: the digits of the
sum or difference are not significant to the right of the position corresponding
to the leftmost of the least significant digits of the starting terms.

Example A.7. Let us sum up the three approximate numbers: 2.456, 0.5,
3.35 ; because the second term has no significant digits beyond the first
decimal position, the sum is rounded to the first decimal position:
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2.456 +
0.5 +
3.35 =

6.306 −→ 6.3

Example A.8. Let us calculate the average of the three approximate num-
bers: 19.90, 19.92, 19.95 . The average value 19.923333 , obtained by a
calculator, has to be rounded to 19.92 .

For multiplications and divisions of approximate numbers: it is reasonable
to round off the result to n, or sometimes n+ 1 significant digits, where n is
the smallest between the numbers of significant digits of the factors.

The square roots of approximate numbers are generally rounded off to the
same number of significant digits of the radicand.

Example A.9. The product of the approximate numbers 6.83 and 72 is eval-
uated by a calculator. The result 491.76 is rounded off to two significant
digits, 4.9×102 .

Example A.10. The approximate number 83.642 is divided by the approxi-
mate number 72. The results 1.1616944 can be rounded off to two significant
digits, 1.2, but in this case it can be preferable to maintain also the third
digit, 1.16 .

Example A.11. The square root of 30.74 is evaluated by a calculator. The
result

√
30.74 = 5.5443665 is rounded off to 5.544 .

Example A.12. The tangent of an angle of 27◦ is calculated as the ratio
between the sine and cosine values, approximate to two significant digits:
sin(27◦) ' 0.45 and cos(27◦) ' 0.89 ; the value 0.505618, obtained by a
calculator, is approximated to 0.51 or 0.506 . The direct calculation of the
tangent by the same calculator would give the value tan(27◦) ' 0.5095398 .

Significant Digits and Measurement Uncertainty

The number of significant digits of a measure is determined by the extent of
its uncertainty. Rounding techniques are generally used for the expression of
uncertainty. Two rules of thumb should be taken into account.

(a) The uncertainty δX should be expressed by no more than two significant
digits, and sometimes one significant digit is sufficient.

(b) When a measurement result is expressed as X0 ± δX, the least signifi-
cant digit of X0 should be of the same order of magnitude as the least
significant digit of the uncertainty.

For measurements affected by random fluctuations (Sect. 4.3), the central
value X0 and the uncertainty δX are evaluated from the experimental data
as
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X0 =
1
N

∑
i
xi , δX =

√
1

N(N − 1)

∑
i
(xi −m∗)2 . (A.1)

The values X0 and δX obtained by (A.1) generally include nonsignificant
digits, and should be rounded off according to the aforementioned rules of
thumb.

Example A.13. The period T of a pendulum is measured N = 6 times, and
the following six values are obtained (expressed in seconds):

2.15, 2.14, 2.17, 2.15, 2.16, 2.17 .
By (A.1), one obtains the approximate values

T = 2.1566667 s , δT = 0.004944 s ,
that should be rounded off as

T = 2.157 s , δT = 0.005 s .

Example A.14. The uncertainty of a length value is calculated as δX = 0.015
mm. In this case, it is not convenient to round off the value to one significant
digit, δX = 0.01mm, because a nonnegligible contribution to uncertainty
would be eliminated.

In indirect measurements, both central value and uncertainty are obtained
from calculations performed on directly measured values (Chap. 8). Also in
indirect measurements, it can be necessary to round off the results.

Example A.15. The side a of a square is directly measured, obtaining the
value a = (23 ± 0.5) mm. The length of the diagonal d is calculated as
d = a

√
2 =32.526912 ± 0.707106mm . The value has to be rounded off to

d =32.5 ± 0.7mm .

Example A.16. The acceleration of gravity g is evaluated from the directly
measured values of length ` and period T of a pendulum: g = (2π/T )2 `.
One obtains: g0 = 9.801357m s−2 ; δg = 0.023794m s−2 . The uncertainty
is rounded off to δg = 0.024m s−2 . The value of g0 is rounded off accordingly,
so that finally: g = g0 ± δg = (9.801 ± 0.024) m s−2 .

A.2 Tables

A table is an effective and synthetic method for presenting correlated entities.
A typical example is the table connecting names and symbols of lower- and
upper-case Greek letters (Appendix C.1). Here we are mainly interested in
mathematical and physical tables.
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Mathematical Tables

Some mathematical functions cannot be evaluated by simple and fast ana-
lytical algorithms: their calculation is based on laborious procedures that are
convenient to perform once for all. In such cases, tables are frequently used,
in which the values yi of the function are shown in correspondence with se-
lected values xi of the independent variable. In general, the significant digits
appearing in the table indicate the precision of the calculation.

Example A.17. Before the advent of calculators in the 1970s, the values of
trigonometric functions, exponentials, and logarithms were listed in published
tables, whose layout was like that of Table A.1.

Table A.1. An example of a table of trigonometric functions.

Angle Angle Sin Cos Tan
(deg) (rad)

0◦ 0.000 0.000 1.000 0.000

2◦ 0.035 0.035 0.999 0.035

4◦ 0.070 0.070 0.998 0.070

6◦ 0.105 0.105 0.995 0.105

8◦ 0.140 0.139 0.990 0.141

... ... ... ... ...

Example A.18. The integrals of several functions relevant for the theory of
probability, such as the normal distribution, the Student distribution, and
the chi square distribution, are listed in some tables of Appendix C.

Physical Tables

Tables are frequently utilized to compare and possibly correlate the values
of two or more physical quantities. The values of each quantity are listed in
a column of the table. At the top of the column, the name of the physical
quantity and its unit are written. For example, Table A.2 lists the measures
of the period of a pendulum as a function of its length.

The values of physical quantities must always be accompanied by the cor-
responding uncertainties, for example, in the standard form X0 ± δX (Table
A.2, left-handside). If the uncertainty is the same for all values, it can be given
once at the top of the corresponding column (Table A.2, right-handside).

Linear Interpolation

Let us consider a table containing the values of two quantities X and Y . Only
a finite number of pairs (xi, yi) can be actually listed. Sometimes one wants
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Table A.2. Tabular representation of the values of the period of a pendulum
measured as a function of the length. The uncertainties have been quoted for each
value in the left-hand side, only once for all in the right-hand side.

Length Period Length Period
(cm) (s) (±0.05 cm) (±0.005 s)

20± 0.05 0.89± 0.005 20 0.89
40± 0.05 1.26± 0.005 40 1.26
60± 0.05 1.55± 0.005 60 1.55
80± 0.05 1.79± 0.005 80 1.79

to know the value ỹ corresponding to a value x̃ that does not appear in the
table, but is included between two listed values: x1 < x̃ < x2. The problem
can be easily solved if the relation between X and Y can be considered as
linear, at least locally (say within the interval x1 − x2); one can then linearly
interpolate

ỹ − y1

x̃− x1
=
y2 − y1

x2 − x1
, so that ỹ = y1 +

y2 − y1

x2 − x1
(x̃− x1) . (A.2)

If the relation cannot be considered linear, one must rely on more complex
interpolation procedures, typically based on polynomials of order higher than
one.

A.3 Graphs

Graphs allow a synthetic and suggestive representation of the values of two or
more physical quantities. Only two-dimensional graphs (x, y), with orthogo-
nal axes, are considered here, the extension to more complex situations being
quite trivial. Typical applications of graphs in physics are:

(a) The visualization of the behavior of a function y = φ(x) in a finite region
of its domain (Fig. A.1, left)

(b) The search for a correlation between the measured values of two quantities
X and Y , and possibly of a suitable functional dependence y = φ(x) (Fig.
A.1, right)

General Considerations

Some simple rules can help to enhance the readability and effectiveness of
graphs.

1. The independent and dependent variables should be represented on the
horizontal and vertical axes, respectively.



A.3 Graphs 213

1.0

1.1

1.2

0 30 60 90

T
 / 

T
0

Oscillation amplitude  (deg)

1

2

3

2.3

2.4

2.5

2.6

0 30 60 90

T
 (

s)

Oscillation amplitude (deg)

Fig. A.1. The period T of a pendulum depends on the oscillation amplitude θ0
according to: T = T0 [1 + (1/4) sin2(θ0/2) + (9/64) sin4(θ0/2) + · · ·], where T0 =
2π(`/g)1/2. The graph on the left shows the calculated ratio T/T0: curves 1, 2, and
3 refer to the approximations of first-, second- and third-order, respectively. The
graph on the right shows several experimental values measured with a pendulum
of length ` = 136.9 cm.

2. When the graph refers to physical quantities, it is necessary to indicate
both the name and the unit corresponding to each axis, as in Fig. A.1.

3. The scales should be chosen so that the coordinates of the points can be
easily determined. The ticks should then correspond to equally spaced
and rounded numerical values, such as 0, 2, 4, 6 , or 0, 10, 20, 30 . One
should avoid, if possible, nonrounded values, such as 1.2, 2.4, 3.6, 4.8 .
One should always avoid nonequally spaced values, such as 1.2, 2.35, 2.78,
3.5 , even if corresponding to measured values.

4. When plotting experimental values, the uncertainties are represented by
segments (error bars): horizontal and vertical for the quantities repre-
sented on the horizontal and vertical axes, respectively (Fig. A.1, right).

5. The scales are not necessarily linear; they can often be suitably chosen
so that the plotted points align along a straight line. The most common
types of scales are described below.

Linear Scales

Graphs with linear scales are useful to visually check the linearity of the
relation between two quantities x and y, such as y = Bx (Fig. A.2, left), or
y = A+Bx (Fig. A.2, right).

Once the linear dependence of y on x has been recognized, the parameters
A and B and the corresponding uncertainties δA and δB can be evaluated

(a) Graphically, by drawing the straight lines of minimum and maximum
slope compatible with the error bars

(b) Analytically, by the linear regression procedure of Sect. 10.3

The soundness of the hypothesis of linearity can be checked a posteriori by
the chi square test introduced in Chap. 11.
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Fig. A.2. Graphs with linear scales. Left: Deformation of a spring measured as
a function of the applied force (the error bars are smaller than the symbol size).
Right: Pressure of a gas measured as a function of temperature, at constant volume
(the vertical error bars take into account the uncertainties of both temperature and
pressure).

Semilog Graphs

Exponential relations between two quantities x and y, such as

y = a ebx (A.3)

(Fig. A.3, left), can be linearized by representing on the vertical axis the
natural logarithm, Y = ln y (Fig. A.3, center). The relation between x and
Y = ln y is linear:

ln y = ln a+ bx , say Y = A+ bx . (A.4)

The semilog graph allows one to visually check if the points (xi, Yi) are con-
nected by a linear relation such as (A.4). The parameters A = ln a and b can
again be determined by linear regression (Sect. 10.3).

Alternatively, one can directly plot the original values (xi, yi) on semilog
paper, or, if computer programs are used, by selecting the option logarithmic
scale for the vertical axis (Fig. A.3, right).

It is worth remembering that the argument of transcendental functions,
such as the logarithms, are dimensionless (Sect. 2.5). In the expression Y =
ln y, y stands for the (dimensionless) numerical values of the physical quantity
with respect to a given unit, not for the quantity itself.

Log–log Graphs

Power-law relations between two quantities x and y, such as

y = a xb (A.5)
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Fig. A.3. Different graphs of points (xi, yi) obeying the law y = a exp(bx), where
a = 2 and b = 0.5. Left: points (xi, yi) and linear scales. Center: points (xi, ln yi)
and linear scales. Right: points (xi, yi) and logarithmic vertical scale.

(Fig. A.4, left), can be linearized by representing Y = ln y on the vertical
scale and X = lnx on the horizontal scale (Fig. A.4, center). The relation
between X = lnx and Y = ln y is linear:

ln y = ln a+ b lnx , say Y = A+ bX . (A.6)

The log–log graph allows one to visually check if the points (Xi, Yi) are
connected by a linear relation such as (A.6). The parameters A = ln a and b
can again be determined by linear regression (Sect. 10.3).

Alternatively, one can directly plot the original values (xi, yi) on log–log
paper, or, if computer programs are used, by selecting the option logarithmic
scale for both horizontal and vertical axes (Fig. A.4, right).
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Fig. A.4. Different graphs of points (xi, yi) obeying the law y = a xb, where a = 2
and b = −0.5. Left: points (xi, yi) and linear scales. Center: points (lnxi, ln yi) and
linear scales. Right: points (xi, yi) and logarithmic horizontal and vertical scales.

Other Scales

In addition to logarithmic scales, other scales can help to linearize particular
types of functions. Let us list some examples.



216 A Presentation of Experimental Data

(a) The relation y = a
√
x can be linearized by representing

√
x instead of x

on the horizontal axis, or y2 instead of y on the vertical axis. Obviously,
because y = a

√
x = a x1/2, the relation can be alternatively linearized by

a log–log graph.
(b) A relation of inverse proportionality, xy = K, can be linearized by plotting

y as a function of K/x.

A.4 Histograms

Histograms are graphs where the quantity on the horizontal axis has dis-
crete values, often equally spaced, and the quantity on the vertical axis is
represented by the height of a column (bin).
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x

Fig. A.5. Example of histogram. The horizontal axis is divided into intervals of
width ∆x = 0.5. If the quantity on the horizontal axis is a physical quantity, the
unit has to be specified, for example: ` (mm), T (s), and so on.

The N discrete values on the horizontal axis are labeled by an index j
(j = 1, . . . ,N ). Often, the discrete values on the horizontal axis correspond
to intervals ∆xj of a quantity x, and the quantity on the vertical axis, say
the bin height, is an integer nj (Fig. A.5). If x is a physical quantity, its unit
has to be explicitly indicated. If N is the sum over all bins of the nj values,
then

N∑
j=1

nj = N . (A.7)

Example A.19. The length ` of N objects is measured (Experiment E.1 of Ap-
pendix E). The dispersion of values can be represented by a histogram, where
the bin width corresponds to the resolution ∆` of the measuring instrument.
Example A.20. The period T of a pendulum is measured N times by means
of a stopwatch with resolution 0.01 s (Experiment E.2 of Appendix E). The
dispersion of values due to random fluctuations can be represented by a
histogram, where the bin width ∆Tj corresponds to the instrument resolution.
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Height-Normalized Histograms

In height-normalized histograms, the height of each bin is proportional to the
ratio

p∗j = nj/N , (A.8)

that represents the sample frequency of the jth value. One can easily verify
that the sum of the bin heights is always equal to one, independently of the
value of N :

N∑
j=1

nj/N = 1 . (A.9)

The normalization to unit height is necessary when one compares differ-
ent histograms related to the same quantity x, but with different numbers
NA, NB , NC , . . . of total values.

Area-Normalized Histograms

In area-normalized histograms, the height of each bin is proportional to the
sample density

f∗j =
nj

N ∆Xj
. (A.10)

One can easily verify that the sum of the bin areas is always equal to one,
independently of the value of N :

N∑
j=1

f∗j ∆Xj = 1 . (A.11)

The normalization to unit area is necessary when one compares different
histograms having bins of different widths ∆xA,∆xB , . . . , for example, when
comparing the results of measurements performed with different instrumental
resolutions. Another important application is the comparison of histograms
with distributions of continuous random variables (Sect. 4.3).
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B.1 The International System of Units (SI)

SI: Base Units

The SI is based on seven base quantities. The definition of their units is
given below. For each unit, the conference (Conférence Générale des Poids
et Mesures, CGPM) that defined it, and the year, are given in parentheses.

– Time. The second (s) is the duration of 9 192 631 770 periods of the ra-
diation corresponding to the transitions between the two hyperfine levels
of the ground state of the cesium 133 atom (13th GCPM, 1967).

– Length. The meter (m) is the length of the path travelled by light in
vacuum during a time interval of 1/299 792 458 of a second (17th CGPM,
1983).

– Mass. The kilogram (kg) is the unit of mass; it is equal to the mass of
the international prototype of the kilogram (3rd CGPM, 1901).

– Electric current. The ampere (A) is that constant current which, if
maintained in two straight parallel conductors of infinite length, of neg-
ligible circular cross-section, and placed 1 meter apart in vacuum, would
produce between these conductors a force equal to 2 × 10−7 newton per
meter of length (9th CGPM, 1948).

– Thermodynamic temperature. The kelvin (K) is the fraction 1/273.16
of the thermodynamic temperature of the triple point of water (13th
CGPM, 1967).

– Luminous intensity. The candela (cd) is the luminous intensity, in a
given direction, of a source that emits monochromatic radiation of fre-
quency 540 × 1012 hertz and that has a radiant intensity of 1/683 watt
per steradian (16th GCPM, 1979).

– Amount of substance. The mole (mol) is the amount of substance of
a system that contains as many elementary entities as there are atoms
in 0.012 kilogram of carbon 12. When the mole is used, the elementary
entities must be specified and may be atoms, molecules, ions, electrons,
other particles, or specified groups of such particles (14th CGPM, 1971).
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SI: Derived Units

The SI derived units with special names and symbols are listed in Table B.1.

Table B.1. SI derived units with special names.

Quantity Unit Symbol Conversion Notes

Plane angle radian rad 1 rad = 1 m m−1

Solid angle steradian sr 1 sr = 1 m2 m−2

Frequency hertz Hz 1 Hz = 1 s−1

Force newton N 1 N = 1 m kg s−2

Pressure, stress pascal Pa 1 Pa = 1 N m−2

Work, energy, heat joule J 1 J = 1 N m
Power watt W 1 W = 1 J s−1

Electric charge coulomb C 1 C = 1 A s
Electric potential volt V 1 V = 1 W A−1

Capacitance farad F 1 F = 1 C V−1

Electric resistance ohm Ω 1 Ω = 1 V A−1

Electric conductance siemens S 1 S = 1 Ω−1

Magnetic flux weber Wb 1 Wb = 1 V s
Magnetic flux density tesla T 1 T = 1 Wb m−2

Inductance henry H 1 H = 1 Wb A−1

Celsius temperature degree Celsius ◦C T (◦C)=T (K)−273.15

Luminous flux lumen lm 1 lm = 1 cd sr (1)
Illuminance lux lx 1 lx = 1 lm m−2 (1)

Activity (of radio-nuclides) becquerel Bq 1 Bq = 1 s−1 (2)
Absorbed dose gray Gy 1 Gy = 1 J kg−1 (2)
Dose equivalent sievert Sv 1 Sv = 1 J kg−1 (2)

1. Luminous flux and illuminance are derived quantities of photometry. The
fundamental quantity and unit of photometry are the luminous intensity
and the candela, respectively. The luminous flux is the flux of radiated
energy, weighted by the average sensitivity curve of the human eye. The
illuminance is the luminous flux incident on the unit surface of a body.

2. Activity, absorbed dose, and dose equivalent are quantities of dosimetry.
Dosimetry deals with measuring intensity and effects of ionizing radia-
tions. The activity is the number of radioactive decays per unit time.
The absorbed dose is the energy released by the ionizing radiation to the
unit mass of traversed substance. The dose equivalent takes into account
the biological effectiveness of different kinds of ionizing radiation, for the
same absorbed dose.
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Non-SI Units Accepted for Use

In 1996, some non-SI units, largely used in science, technology, and common
life, have been listed as accepted for use by the CIPM (Comité International
des Poids et Mesures). These units are divided into three categories and are
listed in the following tables B.2, B.3, and B.4.

Table B.2. Units of frequent use.

Quantity Unit Symbol Conversion

Volume liter l,L 1 L = 10−3 m3

Mass metric ton t 1 t = 103 kg
Time minute min 1 min = 60 s
Time hour h 1 h = 3600 s
Time day d 1 d = 86400 s
Plane angle degree ◦ 1◦ = (π/180) rad
Plane angle minute ′ 1′ = (π/10800) rad
Plane angle second ′′ 1′′ = (π/648000) rad

neper Np 1 Np = 1
bell Bp 1 B = (1/2) ln 10 (Np)

Table B.3. Units whose SI value is obtained experimentally.

Quantity Unit Symbol Approximate
Conversion

Length astronomical unit au 1 au = 1.496×1011 m
Mass atomic mass unit u 1 u = 1.66×10−27 kg
Energy electronvolt eV 1 eV = 1.602×10−19 J

Table B.4. Units accepted in specific fields.

Quantity Unit Symbol Conversion

Length ångström Å 1 Å = 10−10 m
Length nautical mile 1852 m
Velocity knot 0.5144 m s−1

Surface area are a 1 a = 102 m2

Surface area hectare ha 1 ha = 104 m2

Surface area barn b 1 b = 10−28 m2

Pressure bar bar 1 bar = 105 Pa
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SI Prefixes

The SI codifies the names and the symbols of a series of prefixes for the
decimal multiples and submultiples of units. The following Table B.5 lists
the approved prefixes.

Table B.5. SI prefixes.

Factor Name Symbol Factor Name Symbol

1024 yotta- Y- 10−24 yocto- y-
1021 zetta- Z- 10−21 zepto- z-
1018 exa- E- 10−18 atto- a-
1015 peta- P- 10−15 femto- f-
1012 tera- T- 10−12 pico- p-
109 giga- G- 10−9 nano- n-
106 mega- M- 10−6 micro- µ-
103 chilo- k- 10−3 milli- m-
102 etto- h- 10−2 centi- c-
10 deca- da- 10−1 deci- d-

The prefix precedes the name of the base or derived unit. For example,
1 km = 103 m; 1µF = 10−6 F.

As an exception, multiples and submultiples of the unit of mass, the kilo-
gram, are formed by attaching the prefix to the unit name “gram”, and the
prefix symbols to the symbol “g”. For example, 1 mg = 10−3 g = 10−6 kg.

Rules for Writing SI Names and Symbols

1. The unit names are written in lower-case, without accents (for example,
ampere, not Ampère).

2. The unit names have no plural (3 ampere, not 3 amperes).
3. In general, unit symbols are written in lower-case, but if the unit name is

derived from the proper name of a person, the first letter of the symbol
is a capital (mol for the mole, K for the kelvin).

4. Unit symbols are not followed by a period (except as normal punctuation
at the end of a sentence).

5. Symbols always follow numerical values (1 kg, not kg 1).
6. The product of two or more units is expressed by a half-high dot or space

(N·m or N m).
7. The ratio of two units is expressed by an oblique stroke or a negative

exponent (J/s or J s−1).



B.2 Units Not Accepted by the SI 223

B.2 Units Not Accepted by the SI

In Table B.6, some units still often used for practical purposes, but not ac-
cepted by the SI, are listed for convenience.

Table B.6. Some non-SI units still frequently used.

Quantity Unit Symbol Conversion

Linear density tex tex 10−6 kg m−1

(textiles)
Mass metric carat 2×10−4 kg
Force force-kilogram kgf 9.80665 N
Pressure torr torr 133.322 Pa

atmosphere atm 101325 Pa
Blood pressure mercury millimeter mm Hg 133.322 Pa
Energy internat. calorie cal 4.1855 J
Luminance stilb sb 104 nt
Kinematic viscosity stokes St 10−4 m2 s−1

Dynamic viscosity poise P 10−1 Pa s
Activity curie Ci 3.7×1010 Bq
Absorbed dose rad rd 10−2 Gy
Dose equivalent rem rem 10−2 Sv
Exposure roentgen R 2.58×10−4 C kg−1
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B.3 British Units

Some of the more common British units are listed in the following Table B.7.
Some units, in spite of the same name, have different values in the United
Kingdom (UK) and in the United States of America (USA).

Table B.7. Some British units and their conversion to SI.

Quantity Unit Symbol Conversion

Length inch in 25.4 mm
foot ft 304.8 mm
yard yd 0.9144 m
statute mile mi 1609.344 m
nautical mile naut mi 1853.184 m

Volume cubic inch in3 16.387 cm3

fluid ounce UK fl oz UK 28.413 cm3

fluid ounce USA fl oz USA 29.574 cm3

pint UK pt 568.261 cm3

liquid pint USA liq pt 473.176 cm3

gallon UK gal UK 4.5461 dm3

gallon USA gal USA 3.7854 dm3

oil barrel 158.987 dm3

Mass ounce oz 28.349 g
pound lb 0.4536 kg

Force pound-force lbf 4.448 N
Pressure pound-force/square-inch psi 6894.76 Pa
Energy pound-force foot lbf ft 1.3557 J

British thermal unit Btu 1054.5 J
therm therm 105.506 MJ

Power horse power hp 745.7 W
Temperature degree Fahrenheit ◦F (5/9) K
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B.4 Non-SI Units Currently Used in Physics

Unit Symbol Quantity Approximate Notes
Conversion

angström Å length (atom. phys.) 10−10 m
fermi fm length (nucl. phys.) 10−15 m
astronomical unit au length (astron.) 1.496×1011 m
light year length (astron.) 9.46×1015 m (1)
parsec pc length (astron.) 3.086×1016 m (2)
barn b cross section 10−28 m2

inverse centimeters cm−1 wave-number 100 m−1 (3)
atomic mass unit u mass 1.66×10−27 Kg
hartree Hartree energy 27.2 eV (4)

4.36×10−18 J
rydberg Ry energy 13.6 eV (4)

2.18×10−18 J
mercury centimeters mm Hg pressure 133.322 Pa
röntgen R exposure 2.58×10−4 C kg−1

1. The light year is the distance covered by electromagnetic radiation in
vacuum in one tropic year (say in the time interval between two consec-
utive passages, in the same direction, of the Sun through the terrestrial
equatorial plane).

2. The parsec (parallax second) corresponds to the distance at which the
mean radius of the Earth orbit subtends an angle of 1′′ (1′′ = 4.84814×
10−6 rad).

3. The wave-number is the inverse of the wavelength λ. The wave-number
is connected to the frequency ν by the relation ν = v(1/λ), where v is
the velocity of the wave.

4. Hartree and rydberg are natural units of energy, defined with reference
to the ground state of the hydrogen atom. One Hartree corresponds to
the absolute value of the potential energy of the electron in its ground
state, say, in SI units, U0 = −(1/4πε0) (e2/a0) where a0 is the radius of
the first orbit in the Bohr model. 1 Ry = 0.5 Hartree corresponds to the
ionization energy of the hydrogen atom.
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B.5 Gauss cgs Units

Various cgs systems have been introduced, according to the law used to define
the electromagnetic units as a function of mechanical units. The Gauss sym-
metrized cgs system uses the electrostatic cgs units for electrical quantities
and the electromagnetic cgs units for magnetic quantities.

Table B.8. Some units of the cgs Gauss system.

Quantity Unit Symbol Conversion

Force dyne dyn 1 dyn = 10−5 N
Work, energy erg erg 1 erg = 10−7 J
Electric charge statcoulomb statC 1 statC = 3.3×10−10 C
Electric current statampere statA 1 statA = 3.3×10−10 A
Electric potential statvolt statV 1 statV = 300 V
Magnetic flux density gauss G 1 G = 10−4 T
Magnetic field oersted Oe 1 Oe = (1/4π)×103 A m−1
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C.1 Greek Alphabet

Table C.1. The Greek alphabet.

Name Lower- Upper- Name Lower- Upper-
Case Case Case Case

Alpha α A Nu ν N
Beta β B Xi ξ Ξ
Gamma γ Γ Omicron o O
Delta δ ∆ Pi π Π
Epsilon ε, ε E Rho ρ P
Zeta ζ Z Sigma σ Σ
Eta η H Tau τ T
Theta θ, ϑ Θ Upsilon υ Υ
Iota ι I Phi φ Φ
Kappa κ K Chi χ X
Lambda λ Λ Psi ψ Ψ
Mu µ M Omega ω Ω

C.2 Some Fundamental Constants of Physics

Some constant quantities are particularly important in physics, and are re-
ferred to as fundamental constants. Examples of fundamental constants are
the velocity of light in vacuum, the electron mass, and the Avogadro number.
The fundamental constants are measured in different laboratories and with
different techniques, and the accuracy of their values progressively increases
with time. An international committee, the CODATA (Committee on Data
for Science and Technology), founded in 1966, gathers and critically compares
the results obtained by the various laboratories. Periodically, CODATA is-
sues a list of recommended values of the fundamental constants. The first list
was issued in 1973, the second one in 1986, and the third one in 1998.
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The values of some fundamental constants, taken from the 1998 com-
pilation of CODATA, are listed in Table C.2. The values of the first three
constants are exact. For the other constants, the absolute uncertainties are
expressed in a form particularly suitable for very accurate measurements. The
significant digits representing the uncertainty δX (typically 2) are written in
parentheses immediately after the central value X0; it is understood that the
uncertainty refers to the corresponding least significant digits of the central
value X0. For example, for the electron mass,

me = 9.109 381 88(72)×10−31 kg
stands for

me = (9.109 381 88 ± 0.000 000 54)× 10−31 kg.
The complete list of values of fundamental constants, together with a

description of the criteria used by CODATA for its compilation, can be found
in the paper: CODATA Recommended Values of the Fundamental Physical
Constants: 1998, by P. J. Mohr and B. N. Taylor, in Reviews of Modern
Physics, vol. 72, pages 351–495 (2000).

Table C.2. Values of some fundamental constants of physics, from the 1998 com-
pilation of CODATA.

Constant Symbol Value Unit

Speed of light in vacuum c 299 792 458 m s−1

Vacuum permeability µ0 4π·10−7 H m−1

Vacuum permittivity ε0 = 1/µ0c
2 8.854 187 817... ·10−12 F m−1

Gravitational constant G 6.673(10)·10−11 m3kg−1s−2

Planck constant h 6.626 068 76(52)·10−34 J s

Elementary charge e 1.602 176 462(63)·10−19 C

Electron mass me 9.109 381 88(72)·10−31 kg
Proton mass mp 1.672 621 58(13)·10−27 kg
Neutron mass mn 1.674 927 16(13)·10−27 kg
Atomic mass unit u 1.660 538 73(13)·10−27 kg

Fine structure constant α 7.297 352 533(27)·10−3

Rydberg constant R∞ 109 73731.568 549(83) m−1

Bohr radius a0 0.529 177 2083(19)·10−10 m
Bohr magneton µB 927.400 899(37)·10−26 J T−1

Nuclear magneton µN 5.050 783 17(20)·10−27 J T−1

Avogadro number NA 6.022 141 99(47)·1023 mol−1

Faraday constant F 96 485.3415(39) C mol−1

Molar gas constant R 8.314 472(15) J mol−1 K−1

Boltzmann constant kB 1.380 6503(24)·10−23 J K−1
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C.3 Integrals of the Standard Normal Distribution

The probability that a random variable x, normally distributed with mean
m and standard deviation σ, is included between x = α and x = β (Sect.
6.5) is:

P (α < x < β) =
1

σ
√

2π

∫ β

α

exp
[
− (x−m)2

2σ2

]
dx . (C.1)

The calculation is simplified by defining the standard normal variable

z =
x−m
σ

, (C.2)

which represents the deviation of x with respect to the mean m, measured in
units σ. The distribution of z,

φ(z) =
1√
2π

exp
[
−z

2

2

]
, (C.3)

is the standard normal density (Sect. 6.5).
Once the limits of the integral have been substituted,

α→ zα =
α−m
σ

, β → zβ =
β −m
σ

, (C.4)

the calculation of probability reduces to

P (α < x < β) = P (zα < z < zβ) =
1√
2π

∫ zβ
zα

exp
[
−z

2

2

]
dz . (C.5)

To evaluate the integral in C.5, one uses tabulated values. Table C.3 gives
the values

Φ(z) =
1√
2π

∫ z
−∞

exp
[
−z
′2

2

]
dz′ , (C.6)

and Table C.4 gives the values

Φ∗(z) =
1√
2π

∫ z
0

exp
[
−z
′2

2

]
dz′ . (C.7)

In both tables, the first column gives the first two significant digits of z, and
the first row gives the third significant digit. The main body of the tables
gives the corresponding probability values.
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Table C.3. Values of the integral Φ(z) =

∫ z

−∞
φ(z′) dz′ .

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.8 0.0001
-3.6 0.0002
-3.4 0.0003
-3.2 0.0007
-3.0 0.0014
-2.9 0.0019
-2.8 0.0026
-2.7 0.0035
-2.6 0.0047
-2.5 0.0062
-2.4 0.0082
-2.3 0.0107
-2.2 0.0139
-2.1 0.0179
-2.0 0.0228
-1.9 0.0288 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1563 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4 0.3646 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

(continued)
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Table C.3. (continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

+0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
+0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
+0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
+0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
+0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
+0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
+0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
+0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
+0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
+0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
+1.0 0.8413 0.8437 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
+1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
+1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
+1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
+1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
+1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
+1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
+1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
+1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.993 0.9699 0.9706
+1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
+2.0 0.9772
+2.1 0.9821
+2.2 0.9861
+2.3 0.9893
+2.4 0.9918
+2.5 0.9938
+2.6 0.9953
+2.7 0.9965
+2.8 0.9974
+2.9 0.9981
+3.0 0.9986
+3.2 0.9993
+3.4 0.9997
+3.6 0.9998
+3.8 0.9999
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Table C.4. Values of the integral Φ∗(z) =

∫ z

0

φ(z′) dz′ .

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.9015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4776 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987
3.5 0.4998
4.0 0.4999
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C.4 Integrals of the Student Distribution

If a random variable X is sampled N times, the probability P ′ that an interval
of half-width kσ̃[m∗], centered on the sample mean m∗, includes the parent
mean m,

P ′ = P{|m−m∗| < kσ̃[m∗]} , (C.8)

is called the confidence level relative to the coverage factor k (Sect. 9.1). If
the variable X is normally distributed, the confidence level corresponding
to a given coverage factor k can be calculated by integrating the Student
distribution Sν(t) (Sect. 9.2), where t = (m∗ −m)/σ̃[m∗], and ν = N − 1 is
the number of degrees of freedom:

P ′k = 2
∫ k

0

Sν(t) dt . (C.9)

The values of the integral as a function of k and ν are listed in Table C.5,
and the values of k as a function of P ′ and ν are listed in Table C.6.

Table C.5. The table gives the percent confidence levels P ′ for selected values of
coverage factor k (first row) and degrees of freedom ν (first column). The value
k = 1 corresponds to the standard uncertainty, measured by the estimate of the
standard deviation of the sample means δX = σ̃[m∗]. The value ν =∞ corresponds
to the asymptotic limit, where the Student distribution S(t) becomes equal to the
standard normal distribution φ(z).

k → 1 1.5 2 2.5 3

ν= 1 50.00 62.57 70.48 75.78 79.52
ν= 2 57.74 72.76 81.65 87.04 90.45
ν= 3 60.90 76.94 86.07 91.23 94.23
ν= 4 62.61 79.20 88.39 93.32 96.01
ν= 5 63.68 80.61 89.81 94.55 96.99
ν= 6 64.41 81.57 90.76 95.35 97.60
ν= 7 64.94 82.27 91.44 95.90 98.01
ν= 8 65.34 82.80 91.95 96.31 98.29
ν= 9 65.66 83.21 92.34 96.61 98.50
ν=10 65.91 83.55 92.66 96.86 98.67
ν=15 66.68 84.56 93.61 97.55 99.10
ν=20 67.07 85.08 94.07 97.88 99.29
ν=30 67.47 85.59 94.54 98.19 99.46
ν=40 67.67 85.85 94.77 98.34 99.54
ν=50 67.79 86.01 94.91 98.43 99.58
ν=100 68.03 86.32 95.18 98.60 99.66

ν=∞ 68.27 86.64 95.45 98.76 99.73
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Table C.6. The table gives the values of the coverage factor k for selected values of
percent confidence level P ′ (first row) and degrees of freedom ν (first column). The
value ν = ∞ corresponds to the asymptotic limit, where the Student distribution
S(t) becomes equal to the standard normal distribution φ(z). The confidence levels
P ′ = 68.27%, 95.45%, and 99.73% correspond, for ν =∞, to coverage factors k =
1, 2, and 3, respectively.

P ′ (%)→ 50 68.27 90 95 95.45 99 99.73

ν= 1 1.000 1.84 6.31 12.71 13.97 63.66 235.80
ν= 2 0.816 1.32 2.92 4.30 4.53 9.92 19.21
ν= 3 0.765 1.20 2.35 3.18 3.31 5.84 9.22
ν= 4 0.741 1.14 2.13 2.78 2.87 4.60 6.62
ν= 5 0.727 1.11 2.02 2.57 2.65 4.03 5.51
ν= 6 0.718 1.09 1.94 2.45 2.52 3.71 4.90
ν= 7 0.711 1.08 1.89 2.36 2.43 3.50 4.53
ν= 8 0.706 1.07 1.86 2.31 2.37 3.36 4.28
ν= 9 0.703 1.06 1.83 2.26 2.32 3.25 4.09
ν=10 0.700 1.05 1.81 2.23 2.28 3.17 3.96
ν=15 0.691 1.03 1.75 2.13 2.18 2.95 3.59
ν=20 0.687 1.03 1.72 2.09 2.13 2.85 3.42
ν=30 0.683 1.02 1.70 2.04 2.09 2.75 3.27
ν=40 0.681 1.01 1.68 2.02 2.06 2.70 3.20
ν=50 0.680 1.01 1.68 2.01 2.05 2.68 3.16
ν=100 0.678 1.005 1.660 1.98 2.02 2.63 3.08

ν=∞ 0.674 1.000 1.645 1.96 2.00 2.58 3.00
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C.5 Integrals of the Chi Square Distribution

The continuous random variable χ2 is defined as a sum of squared standard
normal random variables Z (Sect. 11.3):

χ2 =
ν∑
k=1

Z2 . (C.10)

The parameter ν is the number of degrees of freedom.
The reduced χ̃2 is defined as

χ̃2 =
χ2

ν
=

1
ν

ν∑
k=1

Z2 . (C.11)

For every integer value of ν, one can calculate the distributions of both χ2

and χ̃2. The probability density fν(χ2) is given by

fν(χ2) =
1

2ν/2 Γ (ν/2)
(
χ2
)ν/2−1

exp
[
−χ2/2

]
, (C.12)

where the Γ function is defined as follows.

For n integer Γ (n+ 1) = n!
For n half-integer Γ (n+ 1/2) =

√
π/2n (2n− 1) (2n− 3) · · · 5× 3× 1 .

The distributions of χ2 and χ̃2, for different values of ν, are shown in Figs.
11.3 and 11.3 of Sect. 11.3.

The values of the integral of the reduced chi-squared,∫ ∞
χ̃2

0

fν (χ̃2) dχ̃2 = P
[
χ̃2 > χ̃2

0

]
, (C.13)

are listed in Table C.7. To facilitate reading, the values are listed as percent
probabilities.

The meaning of the integral (C.13) and of Table C.7 is clarified by Fig.
C.5, which refers to the case of ν = 5 and χ̃2

0 = 0.8. The integral (C.13)
measures the area under the curve of the probability density for χ̃2 ≥ χ̃2

0

(shaded area in Fig. C.5, left), corresponding to 1 − F (χ̃2
0), where F (χ̃2

0) is
the cumulative distribution function for χ̃2 = χ̃2

0 (Fig. C.5, right).
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Table C.7. Percent probability that the reduced chi square χ̃2 is higher than an
experimentally observed value χ̃2

0. For selected degrees of freedom ν (first column)
and reduced chi-squared χ̃2

0 (first row), the tables give the values of percent prob-
abilities

100

∫ ∞
χ̃2
0

fν (χ̃2) dχ̃2 = 100P
[
χ̃2 > χ̃2

0

]
.

χ̃2
0 → 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 8.0 10.0

ν=1 100 48 32 22 16 11 8.3 6.1 4.6 3.4 2.5 1.9 1.4 0.5 0.2
ν=2 100 61 37 22 14 8.2 5.0 3.0 1.8 1.1 0.7 0.4 0.2
ν=3 100 68 39 21 11 5.8 2.9 1.5 0.7 0.4 0.2 0.1
ν=4 100 74 41 20 9.2 4.0 1.7 0.7 0.3 0.1 0.1
ν=5 100 78 42 19 7.5 2.9 1.0 0.4 0.1

χ̃2
0 → 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

ν=1 100 65 53 44 37 32 27 24 21 18 16 14 12 11 9.4 8.3
ν=2 100 82 67 55 45 37 30 25 20 17 14 11 9.1 7.4 6.1 5.0
ν=3 100 90 75 61 49 39 31 24 19 14 11 8.6 6.6 5.0 3.8 2.9
ν=4 100 94 81 66 52 41 31 23 17 13 9.2 6.6 4.8 3.4 2.4 1.7
ν=5 100 96 85 70 55 42 31 22 16 11 7.5 5.1 3.5 2.3 1.6 1.0
ν=6 100 98 88 73 57 42 30 21 14 9.5 6.2 4.0 2.5 1.6 1.0 0.6
ν=7 100 99 90 76 59 43 30 20 13 8.2 5.1 3.1 1.9 1.1 0.7 0.4
ν=8 100 99 92 78 60 43 29 19 12 7.2 4.2 2.4 1.4 0.8 0.4 0.2
ν=9 100 99 94 80 62 44 29 18 11 6.3 3.5 1.9 1.0 0.5 0.3 0.1
ν=10 100 100 95 82 63 44 29 17 10 5.5 2.9 1.5 0.8 0.4 0.2 0.1
ν=11 100 100 96 83 64 44 28 16 9.1 4.8 2.4 1.2 0.6 0.3 0.1 0.1
ν=12 100 100 96 84 65 45 28 16 8.4 4.2 2.0 0.9 0.4 0.2 0.1
ν=13 100 100 97 86 66 45 27 15 7.7 3.7 1.7 0.7 0.3 0.1 0.1
ν=14 100 100 98 87 67 45 27 14 7.1 3.3 1.4 0.6 0.2 0.1
ν=15 100 100 98 88 68 45 26 14 6.5 2.9 1.2 0.5 0.2 0.1
ν=16 100 100 98 89 69 45 26 13 6.0 2.5 1.0 0.4 0.1
ν=17 100 100 99 90 70 45 25 12 5.5 2.2 0.8 0.3 0.1
ν=18 100 100 99 90 70 46 25 12 5.1 2.0 0.7 0.2 0.1
ν=19 100 100 99 91 71 46 25 11 4.7 1.7 0.6 0.2 0.1
ν=20 100 100 99 92 72 46 24 11 4.3 1.5 0.5 0.1
ν=22 100 100 99 93 73 46 23 10 3.7 1.2 0.4 0.1
ν=24 100 100 100 94 74 46 23 9.2 3.2 0.9 0.3 0.1
ν=26 100 100 100 95 75 46 22 8.5 2.7 0.7 0.2
ν=28 100 100 100 95 76 46 21 7.8 2.3 0.6 0.1
ν=30 100 100 100 96 77 47 21 7.2 2.0 0.5 0.1
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Fig. C.1. Distribution of the reduced chi square for ν = 5. Left: probability density
f(χ̃2). Center: cumulative distribution function F (χ̃2). Right: 1− F (χ̃2).

C.6 Integrals of the Linear Correlation Coefficient
Distribution

The linear correlation coefficient r of a number N of pairs (xi, yi) has been
defined in Sect. 10.2 as

r =
∑
i(xi −m∗x)(yi −m∗y)√∑

i(xi −m∗x)2
√∑

i(yi −m∗y)2
. (C.14)

For two completely uncorrelated quantities, one can calculate the distribu-
tion of the random variable r. By integration, one can then calculate the
probability

PN (|r| ≥ |ro|) , (C.15)

where ro is the experimental value.
The probability is calculated by the integral

PN (|r| ≥ |ro|) =
2Γ [(N − 1)/2]√
πΓ [(N − 2)/2]

∫ 1

|ro|
(1− r2)(N−4)/4 dr , (C.16)

where the Γ function is defined as follows.

For n integer Γ (n+ 1) = n!
For n half-integer Γ (n+ 1/2) =

√
π/2n (2n− 1) (2n− 3) · · · 5× 3× 1 .

Some values of the integral are listed in Table C.8.
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Table C.8. The table gives the percent probability that, for N observations, the
value r for two completely uncorrelated variables is larger in absolute value than
the observed value ro: PN (|r| ≥ |ro|) .

|ro| → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N=3 100 94 87 81 74 67 59 51 41 29 0
N=4 100 90 80 70 60 50 40 30 20 10 0
N=5 100 87 75 62 50 39 28 19 10 3.7 0
N=6 100 85 70 56 43 31 21 12 5.6 1.4 0
N=7 100 83 67 51 37 25 15 8.0 3.1 0.6 0
N=8 100 81 63 47 33 21 12 5.3 1.7 0.2 0
N=9 100 80 61 43 29 17 8.8 3.6 1.0 0.1 0

N=10 100 78 58 40 25 14 6.7 2.4 0.5 0
N=11 100 77 56 37 22 12 5.1 1.6 0.3 0
N=12 100 76 53 34 20 9.8 3.9 1.1 0.2 0
N=13 100 75 51 32 18 8.2 3.0 0.8 0.1 0
N=14 100 73 49 30 16 6.9 2.3 0.5 0.1 0
N=15 100 72 47 28 14 5.8 1.8 0.4 0
N=16 100 71 46 26 12 4.9 1.4 0.3 0
N=17 100 70 44 24 11 4.1 1.1 0.2 0
N=18 100 69 43 23 10 3.5 0.8 0.1 0
N=19 100 68 41 21 9.0 2.9 0.7 0.1 0
N=20 100 67 40 20 8.1 2.5 0.5 0.1 0

N=25 100 63 34 15 4.8 1.1 0.2 0
N=30 100 60 29 11 2.9 0.5 0
N=35 100 57 25 8.0 1.7 0.2 0
N=40 100 54 22 6.0 1.1 0.1 0
N=45 100 51 19 4.5 0.6 0
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D.1 Response of Instruments: Differential Equations

The dynamical behavior of many instruments (Sect. 3.5) can be approxi-
mately described by linear differential equations of the first-order (3.4),

a1
dZ
dt

+ a0 Z = b0X , (D.1)

or of the second-order (3.5),

a2
d2Z

dt2
+ a1

dZ
dt

+ a0 Z = b0X . (D.2)

On general grounds, the solution Z(t) of a linear differential equation with
constant coefficients is the sum of two functions:

Z(t) = Ztr(t) + Zst(t) , (D.3)

where

– Ztr(t) is the general solution of the homogeneous equation (say the equa-
tion where X = 0), and has transient character,

– Zst(t) is one particular solution of the nonhomogeneous equation, say the
complete equation, and has stationary character.

The solution of the first- and second-order homogeneous equations, and the
general solutions for the case of a step input function X(t), are studied here.

Solution of the First-Order Homogeneous Equation

The first-order homogeneous equation

dZ
dt

+ γ Z = 0 , (γ = a0/a1) (D.4)

can be solved by the separation of variables, dZ/Z = − γ dt, and the integra-
tion between t = 0, where Z(t) = Z0, and the generic time t:
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Z0

dZ ′

Z ′
=
∫ t

t′
dt′ . (D.5)

The solution is
Ztr(t) = Z0 exp(−γt) , (D.6)

where the constant Z0 depends on the initial conditions.

Solution of the Second-Order Homogeneous Equation

The second-order homogeneous differential equation is

d2Z

dt2
+ 2γ

dZ
dt

+ ω2
0 = 0 , (2γ = a1/a2, ω

2
0 = a0/a2) . (D.7)

One expects a solution containing a mixed sinusoidal and exponential behav-
ior (induced by the second-order and first-order terms, respectively). We thus
try a complex solution

Zst(t) = exp(λt) , where λ = a+ ib . (D.8)

By substituting (D.8) into (D.7), one obtains the characteristic equation

λ2 + 2γλ+ ω2
0 = 0 , (D.9)

whose complex solutions are

λ+ = −γ +
√
γ2 − ω2

0 , λ− = −γ −
√
γ2 − ω2

0 . (D.10)

Three different cases can be distinguished: γ < ω0, γ = ω0, and γ > ω0 .

First Case: γ < ω0

The radicand in (D.10) is negative. By introducing the new parameter

ωs =
√
ω2

0 − γ2 , (D.11)

two linearly independent solutions of (D.7) are

Z+(t) = e−γteiωst , Z−(t) = e−γte−iωst , (D.12)

which can be easily transformed into two real solutions by linear combination:

z1(t) = e−γt cosωst , z2(t) = e−γt sinωst . (D.13)

The general solution of (D.7) for γ < ω0 is thus

Ztr(t) = a1 z1(t) + a2 z2(t) = Z0 e−γt sin(ωst+ φ) , (D.14)

where the parameters Z0 and φ depend on the initial conditions.
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Second Case: γ = ω0 (Critical Damping)

The radicand in (D.10) is zero, so that (D.9) has two coincident solutions:
λ = −γ. Two linearly independent solutions of (D.7) are

z1(t) = e−γt , z2(t) = t e−γt , (D.15)

and the general solution is

Ztr(t) = Z1 z1(t) + Z2 z2(t) = (Z1 + Z2t) e−γt , (D.16)

where the parameters Z1 and Z2 depend on the initial conditions.

Third Case: γ > ω0

The radicand in (D.10) is positive. Let δ =
√
γ2 − ω2

0 (δ < γ). Two linearly
independent solutions of (D.7) are

z1(t) = e−(γ−δ)t , z2(t) = e−(γ+δ)t , (D.17)

and the general solution is

Ztr(t) = Z1 z1(t) + Z2 z2(t) = Z1 e−(γ−δ)t + Z2 e−(γ+δ)t , (D.18)

where the parameters Z1 and Z2 depend on the initial conditions.

Step Input for a First-Order Instrument

Let us now consider the complete equation (D.1) for a first-order instrument,
and search for a solution in the particular case of a step input:

X(t) =
{
X0 for t < 0 ,
X1 for t > 0 .

(D.19)

Let us suppose that, for t < 0, the instrument is stabilized at the stationary
response Zst(t < 0) = (b0/a0)X0, and let us consider the behavior for t > 0.
After a sufficiently long time interval, one expects that the transient solution
becomes negligible, and the stationary solution is Zst(t ≥ 0) = b0/a0X1. The
general solution of (3.4) for t ≥ 0 is thus

Z(t) = Ztr(t) + Zst(t) = Z0 e−t/τ + (b0/a0)X1 . (D.20)

To determine the parameter Z0, let us consider the time t = 0 and impose
on (D.20) the initial condition Z(0) = (b0/a0)X0:

Z(0) = (b0/a0)X0 = Z0 + (b0/a0)X1 , (D.21)

whence Z0 = (b0/a0) (X0 −X1), so that (Fig. 3.10 of Sect. 3.5)

Z(t) =
b0
a0

(X0 −X1) e−t/τ +
b0
a0
X1 . (D.22)
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Step Input for a Second-Order Instrument

Let us now consider the complete equation (D.2) for a second-order instru-
ment, and search again for a solution in the particular case of a step input
(D.19). Also for the second-order instrument, the asymptotic stationary be-
havior will be Zst(t ≥ 0) = b0/a0X1. To determine the parameters of the
transient solution, it is again necessary to consider three different cases (Fig.
3.11 of Sect. 3.5).

First Case: γ < ω0

The solution of (3.5) for the step input is

Z(t) = Z0 e−γt sin(ωst+ φ) +
b0
a0
X1 . (D.23)

By imposing that, for t = 0, Z = (b0/a0)X0 and dZ/dt = 0, one obtains:

Z0 =
√

(γ/ωs)2 + 1
b0
a0

(X0 −X1) , φ = arctg(−γ/ωs) . (D.24)

Second Case: γ = ω0 (Critical Damping)

The solution of (3.5) for the step input is

Z(t) = (Z1 + Z2t) e−γt +
b0
a0
X1 . (D.25)

By imposing that, for t = 0, Z = (b0/a0)X0 and dZ/dt = 0, one determines
Z1 and Z2, and finally

Z(t) =
b0
a0

(X0 −X1) [1− γt] e−γt +
b0
a0
X1 . (D.26)

Third Case: γ > ω0

The solution of (3.5) for the step input is

Z(t) = Z1 e−(γ−δ)t + Z2 e−(γ+δ)t +
b0
a0
X1 . (D.27)

By imposing that, for t = 0, Z = (b0/a0)X0 and dZ/dt = 0, one determines
Z1 and Z2, and finally

Z1 =
[
1− γ − δ

γ + δ

]−1(
b0
a0

)
(X0 −X1) , Z2 = − γ − δ

γ + δ
Z1 . (D.28)
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D.2 Transformed Functions of Distributions

The study of the random variable distributions, including the calculation of
their moments, is greatly facilitated by two functions, the moment generating
function and the characteristic function.

Moment Generating Function

The moment generating function G(t) is a function of a real variable t.

(a) For a discrete random variable K, the moment generating function is:

Gk(t) = 〈 etk 〉 =
∑

j
etkj pj . (D.29)

(b) For a continuous random variable X, the moment generating function is:

Gx(t) = 〈 etx 〉 =
∫ +∞

−∞
etx f(x) dx . (D.30)

Let us consider here only continuous random variables. By expanding the
exponential etx in (D.30) into a MacLaurin series, and taking into account
that the mean of a sum is the sum of the means (Appendix D.8), one gets:

Gx(t) =
〈

1 + tx+
t2x2

2!
+
t3x3

3!
+ · · ·

〉
= 1 + t 〈x 〉+

t2 〈x2 〉
2!

+
t3 〈x3 〉

3!
+ · · · =

∞∑
s=0

ts αs
s!

, (D.31)

where αs is the initial moment of order s of the random variable.
Let us now calculate the derivatives of the moment generating function

with respect to t:

ds Gx(t)
dts

=
ds〈 etx 〉

dts
= 〈xs etx 〉 . (D.32)

One can easily verify that the sth derivative of the moment generating func-
tion, calculated for t = 0, is the sth initial moment of the distribution of
random variable:

ds Gx(t)
dts

∣∣∣
t=0

= 〈xs 〉 = αs . (D.33)

The same conclusion can be drawn for discrete random variables.
According to (D.33), the moments αs can be calculated from the moment

generating function. Some examples are encountered in the next sections.
A uniqueness theorem states that for two given random variables X and Y

the equality of the moment generating functions, Gx(t) = Gy(t), is a necessary
and sufficient condition for the equality of the distribution functions, fx(x) =
fy(y).

It is worth remembering that the moment generating function does not
necessarily exist for every distribution. For example, the Cauchy distribution
(Sect. 6.7) has no moment generating function.
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Characteristic Function

By substituting the real variable t in (D.29) or (D.30) with the imaginary
variable iω (where i2 = −1), one obtains the characteristic function Ψ(ω).
The characteristic function of a continuous random variable is

Ψ(ω) = 〈 eiωx 〉 =
∫ +∞

−∞
eiωx f(x) dx ; (D.34)

the extension to a discrete random variable is trivial.
By expanding eiωx in (D.34), one obtains

Ψ(ω) =
〈

1 + iωx+
(iωx)2

2!
+

(iωx)3

3!
+ · · ·

〉
= 1 + iω 〈x 〉+

(iω)2 〈x2 〉
2!

+
(iω)3 〈x3 〉

3!
+ · · ·

=
∞∑
s=0

(iω)s αs
s!

, (D.35)

where αs is the initial moment of order s.
A relation analogous to (D.33) holds for characteristic functions:

αs = 〈xs 〉 = (−1)s is
ds Ψ(ω)

dωs

∣∣∣
ω=0

. (D.36)

A uniqueness theorem states that the equality of the characteristic functions,
Ψx(ω) = Ψy(ω), is a necessary and sufficient condition for the equality of the
distribution functions, fx(x) = fy(y).

The characteristic function has more general properties than the moment
generating function. For example, a characteristic function exists for all dis-
tribution functions.

The functional relation connecting the variables X and ω in (D.34) is
known as the Fourier transform.

Relations Between Initial and Central Moments

The initial moments αs (Sect. 6.3) can be calculated from the moment gener-
ating function or the characteristic function through (D.33) or (D.36), respec-
tively. The central moments µs can be calculated from the initial moments
through simple relations; for the lowest-order moments,

µ2 = α2 − α2
1 ,

µ3 = α3 − 3α2α1 + 2α3
1 ,

µ4 = α4 − 4α3α1 + 6α2α
2
1 − 3α4

1 . (D.37)
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D.3 Moments of the Binomial Distribution

Let us calculate the lowest-order moments of the binomial distribution (Sect.
6.1):

Pn,p(k) =
(
n

k

)
pkqn−k =

n!
(n− k)! k!

pkqn−k . (D.38)

Direct Calculation of Mean and Variance

Let us demonstrate that the mean of the binomial distribution is m = np:

m =
n∑
k=0

k
n!

(n− k)! k!
pkqn−k = np

n∑
k=1

(n− 1)!
(n− k)! (k − 1)!

pk−1qn−k

= np

n−1∑
s=0

(n− 1)!
(n− 1− s)! s!

psqn−1−s = np . (D.39)

In the last line, the substitution k − 1 = s has been made: the resulting sum
is one, because it represents the normalization condition for the binomial
distribution Pn−1,p(s).

Let us now calculate the variance as

D = 〈k2〉 − 〈k〉2 . (D.40)

From (D.39), 〈k〉2 = m2 = (np)2. Let us calculate 〈k2〉:

〈k2〉 =
n∑
k=0

k2 n!
(n− k)! k!

pkqn−k = np
n∑
k=1

k
(n− 1)!

(n− k)! (k − 1)!
pk−1qn−k

= np

n−1∑
s=0

(s+ 1)
(n− 1)!

(n− 1− s)! s!
psqn−1−s

= np [(n− 1)p+ 1] = (np)2 − np2 + np . (D.41)

The last sum is the mean of s + 1 for the binomial distribution Pn−1,p(s):
〈s+ 1〉 = 〈s〉+ 1 = (n− 1) p+ 1. One can easily conclude that

D = 〈k2〉 − 〈k〉2 = npq . (D.42)

Calculation of the Moments from the Transformed Functions

The moment generating function of the binomial distribution is (Fig. D.1)

G(t) =
〈

etk
〉

=
n∑
k=0

etk
(
n

k

)
pkqn−k

=
n∑
k=0

(
n

k

)
(pet)kqn−k = (pet + q)n . (D.43)
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From (D.33), the first initial moments of the binomial distribution are:

α1 = np , (D.44)
α2 = n(n− 1)p2 + np ,

α3 = n(n− 1)(n− 2)p3 + 3n(n− 1)p2 + np ,

α4 = n(n− 1)(n− 2)(n− 3)p4 + 6n(n− 1)(n− 2)p3 + 7n(n− 1)p2 + np ,

and, from (D.37), the first central moments are:

µ1 = 0 , µ2 = npq ,
µ3 = npq (q − p) , µ4 = npq [1 + 3npq − 6pq] . (D.45)
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Fig. D.1. Binomial distributions for p = 0.2 and two different values of n (left)
and the corresponding moment generating functions plotted around t = 0 (right).

The same results can be obtained from the characteristic function of the
binomial distribution

Ψ(ω) =
〈

eiωk
〉

=
n∑
k=0

eiωk

(
n

k

)
pkqn−k = (peiω + q)n , (D.46)

using (D.36) for calculating the initial moments.

D.4 Moments of the Uniform Distribution

Let us consider the uniform distribution (Sects. 6.2 and 6.3):

f(x) =

 0 for x < x1

C for x1 ≤ x < x2

0 for x2 ≤ x

[
C =

1
x2 − x1

]
. (D.47)

The mean is
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m =
∫ +∞

−∞
x f(x) dx =

1
x2 − x1

∫ x2

x1

xdx =
x1 + x2

2
. (D.48)

The variance D = µ2 and the higher-order central moments µ3, µ4, . . . depend
on the width and shape of the distribution, not on its position. To simplify
the calculation, it is convenient to shift the distribution so that the mean is
zero, m = 0. The distribution is then symmetric with respect to x = 0, and
x1 = −γ, x2 = +γ, where γ is the half-width. The initial moments of the
shifted distribution are calculated as

αs =
∫ +∞

−∞
xs f(x) dx =

1
2γ

∫ +γ

−γ
xs dx , (D.49)

and through (D.37), where now m = 0, one obtains the central moments

µ1 = 0 , µ2 = γ2/3 , µ3 = 0 , µ4 = γ4/5 , (D.50)

that can be conveniently expressed as a function of the width ∆x = 2γ:

µ1 = 0 , µ2 = (∆x)2/12 , µ3 = 0 , µ4 = (∆x)4/80 . (D.51)

D.5 Moments of the Poisson Distribution

Let us calculate the lowest-order moments of the Poisson distribution (Sect.
6.4):

Pa(k) =
ak

k!
e−a . (D.52)

Direct Calculation of Mean and Variance

The mean of the Poisson distribution is

m = 〈k〉 =
∞∑
k=0

k
ak

k!
e−a =

∞∑
k=1

k
ak

k!
e−a

= a e−a
∞∑
k=1

ak−1

(k − 1)!
= a e−a

∞∑
s=0

as

s!
= a . (D.53)

In the last line, after the substitution s = k − 1, one has taken into account
that

∑∞
s=0 a

s/s! = ea.
To evaluate the variance, let us first calculate

〈k2〉 =
∞∑
k=0

k2 ak

k!
e−a = a

∞∑
k=1

k
ak−1

(k − 1)!
e−a

= a

[ ∞∑
k=1

(k − 1)
ak−1

(k − 1)!
e−a +

∞∑
k=1

ak−1

(k − 1)!
e−a
]

= a [a+ 1] , (D.54)
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where the substitution k = (k − 1) + 1 has been made.
The variance is thus

D = 〈k2〉 − 〈k〉2 = a2 + a− a2 = a . (D.55)

Calculation of Moments from the Transformed Functions

The moment generating function of the Poisson distribution is

G(t) =
〈

etk
〉

=
∞∑
k=0

etk
ak

k!
e−a

= e−a
∞∑
k=0

(aet)k

k!
= e−a eaet

= ea(et−1) . (D.56)

From (D.33) and (D.37), the first initial and central moments of the Poisson
distribution are:

α1 = a , µ1 = 0 ,
α2 = a2 + a , µ2 = a ,
α3 = a3 + 3a+ a , µ3 = a ,
α4 = a4 + 6a3 + 7a2 + a , µ4 = 3a2 + a .

(D.57)

The same results can be obtained from the characteristic function

Ψ(ω) =
〈

eiωk
〉

=
∞∑
k=0

eiωk a
k

k!
e−a = ea(eiω−1) , (D.58)

using (D.36) for calculating the initial moments.

D.6 Moments of the Normal Distribution

To calculate the first moments of the normal distribution (Sect. 6.5)

f(x) =
1

σ
√

2π
exp
[
− (x−m)2

2σ2

]
, (D.59)

it is first convenient to demonstrate the Eulero–Poisson integral∫ +∞

−∞
e−x

2
dx =

√
π . (D.60)

Calculation of the Eulero–Poisson Integral

The calculation of the Eulero–Poisson integral can be divided into three steps.
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Step 1

Let us consider the function exp(−x2 − y2), defined within a domain C of
the xy plane, represented by the circle of radius R = (x2 + y2)1/2 centered
at the origin (Fig. D.2, left). By transforming to polar coordinates r, θ, it is
easy to calculate the following integral

Ic =
∫∫

c

e−x
2−y2

dxdy =
∫ 2π

0

dθ

∫ R

0

e−r
2
r dr = π

[
1− e−R

2
]
. (D.61)

When R→∞, the domain C extends to the entire plane, and Ic → π.

X

Y

X

Y

X

Y

Fig. D.2. Graphical representation of the integration domains for the calculation
of the Eulero–Poisson integral.

Step 2

Let us now consider a domain Q represented by a square of side 2a, centered
at the origin, −a ≤ x ≤ +a, −a ≤ y ≤ +a (Fig. D.2, center). Our aim is now
to calculate the integral

IQ =
∫ +a

−a
dx
∫ +a

−a
dy e−x

2−y2
. (D.62)

To this aim, let us consider the two circles C1 and C2, of radii R1 and R2,
inscribed and circumscribed, respectively, to the square (Fig. D.2, right);
for the integrals calculated over the three domains C1, Q,C2, the following
relation holds,

IC1 < IQ < IC2 . (D.63)

Let us now expand the square Q to the entire plane (a → ∞). Correspond-
ingly, R1 → ∞, R2 → ∞, and, from (D.61), IC1 → π, IC2 → π. As a
consequence, if a→∞, also IQ → π.
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Step 3

It is easy to show that[∫ +a

−a
e−x

2
dx
]2

=
∫ +a

−a
dx
∫ +a

−a
dy e−x

2−y2
. (D.64)

As a consequence[∫ +∞

−∞
e−x

2
dx
]2

= lim
a→∞

[∫ +a

−a
e−x

2
dx
]2

= π , (D.65)

and (D.60) is demonstrated.

Direct Calculation of Moments

To calculate the moments of the normal distribution, it is convenient to con-
sider the new variable

t =
x−m
σ
√

2
⇒ x = σ

√
2 t+m , dx = σ

√
2 dt . (D.66)

Let us first calculate the mean

〈x〉 =
∫ +∞

−∞
x f(x) dx =

1√
π

∫ +∞

−∞

(
σ
√

2 t+m
)

e−t
2

dt

=
σ
√

2√
π

∫ +∞

−∞
t e−t

2
dt+

m√
π

∫ +∞

−∞
e−t

2
dt = m . (D.67)

In the last line, the first integral is zero, because the integrand is an odd
function, and the second one is the Eulero-Posson integral (D.60).

Let us now demonstrate the recurrence relation

µs = (s− 1) σ2 µs−2 , (D.68)

that allows the evaluation of a central moment µs, once the moment µs−2 is
known. The central moment of order s is, by definition,

µs =
∫ +∞

−∞
(x−m)sf(x) dx =

(σ
√

2)s√
π

∫ +∞

−∞
ts e−t

2
dt . (D.69)

The integral in (D.69) can be calculated by parts∫ +∞

−∞
ts e−t

2
dt = − 1

2
e−t

2
ts−1

∣∣∣+∞
−∞︸ ︷︷ ︸

=0

+
s− 1

2

∫ +∞

−∞
ts−2 e−t

2
dt , (D.70)
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so that

µs =
(s− 1) (σ

√
2)s

2
√
π

∫ +∞

−∞
ts−2 e−t

2
dt . (D.71)

By substituting s→ s− 2 in (D.69), one finds the expression for the central
moment of order s− 2,

µs−2 =
(σ
√

2)s−2

√
π

∫ +∞

−∞
ts−2 e−t

2
dt . (D.72)

By comparing (D.71) and (D.72), one recovers the recurrence relation (D.68).
Starting from the lowest order moments

µ0 = 1 (normalization integral),
µ1 = 0 (average deviation from the mean), (D.73)

all central moments can be calculated by the recurrence relation (D.68).
All central moments of odd order are zero:

µ3 = µ5 = µ7 = · · · = 0 . (D.74)

The values of the first even central moments are:

µ2 = σ2 , µ4 = 3σ4 , µ6 = 15σ6 . (D.75)

Moment Generating Function and Characteristic Function

The moment generating function of the normal distribution is

Gx(t) = emt eσ
2t2/2 . (D.76)

For the standard normal distribution

φ(z) =
1√
2π

e−z
2/2 , (D.77)

the moment generating function is particularly simple:

Gz(t) = et
2/2 . (D.78)

The characteristic function of the normal distribution is

Ψx(ω) = eimω e−σ
2ω2/2 = [cos(mω) + i sin(mω)] e−σ

2ω2/2 . (D.79)

For the standard normal distribution (D.77), the characteristic function is
also particularly simple:

Ψz(ω) = e−ω
2/2 . (D.80)
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D.7 Parameters of the Cauchy Distribution

Let us first verify the normalization condition of the Cauchy distribution
(Sect. 6.7):

1
π

∫ +∞

−∞

γ

(x− µ)2 + γ2
dx = 1. (D.81)

By substituting

t =
x− µ
γ

⇒ x− µ = γt , dx = γ dt, (D.82)

one can easily find

1
π

∫ +∞

−∞

1
t2 + 1

dt =
1
π

[
lim

a→−∞
arctg t

∣∣0
a

]
+

1
π

[
lim

b→+∞
arctg t

∣∣b
0

]
= 1. (D.83)

Let us now try to calculate the mean, making use of the substitution
(D.82).

〈x〉 =
1
π

∫ +∞

−∞
x

γ

(x− µ)2 + γ2
dx

=
γ

π

∫ +∞

−∞

t

t2 + 1
dt+

µ

π

∫ +∞

−∞

1
t2 + 1

dt . (D.84)

In the last line, the second term is µ, whereas the first term

γ

2π

[
lim

a→−∞
ln(t2 + 1)

∣∣0
a

]
+

γ

2π

[
lim

b→+∞
ln(t2 + 1)

∣∣b
0

]
(D.85)

is an undetermined form −∞ +∞. The mean of the Cauchy distribution is
not defined.

Finally, let us try to calculate the variance, making use of (D.82).

Dx =
1
π

∫ +∞

−∞
(x− µ)2 γ

(x− µ)2 + γ2
dx

=
γ2

π

∫ +∞

−∞

t2

t2 + 1
dt =

γ2

π

∫ +∞

−∞

t2 + 1− 1
t2 + 1

dt

=
γ2

π

∫ +∞

−∞
dt − γ2

π

∫ +∞

−∞

1
t2 + 1

dt . (D.86)

The first integral of the last line is divergent. The variance of the Cauchy
distribution is not defined.
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D.8 Theorems on Means and Variances

In this appendix, the relations

m[aX] = am[X] , (D.87)
D[aX] = a2 D[X] , (D.88)

m[X + Y ] = m[X] + m[Y ] , (D.89)
D[X + Y ] = D[X] + D[Y ] , (D.90)

introduced in Sect. 7.2, are demonstrated.
Here, X and Y are two continuous random variables, and a a real con-

stant. The symbols m[. . .] and D[. . .] label mean and variance, respectively.
Equation (D.90) is true only for independent variables. The extension to dis-
crete random variables, as well as to more than two variables (as required in
Sect. 8.2), is straightforward.

(a) Demonstration of (D.87)

m[aX] =
∫ +∞

−∞
a x f(x) dx

= a

∫ +∞

−∞
x f(x) dx = am[X] = amx . (D.91)

(b) Demonstration of (D.88)

D[aX] =
∫ +∞

−∞
(ax− amx)2 f(x) dx

= a2

∫ +∞

−∞
(x−mx)2 f(x) dx = a2 D[X] = a2Dx . (D.92)

(c) Demonstration of (D.89)

Making use of the definition of the mean of a multivariate distribution (Sect.
6.8):

m[X + Y ] =
∫∫ +∞

−∞
(x+ y) f(x, y) dxdy

=
∫∫ +∞

−∞
x f(x, y) dx dy +

∫∫ +∞

−∞
y f(x, y) dx dy

= m[X] + m[Y ] = mx +my . (D.93)
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(d) Demonstration of (D.90)

Making use of the definitions of variance and covariance of a multivariate
distribution (Sect. 6.8):

D[X + Y ]

=
∫∫ +∞

−∞
[(x+ y)− (mx +my)]2 f(x, y) dxdy

=
∫∫ +∞

−∞
[(x−mx) + (y −my)]2 f(x, y) dxdy

=
∫∫ +∞

−∞

[
(x−mx)2 + 2(x−mx)(y −my) + (y −my)2

]
f(x, y) dxdy

= D[X] + 2σ[XY ] + D[Y ] = Dx + 2σxy +Dy . (D.94)

In the last line of (D.94), σ[XY ] ≡ σxy is the covariance of the two ran-
dom variables X and Y . Only if the two variables are independent, is the
covariance equal to zero, and does (D.94) reduce to (D.90).



E Experiments

In this appendix, some simple laboratory experiments are presented. The
main aim of the experiments is to give the reader an opportunity of exercising
his or her skills on the procedures of data analysis.

E.1 Caliper and Micrometer

Aims of the Experiment

– Measurement of small lengths by instruments of different resolution
– Introduction to the uncertainty due to finite resolution (Sect. 4.2)
– Use of histograms and their normalization (Appendix A.4)
– Calculation of mean, variance, and standard deviation (Sect.4.3)
– Practice on significant digits and rounding (Appendix A.1)

Materials and Instruments

– N objects produced in series, with length approximately 2 cm (cylinders,
screws, bolts, etc.)

– A vernier caliper with resolution 0.05 mm (Fig. E.1, left)
– A micrometer with resolution 0.01 mm (Fig. E.1, right)

Introduction

The direct measurement of a physical quantity G is made by comparison with
a unit standard U . The result of a measurement is an interval of possible
values, nU < X < (n + 1)U , whose width ∆X = U corresponds to the
instrument resolution (Sect. 1.3). The finite resolution ∆X gives rise to an
uncertainty δX, and the measurement result is expressed as X = X0 ± δX,
where X0 is the central value and δX = ∆X/2 the maximum uncertainty
(Sect. 4.2). The uncertainty δX can be reduced by reducing the resolution
∆X. Caliper and micrometer have different resolutions, ∆X = 0.05 mm and
0.01 mm, respectively.

The N objects produced in series have the same nominal length. However,
if the instrument has small enough resolution, it is possible to distinguish
some differences between the different objects. As a consequence, the lengths
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of the N objects will not be equal to a unique value X0 ± δX, but will give
rise to a distribution of values that can be conveniently represented by a
histogram (Appendix A.4). The main characteristics of the distribution can
be synthetically described by two parameters, mean and standard deviation
(Sect. 6.3).

Inside jaws

Outside jaws

Vernier (inch)

Vernier (cm)

Main scale (inch)

Main scale (cm)

Depth
probe

Thimble

Barrel

Lock

Frame

Anvil Spindle

Fig. E.1. Schematic representation of a caliper (left) and a micrometer (right).

Experiment

0. Preliminary note. It is good practice that each step of an experiment be
synthetically but exhaustively described in a laboratory logbook. One begins
by writing the date and the name of the persons involved. All relevant infor-
mation has to be carefully noted (instruments, numerical results, encountered
difficulties, and so on).

1. Measurements with the caliper (A). Measure the length of the N objects
with the vernier caliper (resolution 0.05 mm) and draw the corresponding
histogram (A). Each bin of the histogram has a width proportional to the
resolution ∆xA = 0.05 mm and a height proportional to the number n∗j,A of
measures falling within the resolution interval. Here, the index i labels the
measures (i = 1, . . . , N), while j labels the histogram bins.

2. Measurements with the micrometer (B). Repeat the measurements using
the micrometer (resolution 0.01 mm) and draw the corresponding histogram
(B). The bin width and height are now proportional to ∆xB = 0.01 mm and
n∗j,B , respectively.

3. Height-normalized histograms. Normalize both A and B histograms to to-
tal unit height, by plotting on the vertical axis the sample frequencies

p∗j = n∗j/N . (E.1)

4. Area-normalized histograms. Normalize both histograms to total unit area,
by plotting on the vertical axis the sample densities

f∗j =
nj

N ∆x
. (E.2)
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5. Statistical parameters. For both sets A and B of measurements, calculate
the sample mean

m∗ = 〈x 〉 =
1
N

N∑
i=1

xi =
N∑
j=1

xj p
∗
j , (E.3)

the sample variance

D∗ = 〈 (x−m∗)2 〉 =
1
N

N∑
i=1

(xi −m∗)2 =
N∑
j=1

(xj −m∗)2 p∗j , (E.4)

and the sample standard deviation

σ∗ =
√
D∗ . (E.5)

In (E.3) through (E.5), N is the total number of measurement values, and
N is the number of histogram bins.

6. Comparisons. Compare the A and B histograms in the three versions (orig-
inal, height-normalized, and area-normalized) and evaluate which version is
the most suited for the comparison. Compare the means m∗ and the standard
deviations σ∗ of the two measurement sets A and B, and discuss the origin
of the possible differences between m∗A and m∗B and between σ∗A and σ∗B .

Discussion

7. Parent and sample populations. The N objects available are a sample of a
larger population, made up of the batch of N objects produced by the factory
(parent population). By convention, we use the asterisk ∗ to label the sample
parameters (such as sample mean and sample variance). Symbols without an
asterisk represent the parameters of the parent population.

8. Significant digits and approximations. The results of measurements are
always approximate values, because of their uncertainty. It is thus necessary
to pay attention to the correct use of significant digits (Appendix A.1). When
calculations are performed on approximate numerical values – e.g., to find
means (E.3), variances (E.4), and standard deviations (E.5) – not all digits
of the result are necessarily significant. The result has then to be rounded off
in order to maintain only the significant digits, according to the rules given
in Appendix A.1.

9. Maximum uncertainty and standard uncertainty. If the uncertainty δX is
only due to the finite resolution ∆X, it is reasonable to assume δX = ∆X/2.
To facilitate the comparison with the uncertainties due to other causes, as
well as for more subtle mathematical reasons, it is preferable to assume
δX = ∆X/

√
12 for the uncertainty due to resolution (Sect. 4.5). One thus

distinguishes the maximum uncertainty δXmax = ∆X/2 from the standard
uncertainty due to resolution δXres = ∆X/

√
12.
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E.2 Simple Pendulum: Measurement of Period

Aims of the Experiment

– Evaluation of random fluctuations in repeated measurements (Sect. 4.3)
– Study of sample distributions: histograms, means and standard devia-

tions, distributions of mean values (Sect. 4.3)
– Introduction to the limiting distributions and to the estimation of their

parameters; the normal distribution (Sects. 6.5 and 7.3)
– Comparison of different measurement methodologies

Materials and Instruments

– A pendulum (a suspended body)
– A tape-line (resolution 1 mm)
– A manual stopwatch (resolution 0.01 s)

Introduction

A pendulum is an object that can oscillate around a fixed suspension point.
The period T is the time required for one complete oscillation. In a simple
pendulum, the oscillating body has negligible size and is suspended through
a string of negligible mass. The period T depends on the string length and
on the oscillation amplitude. The dependence on amplitude is negligible for
sufficiently small amplitudes (Fig. A.1 of Appendix A.3).

In this experiment, the period T (a constant quantity) is measured many
times, obtaining different values because of random fluctuations (Sect. 4.3).
The distribution of measures is represented by a histogram (Sect. A.3), or,
more synthetically, by two parameters, mean and standard deviation.

The histogram shape has a random character. However, when the number
N of measurements increases, its shape tends to stabilize, and mean and
standard deviation tend to reduce their fluctuations. These observations lead
to the concept of limiting distribution, which can often be modeled by the
normal distribution (Sect. 6.5).

Experiment

1. Distribution of measures. Adjust the string length at about 90 cm, and
make sure that the pendulum oscillates in a vertical plane with amplitude of
about 10 degrees. Measure the period T by the stopwatch.

Repeat the measurement N = 200 times. Divide the set of N = 200 values
into M = 10 subsets of n = 20 values. Draw and compare two histograms,
one for one of the subsets of n = 20 values, the other for the total set of N =
200 values. The width of the histogram bins corresponds to the resolution
∆T = 0.01 s. Normalize the histograms according to what you think is the
most suitable.
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For both histograms, calculate and compare the sample mean and the
sample standard deviation; for the subset of n = 20 values:

m∗[T ] =
1
n

n∑
i=1

Ti , σ∗[T ] =

√√√√ 1
n

n∑
i=1

(Ti −m∗)2 . (E.6)

For the set of N = 200 values, substitute n with N in (E.6). Express mean
and standard deviation with the right number of significant digits (Appendix
A.1).
2. Distribution of sample means. Calculate the sample mean m∗k[T ] and the
standard deviation σ∗k[T ] (k = 1, . . . ,M) (E.6) for each of the M = 10
subsets of n = 20 measures. Draw the histogram of the sample means m∗k,
and calculate its sample mean m∗[m∗] and sample standard deviation σ∗[m∗].
3. Limiting distribution. When the number N of measures increases, the his-
togram tends to a bell shape (Sect. 4.3), which can be analytically described
by a normal distribution (Sect. 6.5),

f(x) =
1

σ
√

2π
exp
[
− (x−m)2

2σ2

]
, (E.7)

where in this case x ≡ T . The values of the mean m and of the standard
deviation σ of the limiting distribution (E.7) cannot be exactly calculated
from a finite number of measures; they can only be estimated. The best
estimate m̃ of the mean m is the sample mean m∗, and the best estimate σ̃
of the standard deviation σ is the sample standard deviation σ∗ multiplied
by [N/(N − 1)]1/2 (Sect. 7.3).

Estimate the parameters m and σ of the limiting distribution of the N =
200 measures:

m̃[T ] = m∗[T ] , σ̃[T ] =

√
N

N − 1
σ∗[T ] , (E.8)

and compare the corresponding normal distribution (E.7) with the area-
normalized histogram of the N = 200 values.

Estimate the parameters m and σ of the limiting distribution of the sam-
ple means m∗ of the subsets of n = 20 measurements, from the sample of
M = 10 values m∗k:

m̃[m∗] = m∗[m∗] , σ̃[m∗] =

√
M

M − 1
σ∗[m∗] , (E.9)

and compare the corresponding normal distribution (E.7) with the area-
normalized histogram of the M = 10 values.

Compare the means and the standard deviations estimated for the two
limiting distributions, of single measures and of sample means m∗ of n = 20
values. Calculate the sample ratio r∗ = σ̃[T ]/σ̃[m∗], and compare with the
expected ratio for the parameters of the parent population, r = σ[T ]/σ[m∗] =
n1/2 (Sect. 7.2).
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4. Uncertainty due to random fluctuations. Synthesize the result of the re-
peated measurement of the period as

T = T0 ± δT , (central value ± uncertainty) . (E.10)

Assume as central value T0 the mean m of the limiting distribution, whose
best estimate is the sample mean m∗ (Sect. 4.3):

T0 = m∗ =
1
N

N∑
i=1

Ti . (E.11)

The uncertainty δTcas depends on the fluctuations of the sample mean m∗

(experimental estimate of T0) with respect to the unknown population mean
m (assumed as the true value of T ). A measure of the fluctuations of m∗ with
respect to m is given by the standard deviation of the distribution of sample
means. By convention, we assume δTcas = σ[m∗] (standard uncertainty).

The standard deviations of the distributions of sample means and of single
values are connected by σ[m∗] = σ[T ]/N1/2. In turn, σ[T ] can be estimated
from the sample standard deviation σ∗ as in (E.8). As a consequence the
uncertainty is calculated as

δTcas = σ[m∗] =
1√
N
σ =

1√
N

√
N

N − 1
σ∗

=

√√√√ 1
N(N − 1)

N∑
i=1

(Ti −m∗)2 . (E.12)

The uncertainty δTcas decreases when N increases.

5. Instrument resolution and measurement resolution. The resolution of sin-
gle measurements corresponds to the stopwatch resolution ∆T = 0.01 s. The
resolution can be reduced by measuring the sum of many periods. For ex-
ample, one can measure the duration T10 of 10 oscillations and calculate the
period as T = T10/10. The instrument resolution now refers to the value T10,
and a resolution ten times smaller, ∆T = 0.001 s, can be attributed to the
period value.

Repeat the measurement n = 20 times with this new procedure, draw
the corresponding histogram and calculate its mean and standard deviation.
Critically compare the uncertainty values obtained by the two procedures.

6. Systematic errors. A possible cause of systematic errors (Sect. 4.4) is con-
nected with the reaction time of the experimenter, and the possible different
behavior in starting and stopping the stopwatch. To evaluate this effect, com-
pare the results obtained by different experimenters.



E.3 Helicoidal Spring: Elastic Constant 261

Discussion

7. Contributions to uncertainty. The experiment allows a comparison of the
three contributions to uncertainty: (a) resolution, (b) random fluctuations,
and (c) evaluation of systematic errors (Chap. 4). The uncertainty δTcas due
to random fluctuations (E.12) decreases when the number N of measures
increases; it makes no sense, however, to reduce the uncertainty due to ran-
dom fluctuations below the value of the uncertainty due to resolution δTres.
In addition, it can be meaningless to reduce the uncertainty due to random
fluctuations and/or to resolution if one cannot guarantee that it is any larger
than the uncertainty due to uncompensated systematic errors.

8. Sample and parent populations. The results of the N measurements can
be considered a sample of a parent population, made up of all the possible
(infinite) measurement results.

9. Standard expression of the uncertainty. The uncertainty δTcas due to ran-
dom fluctuations is measured by the standard deviation of the distribution
of sample means, which includes about 68% of values m∗. No maximum un-
certainty can be quoted, because the normal distribution is not bounded.

The uncertainty due to resolution, estimated as δTmax = ∆T /2, is instead
a maximum uncertainty. To guarantee the possibility of comparing uncertain-
ties due to different causes, the uncertainty due to resolution has also to be
expressed as a standard uncertainty, corresponding to the standard deviation
of the uniform distribution, δTres = ∆T /

√
12 (Sect. 4.5).

E.3 Helicoidal Spring: Elastic Constant

Aims of the Experiment

– Static measurement of the elastic constant of a spring
– Introduction to the propagation of uncertainty (Chap. 8)
– Introduction to the weighted average (Sect. 4.4)
– Introduction to linear graphs (Appendix A.3)
– Introduction to linear regression (Sect. 10.3) and chi square test (Chap.

11)

Materials and Instruments

– Several springs of different elastic constants
– Several bodies of different masses, to be suspended from the springs
– A mechanical balance (resolution 0.1 g)
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Introduction

The deformation x of a spring is proportional to the applied force, F = kx,
where k is the elastic constant (Fig E.2). In this experiment, the procedure
by which the law F = kx is inferred from the measurement of two physi-
cal quantities, force and deformation, is reproduced and critically analyzed.
Notice that the elastic reaction of the spring is Fe = −F = −kx.

x0

F

Fig. E.2. Helicoidal spring, undeformed
(top) and deformed by a force F (bot-
tom).

Experiment

1. Measurement of force. In this experiment, the springs are vertically sus-
pended from a fixed point, and the force F is the weight P of the bodies
suspended from the free end of the springs. The intensity of the force is
varied by varying the total mass of the bodies.

First measure the masses mi of the different groups of bodies that will
be suspended from the spring, and express their uncertainty in the standard
form δmi = ∆m/

√
12, where ∆m is the resolution of the balance (Sect. 4.2).

The weights are Pi = mig, where g is the acceleration of gravity (assume
g = 9.806 m s−2, and neglect its uncertainty). The uncertainty of the weights
is δPi = g δmi.

2. Measurement of deformation. Choose one of the springs, and suspend it
from one end. Suspend, from the other end of the spring, one of the bodies,
wait for a complete damping of oscillations, and measure the spring elonga-
tion xi. Progressively add the other bodies in order to increase the applied
force, and measure the corresponding elongations. Evaluate the uncertainty
of the elongation value that is probably due only to resolution, δx = ∆x/

√
12

(Sect. 4.5).

3. Table and graph. List the values of force Pi ± δPi and elongation xi ± δxi
in a table (Sect. A.2). Plot the results in a graph (Sect. A.3), with Pi and
xi on the horizontal and vertical axis, respectively; plot the error bars. Can
you decide, by visual inspection, whether the results are consistent with the
direct proportionality relation x = (1/k)P?
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4. Calculation of the elastic constant from the table. For each value Pi, cal-
culate the ratio ki = Pi/xi, and evaluate its uncertainty by the propagation
rule for quotients (Sect. 8.3):(

δki
ki

)2

=
(
δPi
Pi

)2

+
(
δxi
xi

)2

. (E.13)

Notice that the value of δk progressively decreases when the applied force
increases. Besides, the two contributions (δxi/xi) and (δPi/Pi) in (E.13) are
quite different, and one of them could be neglected. To synthesize the N
values ki ± δki into one unique value k0 ± δk, two different procedures can
be used.

(a) Calculate the weighted average of the values ki and the corresponding
uncertainty (Sect. 7.3):

k0 =
∑
i kiwi∑
i wi

, δk =
1√∑
i wi

, where wi =
1

(δki)2
. (E.14)

This procedure takes into account the uncertainties δki of the single values
from (E.13), but does not account for random fluctuations.

(b) To take into account the possible influence of random fluctuations, con-
sider the distribution of the values ki, and calculate the sample mean m∗k
and the standard deviation of the distribution of sample means σ [m∗k].
At last, according to Sect. 4.3,

k0 = m∗k , δk = σ [m∗k] . (E.15)

Compare and discuss the results of the two procedures.

5. Calculation of the elastic constant from the graph. The elastic constant k
can be obtained by measuring the slope b = 1/k of the straight line that best
fits the data points (Pi, xi) (Sect. 10.3).

A first procedure, the graphical method, consists of drawing the straight
lines of maximum and minimum slope compatible with the uncertainty
crosses of the experimental points (Fig. 10.2 in Sect. 10.3). Their angular co-
efficients, measured by a goniometer, define an interval of values from which
the slope b0 ± δb can be evaluated.

A more accurate procedure is linear regression (Sect. 10.3). The best
estimate of b is the value that minimizes the discrepancy between theory and
experiment, expressed as

χ2 =
N∑
i=1

(xi − bPi)2

(δxi)2
. (E.16)

Because the uncertainties δxi are all equal, one can show (Sect. 10.3) that
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b0 =
∑
i Pixi∑
i P

2
i

, δb =
δx√∑
i P

2
i

. (E.17)

The uncertainty of the elastic constant k is obtained through the rule of
propagation for the quotient (Sect. 8.3):

δk/k = δb/b . (E.18)

Compare the values of k obtained by the different procedures (from the
table and from the graph) and critically discuss the possible differences.
6. The chi square test. To evaluate the compatibility of the experimental
values with the law of direct proportionality, make use of the chi square test
(Chap. 11). The chi square test is based on the comparison of the discrepan-
cies between theory and experiment with the uncertainties of the experimen-
tal points. The chi square has been already defined in (E.16):

χ2 =
N∑
i=1

(xi − b0Pi)2

(δxi)2
. (E.19)

Notice that an approximate value of χ2 can be obtained by comparing the
discrepancy theory-experiment and the uncertainty of each point by simple
visual inspection of the graph (Problem 11.1 of Chap. 11).

If the theory is correct, and the uncertainties have been correctly evalu-
ated, one expects that, for each point, the discrepancy is comparable with
the uncertainty, (xi − b0Pi)2 ' (δxi)2. The value b0 has been evaluated by
the linear regression procedure, therefore only N −1 experimental points are
actually independent, so that one expects

χ2 =
N∑
i=1

(xi − b0Pi)2

(δxi)2
' N − 1 . (E.20)

The value of chi square can be qualitatively interpreted as follows.

(a) If χ2 ' N −1, and if the uncertainties are correctly evaluated, it is highly
probable that the law P = kx is consistent with the experimental points.

(b) If χ2 � N − 1, the experimental data are not consistent with the law
P = kx, or the uncertainties δxi have been underevaluated.

(c) If χ2 � N − 1, probably the uncertainties δxi have been overevaluated.

In this experiment, the law P = kx is known to be valid, and the χ2 test
can be used to check if the uncertainties have been correctly evaluated. If
χ2 � N − 1, one can evaluate an average uncertainty by inverting (E.20):

(δx)2 ' 1
N − 1

N∑
i=1

(xi − b0Pi)2 . (E.21)

A more refined probabilistic interpretation of the χ2 test can be found in
Sect. 11.4.
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7. Reproducibility of the experiment. Progressively remove the bodies sus-
pended from the spring, and measure the corresponding elongations. Repeat
the procedure of loading and unloading the spring several times, and plot
all the results in the same graph. Is the value of k dependent on the proce-
dure of measurement (loading or unloading the spring)? Is the result of the
experiment reproducible?
8. Comparison of different springs. Repeat the experiment with other springs,
and plot the data on a graph. Evaluate and compare the values of the elastic
constants of different springs.

Discussion

9. Propagation of the uncertainty. When a quantity Q is indirectly measured,
Q = f(X,Y, Z, . . .), its uncertainty can be calculated by the general expres-
sion (Sect. 8.3):

(δQ)2 '
(
∂Q

∂X

)2

0

(δX)2 +
(
∂Q

∂Y

)2

0

(δY )2 +
(
∂Q

∂Z

)2

0

(δZ)2 + · · · . (E.22)

For sums Q = X + Y and differences Q = X − Y , (E.22) becomes:

(δQ)2 = (δX)2 + (δY )2 . (E.23)

For products Q = XY , and quotients Q = X/Y , from (E.22) one gets:(
δQ

Q0

)2

'
(
δX

X0

)2

+
(
δY

Y0

)2

. (E.24)

10. Simple averages and weighted averages. The simple average of two values
xa and xb is

〈x〉 =
xa + xb

2
. (E.25)

If the two values are weighted by wa and wb, respectively, their weighted
average (Sect. 4.4) is

xw =
xawa + xbwb
wa + wb

. (E.26)

If wa = wb, the weighted average (E.26) reduces to the simple average (E.25).
If xa and xb are measures affected by the uncertainties δxa and δxb,

respectively, it is reasonable to assume the weights in (E.26) as

wa = 1/(δxa)2 , wb = 1/(δxb)2 . (E.27)

The uncertainty on the weighted average (Sect. 4.4) is

δxw =
1√

wa + wb
. (E.28)

Equations (E.26) and (E.28) can easily be generalized to more than two
terms.
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E.4 Helicoidal Spring: Oscillations

Aims of the Experiment

– Search for a relation among mass, elastic constant, and oscillation period
of a spring

– Dynamic measurement of the elastic constant of a spring
– Introduction to nonlinear graphs (Appendix A.3)

Materials and Instruments

– Several suspended springs of different elastic constants
– Several bodies of different masses, to be suspended from the springs
– A stopwatch (resolution 0.01 s)
– A mechanical balance (resolution 0.1 g)

Introduction

A body of mass m, suspended from the free end of a spring of elastic constant
k, periodically oscillates with respect to the equilibrium position. By com-
paring the behavior of different springs, one can qualitatively verify that the
period of oscillation T increases when the mass m increases and/or the elas-
tic constant k decreases. In this experiment, the quantitative relation among
period T , elastic constant k, and mass m is determined.

Experiment

1. Dimensional analysis. Before performing any measurement, one can guess
the form of the analytic relation among period, mass, and elastic constant by
dimensional considerations (Sect. 2.5). Let us suppose that the period T can
depend on mass m, elastic constant k, and oscillation amplitude A, according
to a general relation such as T ∝ mαkβAγ . The corresponding dimensional
equation is

[T ]1 = [M ]α+β [L]γ [T ]−2β , (E.29)

which is satisfied for γ = 0, β = −1/2, α = −β = 1/2, so that

T = C
√
m/k . (E.30)

The period does not depend on the amplitude of oscillations; the value of the
constant C cannot be determined solely by dimensional considerations.



E.4 Helicoidal Spring: Oscillations 267

2. Dependence of the period on mass. Choose one of the springs and mea-
sure the periods corresponding to different suspended masses. Evaluate the
uncertainties on the values of masses and periods. Plot the obtained values
and the corresponding uncertainties on a graph, with masses and periods on
the horizontal and vertical axis, respectively.

According to (E.30), the plotted points should not be consistent with a
straight line. A linear appearance can be obtained by plotting on the vertical
axis the values T 2. The uncertainty of T 2, according to the propagation rules
of Sect. 8.3, is δ(T 2) = 2T δT .

3. Effective mass of the spring. A spring has its own inertia, and can os-
cillate by itself, without being connected to another body. This effect can
be appreciated in the graph of T 2 as a function of m: the straight line best
fitting the experimental points crosses the horizontal axis in correspondence
to a negative value −me. The value me can be interpreted as an effective
mass, that measures the spring inertia. Equation (E.30) has to be modified,
by substituting m with M = m+me, so that:

T 2 =
C2

k
M =

C2

k
me +

C2

k
m , (E.31)

where C and me are unknowns to be determined.

4. Linear regression. To determine the values of C and me, let us notice that
(E.31) is a linear equation of the form

y = A+B x , (E.32)

where x ≡ m, y ≡ T 2, A ≡ C2me/k, and B ≡ C2/k. The parameters A
and B in (E.32) can be estimated by linear regression (Sect. 10.3), say by
minimizing the quantity

χ2 =
N∑
i=1

(yi − A−Bxi)2

(δyi)2
. (E.33)

The values A and B that minimize (E.33) are

A =
(
∑
i wix

2
i )(
∑
i wiyi)− (

∑
i wixi)(

∑
i wixiyi)

∆
, (E.34)

B =
(
∑
i wi)(

∑
i wixiyi)− (

∑
i wiyi)(

∑
i wixi)

∆
, (E.35)

where
∆ = (

∑
i
wi)(

∑
i
wix

2
i )− (

∑
i
wixi)2 , (E.36)

and the weights wi are connected to the uncertainties by

wi = 1/(δyi)2 . (E.37)
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The uncertainties of A and B, according to the propagation rules of Sect.
8.3, are

(δA)2 =
∑
i wix

2
i

∆
, (δB)2 =

∑
i wi
∆

. (E.38)

From the values A ± δA and B ± δB, one can recover the values C and
me of (E.31), and their uncertainties, using the values of elastic constant k
measured in the previous experiment E.3.

The above linear regression procedure requires that the uncertainties δxi
on the horizontal axis are negligible. If the uncertainties δxi are not negligible,
one can transfer the uncertainty of each value from the horizontal to the
vertical axis, according to the procedure described in Sect. 10.4.

5. The chi square test. The chi square test (Chap. 11) allows us to evalu-
ate the compatibility of the experimental values with the expected behavior
(E.32). Because the two parameters A and B have been determined from the
experimental points, there are N − 2 degrees of freedom, so that one expects

χ2 =
N∑
i=1

(yi −A−Bxi)2

(δyi)2
' N − 2 . (E.39)

(a) If χ2 ' N − 2, and the uncertainties are correctly evaluated, the experi-
mental data can be considered consistent with the law y = A+Bx.

(b) If χ2 � N − 2, the experimental data are not consistent with the law
y = A+Bx, or the uncertainties δyi have been underevaluated.

(c) If χ2 � N − 2, probably the uncertainties δyi have been overevaluated.

6. Dynamical determination of the elastic constant k. According to the har-
monic oscillator theory, the constant C in (E.30) has the exact value C = 2π,
and the expression of the period is

T = 2π
√
M/k , (E.40)

where M = m+me. By imposing C = 2π in (E.31), one can now calculate k
and me from the parameters A and B of the linear regression, and obtain a
dynamical measurement of the elastic constant k. Is this value of k consistent
with the value determined in the previous experiment E.3?

7. Dependence of the period on the elastic constant. Evaluate the relation
between the elastic constant and oscillation period, by suspending the same
body of mass m from springs of different elastic constant k (determined in
the previous experiment E.3) and by measuring the corresponding period T .
One can check the validity of (E.30) by plotting the values T 2 against 1/k.

Discussion

8. Effect of gravity on oscillations. A body subject only to the elastic force,
Fe = −kx, obeys the differential equation of motion
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d2x

dt2
= − k

m
x , (E.41)

and oscillates around the equilibrium position x = 0. In this experiment, the
spring is vertical, and the suspended body is subjected to both the elastic
force and the gravity force, so that the equation of motion is

d2x

dt2
= − k

m
x+ g . (E.42)

The elastic force and the gravity force are in equilibrium when mg− kx = 0,
say x = mg/k. Let us substitute the new coordinate y = x−mg/k in (E.42).
The resulting equation,

d2y

dt2
= − k

m
y , (E.43)

is identical to (E.41); the period is thus unchanged, only the equilibrium
position has changed from x = 0 to x = mg/k.

E.5 Simple Pendulum: Dependence of Period on Length

Aims of the Experiment

– Search for a relation between length and period
– Use of logarithmic graphs (Appendix A.3)
– Applications of linear regression (Sect. 10.3) and chi square test (Chap.

11)
– Measurement of the acceleration of gravity

Materials and Instruments

– A pendulum (a suspended body)
– A tape-line (resolution 1 mm)
– A caliper (resolution 0.05 mm)
– A stopwatch (resolution 0.01 s)

Introduction

A pendulum oscillates around its equilibrium position. It is easy to qualita-
tively verify that the period T of oscillation increases when the length ` of
the pendulum increases. The first aim of this experiment is to determine the
quantitative relation between period and length.

Within the approximation of small oscillations, the period T depends on
length ` and acceleration of gravity g according to

T = 2π
√
`/g . (E.44)

The second aim of this experiment is to determine the value of the accelera-
tion of gravity g from the measurements of length and period:

g = (2π/T )2
` . (E.45)
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Experiment

1. Measurement of lengths and periods. Measure the length of the pendulum,
say the distance between the point of suspension of the string and the center of
mass of the suspended body, and evaluate its uncertainty. Measure the period
T and evaluate its uncertainty, by the same procedure as in Experiment
E.2. Repeat the measurements of length and period for about ten different
values of length, the minimum length being about 1/10 of the maximum
length. Make sure that the pendulum oscillates within a vertical plane, and
the amplitude of oscillations is constant.

2. Linear graph. Plot the N measures in a graph, length ` and period T on
the horizontal and vertical axis, respectively, including the uncertainty bars.

Verify that the experimental points are inconsistent with a linear relation.
Dimensional considerations (Sect. 2.5) lead to a proportionality relation be-
tween T and `1/2. One could obtain a linear behavior by plotting T 2 against
`, as in experiment E.4. An alternative procedure is used here.

The experimental points appear to be consistent with a law

T = a `b , (E.46)

where a and b are unknown. To verify the soundness of (E.46) and determine
the values of a and b, it is convenient to linearize the graph of experimental
points by using logarithmic scales (Appendix A.3).

3. Logarithmic graph. Let us consider the new variables

X = log(`) , Y = log(T ) . (E.47)

If (E.46) is right, the relation between Y and X is linear:

log(T ) = log(a) + b log(`) , say Y = A+BX , (E.48)

where
A ≡ log(a), (a ≡ 10A) , B ≡ b . (E.49)

To verify the consistency of experimental data with (E.48), one can:

(a) Plot Y = log(T ) against X = log(`) in a graph with linear scales, the
uncertainties being calculated according to the propagation rules:

δY =
∣∣∣∣dYdT

∣∣∣∣ δT =
log(e)
T

δT =
0.43
T

δT , (E.50)

δX =
∣∣∣∣dXd`

∣∣∣∣ δ` =
log(e)
`

δ` =
0.43
`

δ` . (E.51)

(b) Plot T against ` in a graph with logarithmic scales, the uncertainty bars
corresponding to the original values δ` and δT .
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4. Evaluation of A and B. The parameters A ≡ log(a) and B ≡ b are the
intercept and the angular coefficient, respectively, of the straight line best
fitting the experimental points in the graph of log(T ) against log(`).

As a first step, it is convenient to obtain rough values of A and B by the
graphical method introduced in Sect. 10.3:

A = log(T ) , for log(`) = 0 ; b = B =
log(T2)− log(T1)
log(`2)− log(`1)

. (E.52)

The value B from (E.52) allows us to transform the uncertainty of X = log(`)
into a contribution to the uncertainty of Y = log(T ) (Sect. 10.4),

(δYi)tra =
∣∣∣∣ dYdX

∣∣∣∣ δXi = |B | δXi , (E.53)

to be quadratically added to the original uncertainty (δYi)exp:

(δYi)2
tot = (δYi)2

exp + (δYi)2
tra . (E.54)

The parameters A and B of (E.48) can now be obtained by linear regres-
sion (Sect. 10.3), say by minimizing the quantity

χ2 =
N∑
i=1

(Yi − A−BXi)2

(δYi)2
tot

. (E.55)

The values A and B that minimize (E.55) are

A =
(
∑
i wiX

2
i )(
∑
i wiYi)− (

∑
i wiXi)(

∑
i wiXiYi)

∆
, (E.56)

B ≡ b =
(
∑
i wi)(

∑
i wiXiYi)− (

∑
i wiYi)(

∑
i wiXi)

∆
, (E.57)

where
∆ = (

∑
i
wi)(

∑
i
wiX

2
i )− (

∑
i
wiXi)2 , (E.58)

and the weights wi are connected to the uncertainties by

wi = 1/(δYi)2 . (E.59)

The uncertainties of A and B (Sect. 8.3) are

(δA)2 =
∑
i wiX

2
i

∆
, (δB)2 ≡ (δb)2 =

∑
i wi
∆

. (E.60)

One can finally obtain the value a± δa:

a = 10A , δa =
∣∣∣∣ da
dA

∣∣∣∣ δA = 10A ln(10) δA = 2.3× 10A δA . (E.61)
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5. The chi square test. The chi square test (Chap. 11) allows us to evalu-
ate the compatibility of the experimental values with the expected behavior
(E.48). Because the parameters A and B have been determined from the
experimental points, there are N − 2 degrees of freedom, and one expects

χ2 =
N∑
i=1

(Yi −A−BXi)2

(δYi)2
' N − 2 . (E.62)

(a) If χ2 ' N − 2, and the uncertainties are correctly evaluated, the experi-
mental data can be considered consistent with the law y = A+BX.

(b) If χ2 � N − 2, the experimental data are not consistent with the law
y = A+BX, or the uncertainties δYi have been underevaluated.

(c) If χ2 � N − 2, probably the uncertainties δYi have been overevaluated.

6. Evaluation of g from the table. For each pair of values (`i ± δ`, Ti ± δT ),
calculate gi through (E.45) and evaluate the uncertainty δgi as

(δg)2 '
(
∂g

∂`

)2

(δ`)2 +
(
∂g

∂T

)2

(δT )2

'
(

2π
T

)4

(δ`)2 +
(

8π2`

T 3

)2

(δT )2 . (E.63)

Which one of the two uncertainties, of length and of period, has the strongest
influence on the uncertainty of g?

Check if there is a possible systematic dependence of the measured value
g on the pendulum length, by plotting the values gi against the corresponding
values `i.

To obtain a unique final value g± δg, consider and critically compare the
following two procedures:

(a) Calculate the weighted average:

g =
∑
i giwi∑
i wi

, δg =
1√∑
i wi

, where wi =
1

(δgi)2
. (E.64)

(b) Calculate the mean 〈g〉 of the distribution of the gi values, and estimate
the standard deviation of the sample means σ [〈g〉], so that g ± δg =
〈g〉 ± σ [〈g〉].

7. Evaluation of g from the graph. The relation between period and length
has been expressed in (E.46) as

T = a `b , (E.65)

and the values a ± δa and b ± δb have been obtained from the logarithmic
plot by linear regression.

In the approximation of small oscillations, the period is
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T = 2π
√
`/g , (E.66)

so that a = 2π/
√
g. The value of g can thus be obtained from a:

g = (2π/a)2
, δg =

∣∣∣∣dgda

∣∣∣∣ δa =
8π2

a3
δa . (E.67)

Compare the values g ± δg obtained by the two different procedures, from
the table and from the graph.

8. Comparison with the tabulated value. Compare the value of g obtained in
this experiment with the value available in the literature for the site of the ex-
periment, and evaluate if the discrepancy is consistent with the experimental
uncertainty (Sect. 9.3).

If the experimental value is inconsistent with the tabulated one, try to
evaluate the systematic error and investigate its origin. In particular, try to
understand if the systematic error of g can depend on systematic errors in the
measurements of length and period, and which one of the two measurements
gives the largest contribution.

Discussion

9. Logarithms. Two types of logarithms are mainly utilized:

(a) Decimal logarithms, with base 10:

x = log y if y = 10x ; (E.68)

(b) Natural logarithms, with base the irrational number e = 2.7182 . . . :

x = ln y if y = ex . (E.69)

Natural and decimal logarithms are connected by:

log y = log(e) ln y = 0.434 ln y , ln y = ln(10)log y = 2.3 log y . (E.70)

The derivatives of natural and decimal logarithms are

d (ln y)
dy

=
1
y
,

d (log y)
dy

=
0.434
y

. (E.71)

The function y = axb can be linearized indifferently using decimal logarithms

log y = log a+ b logx , say Y = A+ bX , (E.72)

or natural logarithms

ln y = ln a+ b lnx , say Y ′ = A′ + bX ′ . (E.73)

The parameters A and A′ are, however, different in the two cases:

A = log a , A′ = ln a = 2.3A . (E.74)
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E.6 Simple Pendulum: Influence of Mass and Amplitude

Aims of the Experiment

– Study of the dependence of period on oscillation amplitude
– Study of the dependence of period on time
– Study of the dependence of period on mass

Materials and Instruments

– Several bodies of different masses
– A tape-line (resolution 1 mm)
– A caliper (resolution 0.05 mm)
– A stopwatch (resolution 0.01 s)
– A mechanical balance (resolution 0.1 g)

Introduction

By exactly solving the equation of motion of the simple pendulum, one finds
that the period T depends on length `, acceleration of gravity g, and ampli-
tude of oscillation θ0, according to

T = 2π

√
`

g

[
1 +

1
4

sin2

(
θ0

2

)
+

9
64

sin4

(
θ0

2

)
+ · · ·

]
. (E.75)

The period does not depend on mass. Within the approximation of small
oscillations, say when θ0 is small, one can truncate (E.75) at the first term:

T = 2π
√
`/g . (E.76)

The aims of this experiment are to measure the dependence of the period on
the amplitude of oscillation and to verify its independence of mass.

Experiment

1. Measurement of the amplitude. The value of the amplitude θ0 can be ob-
tained, by simple trigonometric relations, from several length measurements.
Let us consider two different procedures (Fig. E.3); in both cases, one mea-
sures the length `, then:

(a) One measures the vertical distances, from a given horizontal plane, of the
suspension point and of the center of mass, h and d, respectively, so that
the amplitude is

θ0 = arccosx , where x = (h− d)/` ; (E.77)

(b) One measures the horizontal distance s of the center of mass from the
vertical line including the suspension point, so that the amplitude is

θ0 = arcsin y , where y = s/` . (E.78)
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h
l θ

0

d

l θ
0

s

(a) (b)

Fig. E.3. Two different procedures for measuring the amplitude θ0.

2. Uncertainty of the amplitude. Evaluate the uncertainties of the length
values, δ`, δd, δh, and δs. Propagate the uncertainties to θ0 for the two
procedures:

(a) (δθ0)2 =
(
∂θ0

∂h

)2

(δh)2 +
(
∂θ0

∂d

)2

(δd)2 +
(
∂θ0

∂`

)2

(δ`)2 ,

(b) (δθ0)2 =
(
∂θ0

∂s

)2

(δs)2 +
(
∂θ0

∂`

)2

(δ`)2 . (E.79)

Taking into account that

d
dx

(arccosx) = − 1√
1− x2

,
d
dy

(arcsin y) =
1√

1− y2
, (E.80)

one can verify that

(a) (δθ0)2 =
1

(1− x2) `2
[
(δh)2 + (δd)2 + x2 (δ`)2)

]
,

(b) (δθ0)2 =
1

(1− y2) `2
[
(δs)2 + y2 (δ`)2

]
, (E.81)

where x and y are defined in (E.77) and (E.78), respectively. Analyze the
variation of δθ0 as a function of θ0 for the two cases (a) and (b), and check
which one of the two methods is the best suited to minimize δθ0 for different
θ0 ranges.

3. Damping of oscillations. The amplitude of oscillation decreases with time,
due to friction effects (mainly air friction). For a given value θ0 of amplitude,
the measurements of the period should be performed within a time interval
sufficiently short that the amplitude does not significantly vary with respect
to its nominal value.

Measure the number of oscillations corresponding to a given reduction
of the amplitude, for both the maximum and minimum amplitudes to be
considered in the experiment; evaluate the variation of amplitude for one
oscillation in both cases. Estimate the corresponding contribution to the un-
certainty δθ0, compare it with the uncertainty (E.81), and, if necessary, take
it into account.
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4. Measurements of period. Measure the period T for different values of am-
plitude (typically about ten values, uniformly distributed between 5 and 70
degrees). Repeat the measurements, to evaluate the effect of random fluctu-
ations.

Plot the results on a graph with amplitude θ0 and period T on the horizon-
tal and vertical axis, respectively. Pay attention to specify the measurement
units for amplitudes (degrees or radians). Visually check if a regular behav-
ior is evident in the dependence of the period on amplitude. To amplify this
behavior, it is convenient to determine the period T0 corresponding to small
amplitudes, and plot the difference T − T0 against amplitude.
5. Comparison with theory. Plot T against θ0 according to (E.75), and eval-
uate the relative weights of the different terms of the series expansion. Com-
pare the experimental points with the theoretical expectation. Verify, using
the χ2 test, if the uncertainties have been correctly evaluated. Verify if there
are contributions of systematic origin to the discrepancy between theory and
experiment.
6. Dependence of period on mass. Measure the masses of the different bodies
available. Measure the period for the different masses, taking care to maintain
unaltered the length of the pendulum and the amplitude of oscillation. Verify
the consistency of the experimental results with the expectation that the
period is independent of mass, using the concepts introduced in Sect. 9.3.

Discussion

7. Comparison of spring and pendulum. For a body attached to a spring,
the kinematical variable is the elongation x with respect to the equilibrium
position, and the equation of motion is

m
d2x

dt2
= − k x . (E.82)

For a pendulum, the kinematic variable is the curvilinear coordinate s along
the circular trajectory, or equivalently the angle θ = s/`, and the equation
of motion is

m`
d2θ

dt2
= −mg sin θ . (E.83)

The gravitational mass on the right-hand side and the inertial mass on the
left-hand side simplify, so that (E.83) reduces to

`
d2θ

dt2
= − g sin θ . (E.84)

Only for a small oscillation, when sin θ ' θ, can (E.84) be reduced to a form
equivalent to the equation of a spring:

`
d2θ

dt2
= − g θ . (E.85)
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8. Simple pendulum and physical pendulum. A simple pendulum is a material
point, suspended by means of a massless and inextensible string. As such, it
is an ideal device. A physical (or real) pendulum is a rigid body, of finite size,
suspended from a fixed point. Its equation of motion is

I
d2θ

dt2
= −mg` sin θ , (E.86)

where I is the momentum of inertia with respect to the rotation axis, m is
the total mass, and ` is the distance of the center of mass from the suspension
point. For small oscillations, (E.86) becomes

I
d2θ

dt2
= −mg` θ , (E.87)

and the period is
T = 2π

√
I/mg` . (E.88)

For a simple pendulum, I = m`2, and (E.88) reduces to (E.76). Treating a
real pendulum as a simple pendulum represents a systematic error, whose
extent can be estimated by comparing the two expressions of the period,
(E.88) and (E.76), respectively.

E.7 Time Response of a Thermometer

Aims of the Experiment

– Measurement of the time constant of a thermometer
– Comparison between an analog and a digital thermometer (Sect. 3.2)
– Introduction to the dynamical behavior of instruments (Sect. 3.5)

Materials and Instruments

– A mercury-in-glass thermometer (measurement range from −10 to
+100◦C, resolution 0.1◦C)

– A digital thermometer (resolution 0.1◦C)
– A device for heating the thermometers
– A stopwatch (resolution 0.01 s)
– A water can

Introduction

Temperature θ is a nonadditive quantity (Sect. 1.2), and its measurement
is based on the measurement of another quantity G, whose dependence on
temperature is assumed to be known. In this experiment, two different ther-
mometers are compared (Fig. 3.5 in Sect. 3.3):
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(a) A mercury-in-glass thermometer: the quantity G is the volume of a given
amount of mercury; when θ increases, the volume increases and mercury
is forced to flow up a thin pipe; the height h of mercury in the pipe is
directly read as temperature on a calibrated scale.

(b) A digital thermometer: G is an electrical quantity, for example, the resis-
tance R of a semiconductor device (thermistor): the variations of θ induce
variations of G, that are converted to digital form and can be directly read
as temperature on a calibrated digital display.

The measurement of temperature requires that the probe of the thermometer
attain thermal equilibrium with its environment. This process takes a finite
amount of time. The aim of this experiment is to study and compare the
response of the two thermometers to a sudden variation of temperature, in
two different systems, air and water.

Experiment

1. Mercury-in-glass thermometer, cooling in air. Heat the thermometer up to
about θ0 ' 80◦C, then quickly extract the bulb from the heat source and let
it cool down in air (temperature θa). Measure the temperature as a function
of time during the cooling process, and evaluate the uncertainties of time and
temperature. Repeat the heating and cooling cycle several times.

2. Analysis of the time–temperature graph. Plot the experimental results on
a linear graph, with time and temperature on the horizontal and vertical axis,
respectively. Temperature decreases with an exponential-like behavior, and
asymptotically tends to the room temperature θa for t → ∞. Evaluate θa
and its uncertainty δθa from the graph.

3. Exponential behavior. To check the exponential behavior, it is convenient
to plot the natural logarithm of (θ − θa)/(θ0 − θa) against time t (θ0 is the
temperature at t = 0). In the semilogarithmic graph, the experimental points
should be consistent with a linear behavior, with negative slope:

ln
θ − θa
θ0 − θa

= −B t , (E.89)

where B is a positive constant. The linear behavior (E.89) corresponds to an
exponential dependence of temperature on time:

(θ − θa) = (θ0 − θa) e−t/τ (e = 2.71828 . . .) , (E.90)

where τ = 1/B is the time constant of the thermometer, and is measured in
seconds. The exponential behavior is consistent with a mathematical model
described below (see also Example 3.26 in Sect. 3.5).
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4. Evaluation of the time constant. Let us introduce the new variable

y = ln
θ − θa
θ0 − θa

, (E.91)

so that (E.89) simplifies to
y = −B t . (E.92)

The uncertainty of θ, θa, and θ0 is propagated to y,

δy '

√(
∂y

∂θ
δθ

)2

+
(
∂y

∂θa
δθa

)2

+
(
∂y

∂θ0
δθ0

)2

, (E.93)

leading to

(δy)2 ' (δθ)2

(θ − θa)2
+

(δθ0)2

(θ0 − θa)2
+
[

θ0 − θ
(θa − θ)(θ0 − θa)

]2

(δθa)2 . (E.94)

The value of B can now be obtained by linear regression. Verify preliminarily
if the uncertainties δti are negligible with respect to δyi, or if it is necessary
to evaluate their additive contribution to δyi, according to the procedure of
Sect. 10.4. By best fitting the function y = −Bt to the experimental points
(ti, yi), one obtains:

B = −
∑
i wiyiti∑
i wit

2
i

, δB =

√
1∑
i wit

2
i

, where wi =
1

(δyi)2
. (E.95)

Check the soundness of the hypothesis y = −Bt by the chi square test. If the
hypothesis is reasonable, evaluate the time constant

τ = 1/B , δτ = δB/B2 . (E.96)

5. Mercury-in-glass thermometer, cooling in water. Repeat the experiment
by cooling the thermometer in water instead of in air. Again, analyze the
dependence of the measured temperature θ on time, and check if experimental
data are still consistent with an exponential behavior. If so, evaluate the time
constant and its uncertainty.

6. Experiments with the digital thermometer. Repeat both experiments (cool-
ing in air and in water) with the digital thermometer. The digital instrument
samples the temperature at fixed time intervals, whose length ∆t represents
the minimum unit for time measurements. In evaluating the uncertainty
of temperature values, one should take into account, in addition to the reso-
lution of the instrument, also the uncertainty quoted by the manufacturer in
the operation manual.

Analyze the experimental data as was done for the mercury-in-glass ther-
mometer. Again check if experimental data for cooling in air and in water are
consistent with an exponential behavior, and, if so, evaluate the correspond-
ing time constants and their uncertainties.
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7. Comparison of thermometers. Compare the behavior of the two thermome-
ters, and in particular their time constants. Represent the dependence of tem-
perature on time for both thermometers and for cooling both in air and in
water on one graph, plotting the normalized time t/τ on the horizontal axis,
and the normalized temperature (θ− θa)/(θ0− θa) on the vertical axis. If the
exponential model is valid, the experimental data for the different cases are
consistent with the same curve.

Discussion

8. Empirical temperatures and absolute temperature. There are various dif-
ferent empirical scales of temperature, depending on the different choices
of thermometric substance, thermometric property, and calibration. A well-
known empirical scale is the Celsius scale, where the values 0◦C and 100◦C
correspond to the fusion and ebullition points of water at atmospheric pres-
sure, respectively. When measured with reference to an empirical scale, tem-
perature is frequently indicated by θ.

The absolute thermodynamic temperature T is defined with reference to
the efficiency of the ideal Carnot cycle. Its unit is the kelvin (symbol K). The
relation between the values measured in Kelvin and in degrees is

T (K) = θ(◦C) + 273.15 . (E.97)

Both scales (Celsius and Kelvin) are centigrade.

9. A mathematical model of the thermometer. The exponential time response
of a thermometer can be described, to a first approximation, by a simple
mathematical model (Sect. 3.5). Let us focus our attention on the mercury-
in-glass thermometer (Example 3.26), and let be

θ the value of temperature read on the thermometer
θin the value of the ambient temperature (air or water)

The difference between θ and θin causes a flow of heat Q from the sur-
rounding medium to the bulb of the thermometer, according to

d̄Q
dt

= − k S
d

(θ − θin) , (E.98)

where t is time, k is a parameter depending on thermal conductivity of both
the bulb glass and the medium, S is the bulb surface, and d is the glass
thickness. The heat quantity Q is considered positive when entering the ther-
mometer bulb, so that the heat flow is negative when θ > θin, and viceversa.

The heat transfer causes a variation of the bulb temperature θ according
to

d̄Q = C dθ , (E.99)
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where C is the heat capacity of mercury. By equating d̄Q in (E.98) and
(E.99), one obtains a differential equation connecting the input value θin to
the output value θ:

C
dθ
dt

+ k
S

d
θ = k

S

d
θin . (E.100)

Because (E.100) is a first-order equation (with constant coefficients), the
model of the instrument is said to be first-order.

The presence of C (dθ/dt) in (E.100) means that the variations of the
input value θin cannot be instantaneously reproduced by the output values
θ. A variation of θin will at first cause the onset of the term C (dθ/dt); the
smaller is the thermal capacity C, the larger is the derivative (dθ/dt), and as
a consequence the faster is the fitting of the output value θ to the variations
of θin.

The solution θ(t) of (E.100) depends on the input function θin(t). For a
step input (such as in this experiment)

θin(t) =
{
θ0 for t < 0 ,
θa for t ≥ 0 , (E.101)

the solution θ(t) of (E.100) is

θ(t) = (θ0 − θa) e−t/τ + θa , (E.102)

where
τ =

Cd

kS
. (E.103)
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Limiting distribution, 54
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Linear correlation coefficient, 179, 237
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Linear regression, 182
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Lorentz distribution, 130

Marginal probability, 134
Mathematical models of instruments,
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Maximum likelihood, 149, 187
Mean

parent mean, 143
sample mean, 52, 143

Mean of a distribution, 108
Measure, 6
Measurement, 6

direct, 6
indirect, 8, 155

Measurement range, 31
Measurement resolution, 46
Measurement standards, 14

artificial, 15
natural, 15
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Measuring chain, 28
closed chain instruments, 30
open chain instruments, 29

Measuring instruments, 27
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accuracy, 35
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differential, 29
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mathematical models, 38
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Mode, 109
Mole, 16, 219
Moment generating function, 243
Moments, 111

binomial distribution, 245
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normal distribution, 248
Poisson distribution, 247
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Morphological method, 3
Multiplication of events, 87
Multivariate distributions, 132

continuous random variables, 134
covariance, 136
discrete random variables, 133
independent random variables, 135
marginal probability, 134

Mutually exclusive events, 88

Natural systems of units, 20
Newton binomial, 96
Nonstatistical uncertainty, 69
Normal distribution, 55, 121, 229

central moments, 123
FWHM, 123
kurtosis, 123
mean, 123
moments, 248
normalization, 122
standard deviation, 123
standard variable, 124
variance, 123

Operating conditions of instruments, 34
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Operative definition of physical
quantities, 11

Parent mean, 143
Parent population, 139
Parent variance, 143
Permutations, 95
Physical quantities, 5

additive, 5
base quantities, 13
derived quantities, 13
nonadditive, 6
operative definition, 11
time dependence, 8

Physical quantity, definition, 4
Poisson distribution, 115

counting statistics, 118
for histogram columns, 121
kurtosis, 116
mean, 115
moments, 247
skewness, 116
variance, 115

Poisson processes, 118
Polynomial regression, 189
Position parameters of distributions,

108
Practical systems of units, 19
Probability, 82

axiomatic definition, 91
classical, 83
conditional, 91
of the product of events, 91
of the sum of events, 89
statistical, 83
subjective, 84

Probability density, 106
Probability interval, 170
Product of events, 87

probability of, 91
Propagation of uncertainty

difference, 158
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general expression, 161
linear functions, 156
maximum uncertainty, 167
nonindependent quantities, 163
nonlinear functions, 159
product, 162

quotient, 163
raising to power, 161
sum, 158

Quantitative method, 5

Radian, 18
Random errors, 36, 48
Random events

and physical quantities, 10
counting of, 10, 43

Random fluctuations, 36, 48
Random phenomena, 79
Random variables, 104
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discrete, 104

Reduced chi square, 201
Regression

linear, 182
polynomial, 189

Rejection of data, 175
Relative uncertainty, 73
Repeatability, 73
Repeated trials, 99
Reproducibility, 73
Resolution of instruments, 33
Resolution of measurement, 46
Rounding, 208

Sample covariance, 179
Sample mean, 52, 143
Sample population, 140
Sample space, 81
Sample standard deviation, 52
Sample variance, 52, 143
Schwartz inequality, 166
Second, 219
Sensitivity of instruments, 32
SI, 15
Significant digits, 207
Skewness, 112
Stability, 36
Standard deviation, 109

sample standard deviation, 52
Standard normal density, 124
Standard normal variable, 124
Statistical frequency, 83
Statistical independence, 156
Statistical inference, 147
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Statistical methods, 5
Statistical probability, 83
Statistical uncertainty, 69
Steradian, 18
Student distribution, 173, 233
Subjective probability, 84
Sum of events, 87

probability of, 89
Systematic errors, 36, 61
Systems of measurement units, 14

british, 20
cgs, 18
Dirac, 20
Hartree, 20
natural, 20
practical, 19
SI, 15

Tables, 210
Transducers, 29
Transparency of instruments, 34

Unbiased estimator, 148
Uncertainty

causes of, 45

combined, 155
due to random fluctuations, 59
due to resolution, 47
due to systematic errors, 67
expanded, 174
extended, 71
in direct measurements, 7, 45
non statistical, 69
relative, 73
statistical, 69
Type A, 69
Type B, 69
unified expression, 69

Uniform distribution
mean, 114
moments, 246
variance, 114

Unit standard, 6

Variance, 109
parent variance, 143
sample variance, 52, 143

Weighted average, 66, 150




