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I personally saw what looked like an 

animal, but I can't be absolutely positive 

that it wasn't a mineral. I think that what 

was involved was really energy rather than 

matter. Relatively speaking, it would be 

easiest to describe the whole thing as a 

phenomenon hovering somewhere on 

borderland of dimensions and designations, 

on the abutment of color, shape, odor, 

mass, length and breadth, contours, 

shadows, darkness and so on and so forth. 

 
Slawomir Mrożek, "Streap-Tease" 
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Foreword 

The problem of evaluating and expressing uncertainty in qualitative chemical analysis has received much less 
coverage in the literature than that afforded to uncertainty for quantitative analysis (i.e., measurements) [1]. 
While some authors have addressed this area [2] – [11], general guidance on the assessment of performance 
in qualitative analysis or the evaluation and reporting of qualitative analysis uncertainty is scarce. 

Accredited laboratories are not currently expected to evaluate or report uncertainties associated with qualitative 
analysis results [12]. However, ISO/IEC 17025 [13] and ISO 15189 [14] both require laboratories to ensure 
that they can achieve valid qualitative and quantitative analysis results. It is also crucial for laboratories to be 
aware of the reliability of qualitative analysis results; this enables them, where necessary, to warn of limitations 
in the interpretation of results and respond accurately to customer queries about reliability. A quantitative 
assessment of the reliability of a qualitative analysis result is particularly useful when false results are more 
likely. This Guide is intended for use when a quantitative assessment of the reliability of a qualitative analysis 
result is desirable. 

This Guide relies on experiences from several of the analytical fields where qualitative analysis is frequently 
used, e.g., in the forensic [15] and clinical fields [16] – [18], and extensive general guidance [7]. 
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Scope 

This Guide is intended to assist laboratories in setting and implementing appropriate methodologies for 
assessing the performance of qualitative analysis methods and evaluating uncertainties in qualitative chemical 
analysis. 

In this Guide, qualitative analysis is defined as “Classification according to specified criteria”. For analytical 
chemistry and related disciplines, the ‘criteria’ are understood to relate, in general, to information for the 
determination of chemical composition, properties and/or structure of analysed items. 

The following types of criteria are considered in this Guide: 

 Quantitative criteria in which a numerical result is used to categorise a test item as belonging to a pre-
established class; 

 Qualitative criteria such as the presence or absence of a particular feature, colour change on a test, etc. 

This Guide is not exhaustive when describing available tools for the performance assessment of qualitative 
analysis methods and the uncertainty of qualitative analytical results. The performance characteristics 
presented in this Guide are based on measured or estimated false result rates and do not consider, for example, 
measures of agreement between qualitative methods or treatment of classification on ordinal scales1 other than 
as a correct or incorrect classification. 

 

  

 

1 An ordinal scale is a scale of natural ordered categories where the distance between the categories is not known. The Mohs scale is 
an ordinal scale for mineral hardness. 
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Abbreviations and symbols 

The following abbreviations and symbols occur in this Guide. The symbols used in this document are not 
harmonised in all fields of science where they apply. For example, in the medical laboratory, FN and FNR are 
the abbreviations for “number of false negative results” and “false negative ratio”, respectively. 

 

A Ion abundance of a mass spectrum 

�̅ Mean ion abundance of a mass 
spectrum 

AR Abundance ratio of mass spectrum 
ions 

c Measured concentration (or any 
other quantity) of the analysed 
item 

CI Confidence interval 

���� Maximum admissible 
concentration 

���� Minimum admissible 
concentration 

DOR Diagnostic odds ratio 

E Efficiency 

fn Number of false negative results 

FN False negative rate referenced to 
positive cases 

fp Number of false positive results 

FP False positive rate referenced to 
negative cases 

GC-MS Gas chromatography-mass 
spectrometry 

GC-
MS/MS 

Gas chromatography-tandem mass 
spectrometry 

GUM Guide to the Expression of 
Uncertainty in Measurement 

	
��.
� High limit of 95 % confidence 
interval for result rate RR (e.g., SS) 

LC-MS Liquid chromatography-mass 
spectrometry 



��.
� Low limit of 95 % confidence 
interval for result rate RR (e.g., SS) 



��.
�
��  Target or minimum value for the  



��.
� 

LOD Limit of detection 

LOQ Limit of quantification 

LR Likelihood ratio 


�(+) Likelihood ratio of positive results 


�(−) Likelihood ratio of negative results 

n Number of negative results 

nc Number of negative cases 

NPV Negative predictive value 

�(∙) Odds in favour of an event, e. g. 
�(�) denotes odds for event � 

p Number of positive results 

�(∙) Probability of an event; e. g. �(�) 
is the probability of event � 

�(+) Prior probability of positive case 

�(−) Priori probability of negative case 

pc Number of positive cases 

PN Posterior probability of negative 
case (see Annex A) 

PP Posterior probability of positive 
case (see Annex A) 

PPV Positive predictive value 

qPCR Quantitative polymerase chain 
reaction 

RT-PCR Reverse transcription polymerase 
chain reaction 

RA Relative abundance 

Rn Normalized reporter 

RR Result rate 

�� Ion abundance standard deviation 

SP Specificity 

SS Sensitivity 

���� Retention time standard deviation 

tn Number of true negative results 

TN True negative rate referenced to 
negative cases 

tp Number of true positive results 

TP True positive rate referenced to 
positive cases 

�� Retention time 

��̅� Mean retention time 

u(c) Standard uncertainty of c 

w Mass fraction 

Y Youden Index 

ΔRn Normalised reporter value minus 

the baseline response 

ρ Spearman’s correlation coefficient 
between pairs of ion abundances 
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1 Introduction 

 

Many relevant socio-economic or individual 
interests, such as industrial productivity and health 
condition, depend on chemical analysis. Some of 
these analyses are exclusively qualitative or 
involve a subsequent quantification of the 
identified chemical entity. The interests intended to 
be protected by these analyses are only preserved 
if the analytical quality is fit for the intended use. 

In some publications, the term ‘examination’ [1], 
‘examination of a nominal property’ [19], or ‘test’ 
and ‘testing’ are used for ‘qualitative analysis’. The 
international standard for accrediting medical 
laboratories uses the term ‘examination’ both for 
quantitative and qualitative analysis [14]. 
Therefore, since consensus has not been reached 
about these terms amongst various relevant 
international communities, this Guide uses the 
term ‘qualitative analysis’ for the determination of 
nominal (qualitative) properties in chemical 
analysis. 

Broadly stated, a qualitative analytical result is a 
simple statement or categorisation of a test item or 
material, i.e., a classification. Decisions are 
invariably taken based on the categorisation; for 
example, whether to issue a batch of fertiliser, 
whether water is fit to drink, whether a person is in 
the possession of a controlled substance or not, or 
whether a newly synthesised material has the 
correct structure based on the requirements. 
Incorrect classifications – such as ‘accepting’ a 
product when it is unfit for use – carry risks to all 
parties. To control these risks, professionals 
involved in analysis work hard to ensure that their 
procedures lead to acceptably low incorrect 
classification risks. 

It follows that, at some point in the development of 
any such test procedure, an evaluation must be 
made of the risk of incorrect classification. 
Therefore, for most such procedures, it is 
reasonable to expect a laboratory to establish, or 
have access to, information on the risks of incorrect 
results. An important exception is the use of 
standardised test procedures, established by groups 
outside the laboratory, as fit for the intended 
purpose [20]  ̶̶̶ [21][22] [23]. The laboratory may 
well have limited or even no access to performance 
data of such test procedures. However, these 
procedures invariably specify the test with relevant 
detail and the laboratory will generally be expected 

to show that relevant factors within its control do 
indeed meet the test procedure's requirements. 
That, in turn, may involve demonstrating that the 
uncertainty of controlled parameters and test 
performance is adequate in relation to the test's 
purpose. 

Evaluating uncertainties associated with 
quantitative parameters or analysis results has been 
the subject of considerable efforts since the 
publication of the “Guide to the Expression of 
Uncertainty in Measurement” (GUM), which is 
available as ISO Guide 98 [24] as well as a JCGM 
document [25]. On the other hand, uncertainties in 
qualitative analysis have received far less attention. 
After the publication of the first edition of ISO/IEC 
17025 [26], the interest in uncertainties of 
qualitative analysis has increased. The challenges 
in establishing the uncertainty associated with 
qualitative analysis, such as ‘pass/fail’, identity or 
comparative identity analyses have accordingly 
gained more attention, particularly in fields where 
the impact of false qualitative analysis results are 
extremely relevant, e.g., in forensics or doping 
analysis.  

There is a wide variety of metrics for expressing 
uncertainty in qualitative results [7]. However, 
there is limited consensus about which metrics to 
use. Exceptions are the areas of epidemiology and 
in the clinical laboratory, where the concepts 
‘clinical sensitivity’ and ‘clinical specificity’ are 
consistently used as clinical accuracy parameters 
[27]. 

Quantitative and qualitative analyses differ 
substantially in how the results and associated 
uncertainties are reported. While quantitative 
results are reported as an interval that includes the 
‘true value’ of the measurand with a defined 
confidence level, nominal properties are reported 
as a classification with metrics that express the 
chance of correct or incorrect classification. That 
‘chance’ can be described by a probability, 
likelihood, odds, or other metrics estimated from 
the interpretation of input information. The quality 
of reported metrics depends on the number and 
diversity of cases studied. The determination of 
these metrics allows for the identification of cases 
where procedures should be improved to reduce the 
likelihood of producing false results.  
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This Guide describes the general principles for the 
performance assessment of qualitative analysis for 
reporting the uncertainty of qualitative analytical 
results, and presents application examples of the 
described theory. The Guide does not discuss the 
test item's ability to represent a group of identical 
items or a larger object; that is, it does not discuss 
the impact of sampling in these assessments.  

Ordinal results can be reduced to binary (yes/no) 
outcomes and treated using the methods in this 
guide by assigning ordinal classification results as 
'correct' or 'incorrect'. Other methods for treating 
ordinal scales are outside the scope of this guide. 
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2 Types of qualitative analysis 

 

As mentioned in the scope of this Guide, 
Qualitative Analysis2 is defined as “Classification 

according to specified criteria” [28]. Table 1 lists 
some examples. Although all these cases appear 
very different, they share one common 
characteristic; once the criteria are specified, the 
performance of the classification methodology is 
relatively simple to describe in terms of its success 
or failure rate. These success and failure rates form 
the basis of most qualitative analysis performance 
metrics. 

Qualitative analyses covered in the main text are 
divided into two categories based on different 
types of classification criteria, i.e., qualitative or 
quantitative. Table 1 presents examples of each. 
Section 3 describes strategies for assessing 
performance for different types of classification 
criteria. For qualitative analysis where the true or 
false response rates depend on a quantitative 

property, such as the presence of a banned 
substance whose detection depends on the amount 
present, a limit of detection is also considered (see 
section 3.4). 

Conformity assessment of the value of a 
quantitative property of an item with a limit value 
or interval can sometimes be considered as a 
conversion of a measurement result into a 
qualitative result (‘conforming’ or ‘non-
conforming’). The use of measured values and 
their measurement uncertainties for conformity 
assessment is covered in detail in another 
Eurachem/CITAC guide [29], and is accordingly 
not considered in detail in the present Guide. 
However, Annex B discusses how some of the 
metrics used to assess the performance or 
uncertainty of qualitative analysis can be 
determined for quantitative conformity 
assessment.  

 
Table 1. Types of qualitative analysis based on different types of classification criteria. 
Classification criterion Qualitative analysis example 

Qualitative (1) Detection of aliphatic aldehydes in a solution by colour change after the 
addition of Schiff’s reagent. 

(2) Identification of the crystalline form of material by observation. 

(3) Identification of the brand and year of wine by sensory analysis. 

(4) Identification of a biological species by determining or detecting a 
particular DNA sequence. 

(5) Identification of human blood type by observation of agglutination. 

Quantitative (1) Identification of a pesticide residue in fruit using measured fragment 
masses and relative fragment abundances in GC-MS. 

(2) Determination of infrared spectral equivalence between a new and a 
previously accepted industrial raw material, using wavelength and intensity 
criteria. 

(3) Identification of a diuretic in urine from an athlete using retention time and 
measured fragment masses in GC-MS. 

(4) Identification of a drug in blood using retention time and measured 
fragment masses in LC-MS. 

(5) Detection of a virus in a clinical sample based on fluorescence intensity in 
quantitative real-time  polymerase chain reaction (qPCR). 

 

 
2 ‘Qualitative testing’ is in principle a wider field than ‘qualitative analysis’, simply because chemical analysis, frequently referred to 

as analytical work, is one particular activity among many fields of testing. However, in this Guide for analytical chemists and those 
in related disciplines, the terms are used synonymously. 
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3 Performance assessment for qualitative analysis

3.1 General considerations 

This section provides guidance on the assessment 
and expression of performance for procedures 
intended to provide simple classification into two 
classes (‘binary classification’). The ‘Classes’ are 
labelled here as ‘positive’ or ‘negative’ to denote 
‘member of the class of interest’ or ‘non-member’. 
This classification covers most practical situations, 
including ‘above a limit’, ‘acceptable’, 
‘unacceptable’, ‘identity as’, or ‘presence of a 
particular species’. 

Classes are assumed to be comprehensive and 
exclusive to allow calculation of unambiguous 
false response rates. This implies that no test item 
may be classified as a member of a third class. This 
can generally be achieved by careful specification 
of classification criteria. However, it remains 
possible that a result may not provide sufficient 
confidence in classification. Under these 
circumstances, it is entirely reasonable for the 
analyst to report a test result as ‘inconclusive’ in 
the sense of insufficiently certain. Inconclusive 
results require further study to report results as 
‘conclusive’. These results are recognised in 
medical laboratories to be from a ‘grey zone’ or 
‘equivocal zone’. 

Some of the concepts described can, in principle, 
be extended to more classes, such as in an ordinal 
scale classification, by assessing correct and 
incorrect classification rates for all classes. A 
useful extension is to treat identification of 
structure or identity (formally a multi-class 
problem) as either ‘correct’ or ‘incorrect’, and that 
approach is assumed here.  A detailed treatment of 
the multi-class problem, which may involve 
multiple simultaneous assignments or assignment 
to several classes, is, however, beyond the scope of 
this Guide. 

Qualitative analysis involves various stages 
namely, (1) problem description, (2) method 
development and (3) validation, (4) tests on 
unknown items checked through quality control, 
and (5) reporting of results (Figure 1). 
Unambiguous specification of the property to be 
determined and assessing the fitness of the analysis 
for the intended use are critical. The reporting of a 
qualitative analytical result must be supported by 
valid procedures and adequate quality control of 

the test. How results are reported depends on the 
purpose of the analysis and the report recipient. 
This Guide does not detail how the method should 
be developed or how quality control should be 
designed. 

 

Figure 1. Qualitative analysis process from 
problem description to the reporting of results. 

3.2 Quantification of qualitative 
analysis performance 

3.2.1 Defining the basis for performance 

assessment 

The most basic way of quantifying the performance 
of a qualitative analysis method is by calculating 
false result rates. With ‘positive’ or ‘negative’ 
results, it is useful to report ‘true positive’ and 
‘false positive’ or ‘true negative’ and ‘false 
negative’ rates, respectively. However, these rates 
can be referenced to either the total number of a 
specific type of case or result, or the total number 
of possible cases or results. 

For instance, the false positive rate can be defined 
as: 

i) The fraction of negative cases that are falsely 
reported as positive (fp/nc), where fp and nc 
are the numbers of false positive results and 
negative cases, respectively. Figure 2 
graphically represents the overlapping of 
different types of cases and results. The 
(fp/nc) is represented by the ratio of the areas 
of the intersection (∩) of positive results, ‘p’, 
with ‘nc’ (p∩nc = fp) and the area of ‘nc’. 
The FP of Table 2 presents this 
determination. 

ii) The fraction of positive results that are 
falsely reported as positive (fp/p), where p is 
the number of positive results. In Figure 2, 

(1) Specification 
of the property 

to be determined

(2) Development 
of the qualitative 
analysis method

(3) Validation of 
the qualitative 

analysis method

(4) Analysis of 
test items 

supported by 
quality control

(5) Reporting of 
results
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this rate is represented by the ratio between 
the areas (p∩nc = fp) and ‘p’. 

iii) The fraction of the total number of cases or 
results that are falsely reported as positive 
(fp/(pc + nc) = fp/(p + n)), where pc and n 
represent the number of positive cases and 
negative results, respectively. In Figure 2, 
this rate is represented by the ratio between 
the area labelled (p∩nc = fp) and the figure's 
total area. 

The difference between these definitions is crucial. 
In case i), the rate does not vary with the proportion 
of ‘negative cases’ in the population, i.e., 
nc/(nc+pc), since FP = fp/nc. However, for cases 
ii) and iii), the false positive rate depends on 
nc/(nc+pc) since more fp are observed in 

 
3  According to the International Vocabulary of Metrology [1], the ‘sensitivity of a measuring system’ is the “quotient of the change in 

an indication of a measuring system and the corresponding change in a value of a quantity being measured”. 

populations containing more nc. Therefore, these 
definitions characterise the performance of the 
qualitative analysis in different ways and, hence, 
involve different interpretations of their values. 

The true positive, TP, (tp/pc) and the true negative, 
TN, (tn/nc) rates referenced to a relevant number of 
cases are known in clinical chemistry as qualitative 
analysis ‘sensitivity’ and ‘specificity’, respectively 
[7] (Table 2). The determination of clinical 
sensitivity and specificity requires the proper 
determination of studied cases by a conclusive 
clinical diagnosis. For quantitative analysis, the 
term ‘sensitivity’ [1] or ‘analytical sensitivity’ [30] 
has a different meaning.3 

The true positive rate referenced to positive cases 
(tp/p) is also known as the qualitative analysis 

 

Table 2. Alternative performance characteristics for expressing the quality of qualitative analytical results. 
Performance characteristics Expression 

True positive rate, TP (Sensitivity, SS) �� ��⁄ = �� (�� + "#) = 1 − %&⁄  
False positive rate, FP "� #�⁄ = "� (�# + "�) = 1 − '&⁄  
True negative rate, TN (Specificity, SP) �# #�⁄ = �# (�# + "�) = 1 − %�⁄  
False negative rate, FN "# ��⁄ = "# (�� + "#)⁄ = 1 − '� 
‘Precision’ or ‘Positive predictive value’, PPV �� �⁄ = �� (�� + "�)⁄  
‘Negative predictive value’, NPV �# #⁄ = �# (�# + "#)⁄  
Efficiency, E (�� + �#) (� + #)⁄  
Youden Index, Y (((%) + (�(%) − 100 
Likelihood ratio of positive results, 
�(+) TP/FP 
Likelihood ratio of negative results, 
�(−) TN/FN 
Posterior probability See Annex A 
tp – number of true positive results; fp – number of false positive results; tn – number of true negative 
results; fn – number of false negative results; p – number of positive results (tp + fp); n – number of negative 
results (tn + fn); pc – number of positive cases and nc – number of negative cases. 

 

Figure 2. Graphical 
representation of an example of 
the overlapping of the number 
of positive, pc, or negative, nc, 
cases with the number of 
positive, p, or negative, n, 
results. The symbol “∩” 
represents the intersection of 
groups; for example n∩pc, 
here, denotes the set of 
negative results from positive 
cases. The ‘n∩pc’, ‘p∩pc’, 
‘n∩nc’ and ‘p∩nc’ define fn, 
tp, tn and fp, respectively. 

 

 

 



Assessment of Qualitative Analysis Eurachem/CITAC Guide 
 

AQA 2021 9  
 

‘precision’ or ‘positive predictive value’, PPV 
[30]. The term ‘negative predictive value’, NPV, is 
used for the true negative rate referenced to the 
total number of negative results (i.e., tn/n). The 
efficiency of the qualitative analysis is defined as 
the fraction of any type of correct results given all 
results (i.e., (tp + tn)/(p + n)). The Youden Index is 
an alternative way of quantifying the success of 
qualitative analysis (Table 2) [31]. 

Although the metrics referenced to the number of 
positive or negative cases do not depend on the 
prevalence of the case types, these numbers alone 
cannot provide the probability that a specific result 
is correct. To estimate the probability of a result 
being correct, a relevant result rate and prevalence 
of cases also need to be considered. This, and other 
metrics for confidence in qualitative results, is 
discussed in Section 4. 

3.2.2 Defining performance assessment 

reference 

The metrics used to quantify qualitative analysis 
performance can have additional peculiarities. The 
positive and negative cases can be established in 
different ways. Some cases or samples used as 
references can be known to be 'positive' for a 
characteristic because of their origin, or through 
formulation. Others might be, as defined by AOAC 
International, cases where results from “a 
confirmatory technique and another analytical 
technique are both positive” [32]. Some examples 
of adequate origins of positive cases can be patients 
diagnosed with a particular disease or soil known 
to be contaminated. Positive test items can be 
formulated by adding the species to be identified in 
a matrix equivalent to the analysed items, such as a 
pesticide in a food product confirmed or not 
confirmed as having native levels of the pesticide. 
If identification performance varies significantly 
with a quantitative property (for example, the 
concentration of the substance to be identified or 
detected) the formulation should allow for the 
determination of that level. A negative case can 
also be interpreted as a case known to be negative 
from its origin, formulation or defined as negative 

since a “confirmatory technique and another 
analytical technique are both negative”. The 
AOAC International definitions of positive and 
negative cases have a more comprehensive 
application since it is the only approach applicable 
to the analysis of complex items that are 
challenging to reproduce from formulation. 
However, it relies on the quality of the output of 
the analytical techniques used. In some fields, it is 
difficult to artificially prepare items with the 
studied analyte and possible interferents for 
analysis performance testing, because the matrices 
of the items are unknown and unpredictable. 

The positive and negative cases can also be 
provided as reference data, such as spectra known 
to be from a specific compound. After defining 
identification criteria, the probability of reporting 
the composition match correctly or incorrectly 
compared to these criteria can be determined. For 
instance, in mass spectrometry, the identification 
can be based on assessing the presence or presence 
and abundance of characteristic ions. The chance 
of spectroscopic match can be predicted by 
binomial or hypergeometric statistics as discussed 
in Examples E1 and E2. 

3.2.3 Method performance reporting 

3.2.3.1 Contingency tables 

A very convenient way of reporting the 
performance of a qualitative method of analysis 
that does not vary significantly within the 
analytical scope is through a contingency table. 
Table 3 presents an example of such a table. In this 
example, the TP, FP, TN and FN are 97.8 % 
(228/233), 0.33 % (1/301), 99.7 % (300/301) and 
2.1 % (5/233), respectively. 

Typically, the analytical scope can involve 
different levels of the studied species or property 
and various matrices of the analysed item. This can 
require separate contingency tables for different 
parts of the analytical scope.  

Table 3. A specific example of a contingency table that describes the performance of a qualitative analytical 
method that should be approximately constant within the analytical scope. 

  Case  

  Positive (pc) Negative (nc) Result totals 

Result 
Positive (p) tp = 228 fp = 1 p = 229 

Negative (n) fn = 5 tn = 300 n = 305 

 Case totals pc = 233 nc = 301  
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3.2.3.2 Receiver Operating Characteristic 

(ROC) curve 

For qualitative analysis based on the assessment of 
a quantitative characteristic, the selection of the 
classification criteria that balances the true and 
false result rates, typically TP and FP, can be 
performed using Receiver Operating Characteristic 
(ROC) curves, which plot the pair (TP, FP) as a 
classification criterion (i.e., a discrimination 
threshold) varies. These curves can also be used to 
compare different qualitative analysis procedures 
[31]. Although the detailed description of these 
curves is beyond the scope of this Guide, Figure 3 
presents five schematic examples of ROC curves. 
Each curve shows how the true positive rate and 
false positive rate vary as the identification 
criterion varies from a stricter to a less stringent 
identification of positive cases associated with a 
low or high TP, respectively. In addition to 
providing a visual illustration of performance, the 
area under the curve (often abbreviated “AUC”) 
can be used as a summary of classifier performance 
[31].  

3.3 Evaluating false positive and false 
negative rates 

3.3.1 Method scope and validation detail 

The validation of a qualitative analysis method 
involves defining performance requirements and 
checking if they are met [30]. 

Before this performance assessment, the analysis 
scope should be clearly defined in terms of the type 

of classification (e.g., presence of 
pentachlorophenol above 1 mg kg-1) and analysed 
items (e.g., leather products). The classification 
method should also be specified, namely, the 
analytical technique (e.g., GC-MS/MS), how this 
technique is used (e.g., sample preparation and 
instrumental conditions) and the classification 
criteria. The classification criteria must be clearly 
described to guarantee that collected performance 
data will apply to subsequent analyses. 

In some qualitative analysis, driven by efficiency 
considerations, the analytical method is divided 
into two stages: a preliminary faster and cheaper 
screening method that, whenever required, is 
followed by a more time consuming and expensive 
confirmatory method. Confirmation is performed 
when the first assessment produces results contrary 
to those expected or can have a relevant impact on 
an individual or collective interest. However, it is 
essential to assess the false negative and positive 
rates for the entire procedure that includes the 
screening and confirmatory tests. For instance, 
when only positive results are subject to 
confirmation, it is essential to check if the 
screening stage's false negative rate is adequately 
low. 

Regarding the method validation detail, for 
methods applicable to a diversity of items (e.g., 
different food products), performance should be 
tested for a representative set of types of items. The 
types and number of tested items depend on the 
impact of the analysed matrix on the performance. 
In some cases, understanding the classification 
principles can allow groups of items associated 
with equivalent qualitative analysis performance to 

Figure 3. Five examples of ROC curves where the 
variation of TP and FP with the variation of 
quantitative identification criteria is represented. 
Curve A (blue point) presents a perfect test where 
identification criteria do not affect results, and TP 
and FP are 100 % and 0 %, respectively. Curve B 
and C represent suitable methods, where TP ≥ FP. 

Among these three, Method B is preferable to 
method C. Curve D represents the chance diagonal 
where TP = FP for all decision thresholds; this 
would not be a useful classifier. Curve E, at first 
sight, seems to be very poor classifier, consistently 
showing a false positive rate larger than the true 
positive rate. However, a simple switch of reported 
outcome would generate an ROC curve near that of 
C; the classifier might then prove useful.  
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be anticipated, from which a representative item 
can be selected and studied. The performance of 
the analysis of the representative item can then be 
extrapolated to the group of items associated with 
equivalent qualitative analysis performance. If the 
performance of the classification technique allows, 
the decision can be taken to study the performance 
of the analysis of items and/or property values 
where the false result rates reach the highest values. 
The laboratory should manage the thoroughness of 
the performance assessment while keeping in mind 
the available time and resources for this 
assessment. In some cases, it can be acceptable to 
execute an on-going validation strategy where 
every time an item that is new to the laboratory is 
tested, additional and specific controls of the 
quality of the analysis are performed. 

3.3.2 Using information from the literature 

For commonly used qualitative analysis 
procedures, performance information might be 
expected to be in the public domain. Before 
embarking on studying the performance of a well-
established analytical procedure, an appropriate 
study of the relevant literature in the field should 
be performed to gather independent information on 
its fitness for the intended use. However, published 
false response rates should be used with caution; 
they could have been obtained using specific 
equipment, reagents, and personnel and refer to 
specific sample matrices and characteristic levels, 
so the analyst must consider whether his/her 
situation is equivalent. For instance, if the items 
studied in the literature have characteristic levels 
far from the thresholds used to distinguish between 
classes and if their matrices are relatively free from 
interferences, the determined identification 
performance can be too optimistic compared to the 
“real” analytical problems experienced by the 
laboratory. Therefore, true and false result rates 
depend heavily on available data. 

In some cases, it is possible to anticipate if 
performance observed in the literature will be 
better or worse than the performance observed for 

qualitative analysis in the laboratory. If it is 
concluded that the qualitative analysis procedure is 
valid for worst-case scenarios, i.e., can produce 
results fit for their intended purpose, the procedure 
can be used to analyse unknown items with no 
restrictions. 

Section 4 discusses how criteria for deciding 
whether an analysis is fit for the intended use can 
be set. 

3.3.3 Assessment exclusively from 

experimentation 

Regardless of the type of qualitative analysis 
mentioned in section 2, the FP and FN can be 
estimated directly from the number of false results 
from a set of analysis. In qualitative analysis based 
exclusively on qualitative inputs (Table 1), this is 
the only way of estimating qualitative analysis 
uncertainty. However, if false responses are 
unlikely, this approach requires a large number of 
tests. 

Given that the number of false responses should 
ideally be low, the problem arises of how many 
samples to test to be reasonably sure of finding a 
non-zero number of false responses.  

From published information (see, for example, 
Ferrara et al. [33]), it is evident that false positive 
or negative rates can be as low as 0.5 % and in 
some cases even lower [6, 8, 9]. For a range of false 
result probabilities, Table 4 shows the number of 
samples that would need to be analysed in order to 
be certain, to at least within the confidence levels 
indicated, of finding one or more false result. 
Table 4 uses the binomial distribution and shows 
that for a 95 % chance of detecting one or more 
false results, the number of tests that need to be 
performed will be three times more than the 
number of tests that produce an average of one 
false result. For instance, for a method with a 1 % 
false positive rate, it is found that (on average) for 
each 100 analyses of negative cases, one positive 
result is observed. However, to be “95 % sure” that 
a false positive result is observed 299 (about 

Table 4. The minimum number of analyses to find one or more false (positive 
or negative) result(s). 

 Confidence level 

False result rate 95 % 99 % 

0.5 % 598 919 

1 % 299 459 

5 % 59 90 
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3 × 100) tests on negative cases must be 
performed. 

The values of Table 4 are not sufficient for a good 
estimate of false result rates or to compare different 
methods. Even an approximate estimate would 
usually require five to ten times the minimum 
number of observations given in Table 4. This 
table can also be interpreted as the minimum 
number of analyses necessary to check compliance 
with different acceptable false result rates, as 
discussed below. 

In an attempt to determine false result rates directly 
from experimentation for a new procedure, the 
analyst is frequently faced with a dilemma. On the 
one hand, for a given procedure, the false response 
rate of interest is unknown, and therefore any 
performed classifications can be unreliable. On the 
other hand, merely analysing until the first false 
response occurs would not necessarily give a true 
picture of the false response rate. To address this 
problem, it is suggested that the analyst decides in 
advance on tolerable levels for the two false 
response rates. For a chosen confidence level, the 
binomial distribution may be used to estimate the 
number of experiments needed to find one or more 
false response(s) with enough confidence. This 
approach is not guaranteed to produce an exact 
figure for the false response rate, but it will place a 
bound on it. For example, suppose the analyst 
decides that a FP of 5 % is acceptable, and after 
performing 59 experiments (Table 4), covering the 
likely range of matrices, no false positives are 
found. In that case, it may be concluded that the FP 
is not greater than 5 %. As a quality control 
measure of the validated procedure, it is further 
recommended that the samples be interspersed 
with blanks and reference materials containing the 
target characteristic (e.g., analyte) at relevant 
characteristic levels. It should always be 
remembered that false result rates depend very 
much upon the vagaries and/or specificities of the 
population being sampled and upon this 
population's sampling strategy. 

Table 4 shows that, for low false response rates, it 
may be impractical to analyse a sufficient number 
of samples to detect a false response. Accordingly, 
if a test is inexpensive and/or is intended to be 
widely used, e.g., as a drugs screening test, it can 
be acceptable to first establish that the false 
response rate does not exceed an upper limit, say 
5 %, by experiment, and then to refine this figure 
in the light of experience with further samples. 

Where sample numbers are likely to be relatively 
low and/or the test is expensive to apply, all tests 
should be run in parallel with a confirmatory test 
and, from time to time, the false response rates 
should be recalculated. 

The mathematical processing of available 
information can be used to overcome some 
limitations of the experimental determination of 
false response rates (see sections 3.3.4 and 3.3.5). 

3.3.4 Assessment from a database 

An alternative to determining false results’ rates 
from experimentation is chance mismatch studies 
in reference databases, such as mass spectra or 
infrared spectra databases. In some cases, this 
allows the equivalent of many thousands of 
experiments. However, though informative and 
powerful, a current limitation is that such databases 
are often quite unrepresentative of the testing 
population; for example, while the prevalence of 
different materials in general use varies widely, a 
typical reference database will only contain one of 
each. This may lead to significantly biased 
probability estimates; again, the values obtained 
are unlikely to be better than order-of-magnitude 
estimates. Examples E1 and E2 illustrated the use 
of this methodology for assessing qualitative 
analysis performance. 

3.3.5 Assessment from quantitative data 

modelling 

The assessment of the performance of highly 
selective and time-consuming and/or expensive 
qualitative analyses exclusively from 
experimentation performed in a single laboratory is 
not feasible. 

In qualitative analysis based on a quantitative 
classification criterion for quantitative results 
(such as an instrumental method of analysis), 
models of the dispersion of results can be used to 
estimate true and false result rates. Annex B gives 
further details. For instance, if the relevant 
instrumental signal, such as analyte retention time 
in a chromatographic method, is normally 
distributed the chance of an interfering component 
having a retention time within the acceptance 
retention time interval for the analyte can be 
predicted (See Quick reference 1, page 13). 

However, the modelling relies on the validity of the 
model assumption and input variable values. For 
instance, since relative retention times can be not 
normally distributed, the assumption of normality 
can underestimate false result rates. The simulation 
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of instrumental signals by the Monte Carlo method 
is a convenient way of estimating FP and FN from 
non-normally distributed parameters [8, 9]. 
Example E5 illustrates the modelling of 
instrumental signal dispersion for estimating the 
false result rate of highly selective GC-MS/MS 
identifications. 

3.3.6 Assessment of qualitative test 

performance dependent on a continuous 

variable 

Many confirmatory or detection tests show a strong 
dependence on detection probability or false 
response rate on some continuous variable. For 
example, detection rates often depend on the 
concentration or the number of particles of the 
material sought. It may then be valuable to model 
the dependence of false response rate on the 
continuous (or other) variables. 

Logistic regression and probit regression [34, 35] 
are commonly applied to such problems and have 
been suggested (with examples) for the 
performance assessment of qualitative methods of 
analysis [36]. Logistic regression has been 
demonstrated in low copy number DNA detection 
[37]. The procedure is well documented in 
textbooks and available in essentially all statistical 
software packages, therefore, it is not presented in 
detail here. Simple logistic regression models the 
probability of a binary response as a function of 
some continuous variable. The model is: 

� = exp( ./ + .01)
1 + exp( ./ + .01) (1a) 

Or, equivalently: 

ln 4 �
1 − �5 = ./ + .01 (1b) 

where p is the probability of interest (for example, 
probability of a positive result), x the continuous 
variable (usually concentration of the analyte) and 
b0 and b1 the regression coefficients. Most 
statistical packages will provide a fitting method 

either from raw data (concentration/qualitative 
result pairs) or from proportions calculated from 
the number of results. Note that the former only 
requires a sequence of yes/no (or 1/0) values; it 
does not require proportions. This makes it 
possible to apply the method to a range of test 
samples with different (known or independently 
measured) concentrations which are subjected to 
the qualitative test procedure only once each.  

Once a relationship is established, it becomes 
possible to estimate detection limits (see below) 
from the fitted relationship between concentration 
and probability of detection, simply by choosing an 
appropriate limit for the probability of detection 
which corresponds to the definition of the detection 
capability in use. 

Example E4 provides a practical example of 
logistic regression. 

3.3.7 Expert judgement 

When no data on the performance of the analytical 
method is available from a third party, and it is not 
possible to assess performance exclusively from 
experimentation (section 3.3.3) or modelling 
(sections 3.3.4 and 3.3.5), the analyst can use 
his/her practical experience in the classification 
technique, for the studied or similar items, to 
decide if the method is fit for the intended use. 

Whenever possible, the decision on the fitness for 
purpose of a method for an intended use should be 
supported by objective evidence. 

The process of formulation of expert judgements is 
the topic of several studies. The judgements are 
influenced by many factors leading to 
corresponding estimates of the uncertainty of the 
result [38]. 

Quick reference 1 – Signal modelling example 

If for deltamethrin identification in olive oil by GC-MS, the estimated standard deviation of the retention 
time repeatability, ����, is 0.022 min with ν = 32 degrees of freedom, the retention time tolerance for 
identifying this compound in a sample can be: (tR ± t·����) = (tR ± 2.04 × 0.022) = (tR ± 0.045) min; where 
tR is the retention time observed from a single daily injection of a standard solution and t the 2-sided 95 % 
critical value for the t-distribution with 32 degrees of freedom. Therefore, for tR of 36.055 min, the 
acceptance interval for a sample peak would be (36.055 ± 0.045) min. Assuming an interferent has a 
retention time 0.05 min less than for deltamethrin and the precision of both retention times is equivalent, 
the probability of the interferent having a retention time within the acceptance interval would be 1.5 %. 
This value is estimated by the cumulative t-distribution for a t-value of (-0.05/0.022) and ν (MS-Excel 
formula: T.DIST(-0.05/0.022;32;TRUE)). 
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3.4 Limit of detection and selectivity 

3.4.1 Limit of detection 

The Limit of detection (LOD) typically describes 
the lowest concentration of a substance that leads 
to reliable detection. For tests where the 
classification involves the assessment of a 
quantitative characteristic, and the value of this 
characteristic affects the qualitative results, the 
‘limit of detection’ (LOD) and/or the ‘limit of 
quantification’ (LOQ) considered in the qualitative 
and/or quantitative analysis should be checked in 
relation to qualitative analysis performance [30]. 
The qualitative analysis result should be fit for the 
intended use at that level(s).  

NOTE: The Commission Regulations (EU) No 
589/2014 [39] and No 152/2009 [40] define an LOQ 
as “the lowest content of the analyte that can be 
measured with reasonable statistical certainty, 
fulfilling the identification criteria as described in 
internationally recognised standards” [41]. 

For exclusively qualitative analysis, the LOD can 
be found by applying the procedure to items 
containing progressively smaller levels of the 
characteristic until the likelihood of producing 
false results reaches a pre-established criterion. 
Logistic and probit regression can also be used in 
this type of assessment (Section 3.3.4). 

3.4.2 Selectivity 

Selectivity, in the sense in which this term is 
usually employed in analytical chemistry, refers to 
“the extent to which a particular method can be 
used to determine analytes under given conditions 
in the presence of other components of similar 
behaviour” [42]. The International Vocabulary of 
Metrology (VIM) defines this term equivalently as 
a measuring system property [1].  

NOTE. The term ‘specificity’, in the context of 
quantitative analysis, is used for perfectly selective 
analysis [42, 43], which can only be claimed in 
chemistry on very rare occasions.  However,  there 
is a clear alternative use of the term ‘specificity’ in 
the context of qualitative analysis (see Table 2). In 
this Guide, the term ‘selectivity’ is used in a general 
sense and the term ‘specificity’ reserved for the 
purpose noted in Table 2. 

Selectivity can be assessed by analysing one or 
more test items having known or likely interfering 
characteristics, that is, characteristics that are not 
the target of the analysis but might be considered 
likely to generate the test response.  

It is sometimes possible to identify interfering 
species or scenarios which are particularly likely to 
generate false positive results. For example, tests 
for ammonia might reasonably be expected to 
respond to primary amines, and tests for specific 
bacterial strains might be expected to respond to 
any bacteria of the same general species. 

If the qualitative analysis performs relatively well 
in worst-case situations, it can be concluded that 
the procedure is valid for all types of items. 

Although the false response rate can be measured 
for each different material or each interfering 
species present, selectivity studies are unlikely to 
generate a single definitive value for selectivity. 
This is because the response depends on the 
potential cross-reacting species included in the 
study and on the level of these species. Therefore, 
selectivity studies are best considered as providing 
a broad indication of the adequacy of the 
qualitative analysis method when faced with 
different challenges. 
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4 Expressions of confidence in qualitative analysis

4.1 General considerations 

While statements of measurement uncertainty in 

quantitative analysis typically result in a range of 

values, like an expanded uncertainty interval or a 

minimum purity, classification statements cannot 

usually be associated with a range. In general, one 

cannot report that the material is 90 % of a ‘pass’, 

that an analyte is 99 % present or that a chemical 

species is within some contiguous sequence. 

Instead, the typical form of uncertainty information 

is probabilistic in nature. That is, one gives an 

indication of the probability of a given 

classification being correct, or of typical 

probabilities of misclassification of items whose 

correct class is known. 

The performance figures that can be obtained from 

validation studies can be reported with the 

qualitative test result. In general, however, they 

rarely give direct information about (for example) 

the probability that a qualitative result is correct. In 

this section, two metrics that have been proposed 

for this purpose are described, with a view to aid 

understanding and improve the state of the art in 

expressing uncertainty for qualitative analysis 

results. The metrics presented here use variants of 

Bayes’ rule [4] (See Annex A). These can be used 

to give a) an indication of the strength of evidence, 

provided by one or more qualitative result(s), in 

favour of one possible classification over another; 

b) in conjunction with sound information about the 

probabilities of encountering different (true) values 

of qualitative characteristics in a population, an 

indication of the probability that a particular 

classification is true given a particular qualitative 

analysis result. 

4.2 Likelihood ratio 

The most familiar and widely used form of 

reporting qualitative analysis performance is false 

result rates, particularly FP and FN or their 

complementary rates, TN and TP, respectively 

(e.g., �� = 1 − ��). Two of these rates can be 

conveniently combined into the same performance 

characteristic: the likelihood ratio, LR. 

If a positive result is reported, the LR(+) is 

estimated by Eq. (2):  

�	(+) = ��/�� (2) 

The LR(+) is a ratio of two probabilities; the 

probability of reporting a positive result if the case 

is positive divided by the probability of reporting a 

positive result if the case is negative. Broadly, the 

likelihood ratio gives a measure of the change in 

the probability that the sample is genuinely 

positive, after seeing a positive test result. 

Mathematically, the likelihood ratio is the change 

Quick reference 2 – Interpretation of likelihood ratio 

If a positive result is reported, the probability of the case being, in fact, positive, ��, is calculated by 

Eq. (Q2.1) (see below). This equation is the well-known Bayes’ theorem (Annex A), substituting true and 

false positive rates for conditional probabilities.   

�� =
�(+)��

�(+)�� + �(−)��
 (Q2.1) 

where �(+) is the probability of the case being positive prior to the test. This can also be expressed in “odds” 

form (see Annex A): 

PP

1 − PP
 =

�(+)��

�(−)��
 (Q2.2) 

In Q2.2, the ratio �(+)/�(−) represents the odds in favour of a positive case before applying the qualitative 

test; that is, the 'prior odds'. The ratio ��/�� is the calculated likelihood ratio �	(+).  

The likelihood ratio therefore describes how the probability (represented by the odds) changes after a positive 

test result; it can be thought of as a measure of the additional information provided by the test.  

In the special case where �(+) = �(−) = 0.5, so that the prior odds are 1.0; the LR(+) then represents the 

ratio of posterior probabilities of the case being positive or negative. For instance, with equal prevalence (or 

assumed prevalence) of positive and negative cases, a positive result with a �	(+) of 1000 would indicate 

that the posterior probability of the case being genuinely positive is 1000 times larger than the probability of 

the case being negative. 
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in probability expressed as “odds” (see Annex A). 
A high likelihood ratio from a test indicates that the 
test item is more likely to be positive than could be 
said before carrying out the test. Sometimes, this is 
interpreted as a ‘weight of evidence’, contributed 
by the positive test result, in favour of the test item 
being genuinely positive. 

In the special case where both positive and 
negative cases are equally likely (�(+) = �(−) =
0.5; where �(+) and �(−) are the prevalence of 
positive and negative cases, respectively), the 
LR(+) can be understood to indicate how much 
more the reported positive result is likely to be true 
rather than false (see Quick reference 2). 

For example, if positive and negative cases are 
considered equally likely prior to the test, a positive 
result associated with a 
�(+) of 7300 means that 
the positive result is 7300 times more likely to be 
true than false. 

If a negative result is reported, the 
�(−) is: 


�(−) = '&
%& (3) 

For the special case of equally probable positive or 
negative cases prior to examination, the 
�(−) 
represents how much more a negative result is 
likely to be true rather than false. 

Some authors combine both likelihood ratios in the 
parameter ‘Diagnostic odds ratio’, DOR (9�� =

�(+)/
�(−)) [30]. 

One of the most useful features of the likelihood 
ratio (
�(+) or 
�(−)) is that if the classification 
depends on two independent pieces of evidence 
(i.e., the result is only reported when two 
independent analyses from independent procedures 
confirms it), the 
�(0&;) of the outcome of both 
analyses is estimated by multiplying the LR that 
quantifies the uncertainty of each piece of evidence 
(
�(0) and 
�(;)): 


�(0&;) = 
�(0) ∙ 
�(;) (4) 

For instance, if the presence of a contaminant in a 
food product, determined by GC-MS, is based on 
retention time with a 
�(+) of 99.9 and mass 
spectrum data with a 
�(+) of 490, the 
�(+) of 
identifications based on both these tools becomes 
4.9 × 104 (i.e., 99.9×490). The Eq. (4) results from 
the fact that the probability of the convergence of 
two independent results is estimated by 
multiplying the respective individual probabilities. 

If m independent pieces of evidence are considered 
(i = 1 to m) to report a positive or a negative result, 
i.e., a result is only reported if indicated by the m 
pieces of evidence, the LR from the combined 
pieces of evidence is estimated by Eq. (5). 


� = < 
�(�)
=

�>0
 (5) 

 

where Π denotes the product of a sequence of 
variables and 
�(�) is the likelihood ratio from the 
i-th qualitative analysis (
�(�)(+) or 
�(�)(−)). 

When the pieces of evidence are not independent, 
Eq. (5) will underestimate or overestimate the joint 
probability. Quick reference 3 shows how non-
independent probabilities can be combined. 

Likelihood ratios can be challenging to interpret, 
especially for non-specialists. For forensic 
applications, the scale in Table 5 has been 
recommended [44] to give a verbal indication of 
the strength of evidence. According to this table, 
collected evidence is considered “extremely 
strong” only if the LR is larger than 106. In 
principle, this kind of approach can be adapted for 
other circumstances if a general indication of the 
strength of evidence is required. For instance, for 
identifying the polymer type of microplastics 
collected from sediments in environmental 

Quick reference 3 – Probability for non-independent pieces of evidence 

The probability of two independent events A and B, P(A∩B), occurring is estimated by Eq. (Q3.1).  
�(A ∩ B) = �(A)�(B) (Q3.1) 

where �(A) and �(B) are the probabilities of events A and B occurring, for instance, producing a positive 
result from analysing a positive case (i.e., a TP). 
However, if �(A) and �(B) are associated, probability of the coincidence of both events is determined by 
Eq. (Q3.2), which involves the conditional probability of event B occurring given that event A has occurred: 

�(A ∩ B) = �(A)�(B|A) (Q3.2a) 
Or, equivalently:  

�(A ∩ B) = �(B)�(A|B) (Q3.2b) 
For direct or inverse correlations, associated with CDE > 0 or CDE < 0, respectively, �(A ∩ B) will be 
respectively greater than or smaller than for cases where A and B are independent. 
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monitoring, criteria presented in Table 5 are too 
strict. For these analyses, results associated with a 

�(+) greater than 19 should be adequate (i.e., 
with a TP ≥ 95 % and FP ≤ 5 %) since 
contamination is determined after identifying 
many particles from several samples [45]. 

Although the determination of a binary property 
can only produce one of two results, if the most 
likely result (e.g., yes or no) is associated with a 
low LR, the decision can be made to report a result 
as inconclusive instead of reporting the verbal 
equivalent of Table 5. For instance, the decision 
can be made to report a positive or negative result 
if the respective LR is larger than (for example) 105, 
with lower LR reported as inconclusive. This “grey 
zone” for the LR value can be set below 105, 19, or 
any other values depending on the purpose of the 
analysis. The reporting of a result as inconclusive 
is useful if both false positive and false negative 
results have a relevant impact. When testing for 
doping substances in an athlete's urine, false 
positives are much more serious than false negative 
results suggesting that if no evidence of doping is 
observed, the result can be reported as negative 
(i.e., no evidence of doping) [9, 46]. However, both 
false positive and false negative results can be a 
problem for maternity or paternity identification, 
suggesting that a positive match with a low LR 
should not be reported as a conclusive “no-match” 
[47]. 

4.3 Posterior probability 

If there is reliable information about the prevalence 
of a particular characteristic (e.g., a population 
with a well documented prevalence of a particular 
disease), the LR(+) associated with a test result can 
be converted into the probability PP that the tested 
item is positive, given the positive test result. This 
is known as a posterior probability, and is 
estimated using Bayes' theorem (Annex A). One 
form of this, using the likelihood ratio, is: 

�� =
�(+)
�(−) 
�(+)

�(+)
�(−) 
�(+) + 1

 (6) 

Here, �(+) and �(−) are prior probabilities, i.e., 
information available before the test, and PP and 
PN are posterior probabilities.  

Taking the previous example of the analysis of a 
contaminant in a food product by GC-MS, where a 

positive result is associated with a 
�(+) of 
4.9×104, assuming �(+) = �(−) = 0.5, the PP 
becomes 99.998 % (PP = 4.9×104/(4.9×104+1)). 

If a negative result is reported, the posterior 
probability of the sample being genuinely negative, 
PN, is estimated by: 

�& =
�(−)
�(+) 
�(−)

�(−)
�(+) 
�(−) + 1

 (7) 

This equation is similar to Eq. (6). The �(+) and 
�(−) express the prevalence of positive or 
negative cases. 

Broadly, since the posterior probability relates to a 
reported classification, the posterior probability 
can be thought of as a measure of the probability 
that the reported value is correct. 

Posterior probabilities can be difficult to apply in 
practice. Sometimes, sufficiently relevant and 
reliable prior probabilities are not available. 
Although some authors have suggested that this 
concern can be overcome by assuming positive and 
negative results are equally probable, so that 
�(+)/�(−) = 1, this is not always sensible. 
Sometimes, particularly in forensic work, it may be 
inappropriate to infer prior probabilities for a 
particular case from knowledge of unrelated cases. 
In such cases, a likelihood ratio (section 4.2) can 
provides a useful summary of the confidence 
provided by a test result, without the need to 
determine prior probabilities. 

In some fields, such as medical sciences, the 
consideration of the prevalence of a condition or 
characteristic in decisions on qualitative analytical 
results can be crucial for diagnosis. The diagnosis 
of a disease or clinical situation based on clinical 
analytical results will also rely on additional 
information such as mucosal colour, location and 
intensity of pains, age and gender, risk behaviour, 
etc. The way this information contributes to the 
final decision on the observed result can be 
illustrated by calculating a PP or PN, although 
clinicians do not routinely perform these 
calculations; rather, they are expected to be aware 
of the general importance of prevalence when 
making a diagnosis based on a test result.  

More details about these metrics are presented in 
the bibliography [4, 8, 9]. 
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4.4 Reliability of metrics 

The reliability of the calculated LR, PP or PN 
depends on the reliability of the considered result 
rate and, for posterior probabilities, on the 
reliability of any prior probability used. Table 4 
presents the number of tests required for reliable 
detection of one or more false responses at 
different probabilities of false response. Reliable 
quantitation of such a rate generally requires many 
more (see section 3.3.3). The number of studied 
cases may need to be further increased to cover the 
complete scope of the test method; for example, in 
testing food, it may be necessary to examine 
multiple different food matrices. The modelling of 
an instrumental signal considered in qualitative 
analysis can make the quantification of low false 
result rates feasible but depends on the adequacy of 
the input data and the modelling algorithm. 

For the determination of PP or PN from very 
discrepant �(+) and �(−), Table 4 can be used to 
define the number of cases (from the target 
population) that should be studied. 

The input data quality for estimating these metrics 
is even more critical when various pieces of 
evidence are combined, and metrics quantifying 
the strength of the combined information 
calculated. 

Therefore, the presented metrics should be used 
with caution, keeping in mind relevant details of 
the input data, how the reported result is used, and 
the respective consequences. Over-interpretation 
of qualitative analysis performance data can be as 
harmful as ignoring the limitations of a particular 
qualitative analysis. 

4.5 Uncertainty of proportions 

The statistical quality of the estimated result rate 
that depends on the number of tests used for their 
determination can be expressed as a confidence 
interval, CI, for the calculated rate. This confidence 
interval is also known as “condition uncertainty” 
(4.4.6 of [18]), being typically calculated for the 
95 % confidence level (95 % CI). 

For instance, a wide 95 % CI for sensitivity SS 
indicates that the “true” value of the SS could be 
very different from the estimate. The same logic 
can be applied to other result rates, such as SP. 
Since the result rates are not estimated from any 
prior knowledge of the population of cases, these 
intervals only characterise the estimated analytical 
performance quality. 

The interpretation of 95 % CI is, to some degree, 
similar to what happens with the expanded 
measurement uncertainty [1]. For a 95 % CI, there 
is a 5 % probability that the “true” value of the 
result rate is outside the CI limits. Similarly, the 
95 % CI for an experimentally determined rate 
provides the statistical uncertainty for the 
calculated rate.  

For example, if the ability of a qualitative analysis 
method to correctly identify positive cases is tested 
from the analysis of 400 of such cases and all 400 
results are positive, the estimated SS of 100 % is 
associated with a 95 % CI bounded between 99 % 
and 100 %; i.e., the true value of the SS varies 
between 99 % and 100 % with 95 % confidence. If 
the method is tested with only 5 positive cases, the 
95 % CI of the SS will be limited by 57 % and 
100 %. The 95 % CI allows the quality of the 
analytical method performance parameters to be 
expressed, which is required for their sound 
interpretation. In the examples above, both SS of 
100 % are reported, but the SS estimate is much 
more reliable in the first case. The calculation of 
95 % CI for SS and SP is a standard practice in the 
clinical laboratory (10.1.3 of [27]). 

Several models have been published to compute 
the CI [48]  ̶̶̶ [49, 50, 51, 52, 53, 54]. The Wilson 
score interval [54] was used for simplicity and 
applicability to small counts. Equations 8 and 9 can 
be used to calculate the low, 

HH.
�, and high, 
	
HH.
�, limits of 95 % CI for the SS or TP. 



HH.
� =  �0 − �;
�I

 100 (8) 

	
HH.
� =  �0 + �;
�I

 100 (9) 

where: 

�0  =  2 �� +  1.96; 
A; =  1.96 (1.96; + 4 �� ∙ "# / (�� +  "#))0 ;⁄   
�I =  2  (�� +  "# +  1.96;). 

Equations 10 and 11 are used to calculate the low, 


HN.
�, and high, 	
HN.
�, limits of 95 % CI for 
the SP or TN. 



HN.
�  =  O0 −  O;
OI

  100 (10) 

	
HN.
�  =  O0 +  O;
OI

  100 
(11) 

where: 

O0  =  2 �# +  1.96;  
O; =  1.96 (1.96; + 4 "� ∙ �# / ("� +  �#))0 ;⁄  
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OI =  2  ("� +  �# +  1.96;). 

A target or minimum value of 

HH.
� or  

HN.
� 

(i.e., 

HH.
�
��  or 

HN.
�

�� ) should be defined 
according to the purpose of the analysis. The target 
is particularly critical when the impact of false 
results is critical. For example, for blood 
components used in transfusions, the screening for 
infectious diseases should be performed with tests 
associated with a 

HH.
� close to 100 % which can 

only be confirmed if many positive cases are tested 
during validation. 

When the result rate is compared to a target 
minimum value or when either an increase or 
decrease in the parameter is being investigated, a 
one-tailed assessment should be performed. For a 
95 % confidence test, the factor 1.96 should be 
changed to 1.64. 
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5 Reporting the qualitative analytical result 

 

Currently, accredited laboratories are not required 
to report qualitative analysis results with 
uncertainty. The examples in this section are 
accordingly intended to suggest possible reporting 
approaches when a laboratory chooses to do so to 
assist a customer. 

A positive result can be reported with the TP and 
FP, 
�(+) or PP and a negative result with the TN 
and FN, 
�(−) or PN. The other metrics presented 
in Table 2 can also be used to report confidence in 
the result.  

These metrics typically provide information about 
an individual test result. However, for cases, where 
the value of a metric is constant for the analytical 
scope, such parameters can be interpreted as 
characterising the analytical method. 

The following four examples illustrate how 
qualitative results can be reported with the 
respective performance or uncertainty. 

 

 Example 1 (the italic text mentions the qualitative analysis uncertainty): 

 

Mrs A. B. is infected with SARS-CoV-2 virus. 

                         (test with a sensitivity of 90 % and a specificity of 99 %) 

 

 

 Example 2 (the italic text mentions the qualitative analysis uncertainty): 

 

The urine of Mr C. D. contains canrenone residues 

                         (identification with a likelihood ratio of 4.9×104) 

 

 

 Example 3 (the italic text mentions the qualitative analysis uncertainty): 

 

Cocaine is present in sample 123 

                         (identification with a likelihood ratio of 4.9×104 and considered 

                          ‘very strong’ evidence of analyte presence) 

 

 

 Example 4 (the italic text mentions the qualitative analysis uncertainty): 

 

Gasoline residues were identified in the fire debris with sample code 456 

                         (identification with a posterior probability of 99.998 %, estimated 

                          from signal model simulation and assuming analyte presence or absence 

                          are equally probable) 
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6 Conclusions and recommendation

It is important for laboratories to check at least the 
most critical false response rate. For some metrics, 
both the false positive and false negative rates must 
be established.  

It is realistic to expect that most laboratories have 
the relevant parameters of their qualitative analysis 
procedures (i.e., conditions of analysis) under 
adequate control. Evidence of that will typically 
involve: 

• clear evidence of the adequate metrological 
traceability of values of parameters subject 
to control due to their relevance for the test; 

• evidence that uncertainties of these 
parameters are sufficiently small for the 
purpose. 

It is reasonable to expect laboratories to be 
following published codes of best practice in 
qualitative analysis where they are available, 
including the use of appropriate reference data and 
materials. 

Quantitative (i.e., numerical) reports of 
uncertainties in qualitative test results should be 
presented in a way that avoids misinterpretation. 

Whenever it is concluded that the obtained 
analytical result is associated with too low and too 
high true or false result rates, respectively, it is 
entirely reasonable to report the test result as 
‘inconclusive’ in the sense of insufficiently certain. 
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7 Examples 

Examples are described after their scope is listed. 

7.1 E1: Identification of compounds by low-resolution mass spectrometry using 
database searching or the presence of characteristic ions 

7.1.1 Introduction 

This example is divided into Case A or B, where different procedures are used to identify compounds in 
complex matrices by low-resolution mass spectrometry. The parallel presentation of the two cases highlights 
the alternative nature of the identification options. 

Note in practice identification usually used multiple criteria such as a combination of mass spectra match and 
chromatographic retention time. This example focuses only on the mass spectrometry component. Example 
E5 gives an example of multiple criteria. 

Scope: 

Type of qualitative analysis: Analysis based on quantitative criteria 
Item/matrix: A) Meat products and B) forensic or environmental samples 
Parameter/analyte: A) Diethylstilboestrol, DES (forbidden growth hormone for beef and poultry meat) or 
B) Heroin, DES and dichlorodiphenyltrichloroethane (DDT) 
Type of classification criterion: 1) Identification based on tolerances for the relative abundances (RA) of 
specific ions of the mass spectrum; 2) Identification based on the presence of specific ions of the mass 
spectrum regardless of the RA values. 
Technique/instrumentation: Gas-chromatography hyphenated with low-resolution mass spectrometry 
using electron impact ionisation (GC-MS) 
Type of results reporting: Likelihood ratio 

 

This example describes the evaluation of the uncertainty for the identification of compounds by GC-MS using 
different identification criteria (sections 7.1.1 and 7.1.2). The examples present results for the identification of 
three compounds (i.e., DES, Heroin and DDT) in two types of samples (meat products and forensic or 
environmental samples). 

Mass spectrometry, particularly in combination with a chromatographic separation stage, is a powerful tool 
that can help identify unknown compounds. For most purposes, low-resolution mass spectrometry using 
electron impact (EI) ionisation is the method of choice when identification, instead of quantification, is 
required. A mass spectrum can contain many ions, not all of which are useful for diagnostic purposes. This 
raises the question of whether there is a minimum number of ions that would be sufficient to ensure an 
unequivocal identification. 

NOTE: In some analytical fields, the minimum number of ions required is defined for identifying compounds 
[20]  ̶̶ ̶ [21][22][23]. 

7.1.2 Identification based on the relative abundance of characteristic ions 

Sphon [55] investigated the minimum number of ions that need to be monitored to produce an unambiguous 
identification of diethylstilboestrol4 (DES) in meat products. Data related to a subsequent study [56], based on 
a commercial mass spectral library containing about 270 000 entries, is presented in Table E1.1. 

Table E1.1 shows the number of spectra in the library used that match specified criteria for the relative 
abundance, RA, of one or more ions. The RA is estimated by dividing the abundance of the studied ion by the 
abundance of the most abundant ion (i.e., the base peak). This normalisation aims at producing an identification 
parameter less dependent on analyte level (e.g., analyte concentration). It can be observed in Table E1.1 that 
when more ions and narrower abundance ranges are considered, the number of matches occurring in the 

 
4  DES was used as growth hormone for cattle and poultry, and subsequently banned after its carcinogenic properties were proven. 
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database is reduced dramatically. The identification criteria set #6 isolates the mass spectrum of DES, leading 
to a single match. 

For comparison with an alternative library, Table E1.2 presents the number of matches from a publicly 
available reference library, then containing 62 235 spectra, considering tolerances for the relative abundance 
(RA) of one or more ions [57]. As the tolerances associated with the RA of more ions become narrower, the 
mass spectra of fewer compounds are isolated. Table E1.2 presents the number of spectra matching three 
different target compounds, namely DES, heroin and DDT. Heroin and DDT are relevant for the analysis of 
some forensic and environmental samples, respectively. 

The comparison of the isolation of the mass spectrum of DES in both libraries, described in Tables E1.1 and 
E1.2, allows for the conclusion that, as expected, the number of matches depends on the number of spectra in 
the library (see identification criteria #1 and #2 in Tables E1.1 and E1.2). If the number of matches is divided 
by the total number of entries, the differences observed in Tables E1.1, and E1.2 reduces.  

Table E1.3 summarises the information collected in Tables E1.1 and E1.2 from the most selective 
identifications. Table E1.3 converts the collected information into TP and FP, further combined into a 
�(+) 
that estimates the uncertainty of a positive result (i.e., reporting analyte presence). 

The estimated TP (i.e., approximately 100 %) assumes that the defined tolerances for the RA of ions take their 
variability into account. Ideally, the tolerances should be set from signal variability models built from replicate 
spectra of sample solutions with relevant analyte concentrations [8, 9] (Example E5). 

The FP presented in Table E1.3 assumes possible interferents are all compounds whose mass spectrum is 
available in the used library. Many compounds present in the sample solutions will not be detectable by GC-
MS or eliminated in sample preparation. On the other hand, many compounds whose spectrum is in the library 
are not likely to be in analysed samples due to chemical incompatibility or independence of sources or origins. 
A worst-case FP equivalent to one per total number of spectra, N, minus 1 (%� = 1/(& − 1)) is estimated 
since it is known that FP will not be zero. The described limitations of how FP was evaluated should be 
considered when using this value. The FP can be alternatively estimated from models of signal noise, as 
discussed in Example E5 [8, 9]. 

From the data in Table E1.3, it can be seen that by using the same library, all the analytes with a single match 
have the same TP, FP and 
�(+), depending only on the number of library entries. According to the criteria 
defined by the European Network of Forensic Science Institutes (Table 5), the identification of an analyte by 

Table E1.1. Number of spectra of a Wiley library, with 270 000 entries, 
matching specific criteria for the relative abundances of some ions. 

Identification criterion   
# Ion (m/z) RA (%) acceptance 

interval 
 Matches 

1 268 1 – 100  9 995 
2 268 1 – 100  5 536 
 239 1 – 100   
3 268 90 – 100  46 
 239 10 – 90   
4 268 90 – 100  9 
 239 50 – 70   
5 268 90 – 100  15 
 239 50 – 90   
 145 5 – 90   
6 268 90 – 100  1 (DES)a 
 239 50 – 70   
 145 45 – 65   

RA: Relative abundance (percentage of the most abundant ion, the base 
peak) 
a The single match corresponds to the mass spectrum of DES 
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mass spectrometry, using a described identification procedure, produces ‘Very strong’ evidence of analyte 
presence (
�(+) between 104 and 106). Suppose the identification is also supported by the analyte's retention 
time in the chromatographic system (i.e., in the GC) and the retention time window is adequate. In that case, 
the 
�(+) of identification can increase (Example E5). 

7.1.3 Identification based on the presence of characteristic ions – estimated chance match probabilities 

Suppose, instead of identifying the analyte by using tolerances for the RA of specific ions, the identification is 
based on the simple presence of three selective ions. In that case, the following mathematics can be used for a 
rough evaluation of the identification uncertainty. Suppose a low-resolution mass spectrometer is used that can 
only distinguish m/z units (i.e., mass-to-charge ratios units) and ions must have m/z values between 180 m/z 
and 480 m/z. In that case, approximately 300 possible m/z values can be observed in a spectrum. Therefore, 
since the number of combinations of 300 objects taken three at a time is 300! R3! · (300 − 3)!T⁄  = 4 455 100, 
for three peaks, the probability of three random peaks matching the three chosen ions by chance would, 
assuming that all m/z ratios are equally likely, be 1/4.6106, or approximately 2.210-7. This, however, does 
not allow for the fact that most mass spectra typically have many more than three ions in the region of interest; 

Table E1.2. The number of spectra in a publicly available library, with 
62 235 entries, matching specific criteria for the relative abundances of 
some ions. 

 Identification criterion   
# Ion (m/z) RA (%) acceptance 

interval 
 Matches 

1 268 1 – 100  3597 
2 268 1 – 100  1597 
 239 1 – 100   
3 268 55 – 95  83 
4 268 55 – 95  4 
 239 30 – 70   
5 268 55 – 95  1 (DES) 
 239 30 – 70   
 145 60 – 100   
6 369 1 – 100  1672 
7 369 1 – 100  526 
 327 1 – 100   
8 369 45 – 85  43 
9 369 45 – 85  1 (Heroin) 
 327 60 – 100   

10 352 1 – 100  1242 
11 352 1 – 100  234 
 235 1 – 100   

12 352 1 – 40  1140 
13 352 1 – 40  1 (DDT) 
 235 60 – 100   

14 352 1 – 40  7 
 235 1 – 100   
 237 48 – 88   

15 352 1 – 40  1 (DDT) 
 235 60 – 100   
 237 48 – 88   

RA: Relative Abundance (percentage of the most abundant ion, the 
base peak) 
a The single match corresponds to the mass spectrum of DES, heroin or 
DDT 
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this increases the probability that a mass spectrum containing n ions might match the chosen three by a factor 
of #!/R3! ∙ (# − 3)!T. Taking ten as a typical number of peaks, the chance match probability increases by 
10!/3! ∙ 7! = 120. The estimated chance match probability is accordingly 1202.210-7 or approximately 
2.610-5. This provides an approximate false positive rate, FP. 

Assuming contaminant levels are high enough to provide reliable mass spectra, it can be considered that TP is 
approximately 1, or 100 %.  

The estimated TP and FP above can be combined to give an LR(+) of 1/2.6 × 10W� = 3.8 × 10� that indicates 
an upper bound for the likelihood ratio of for identifications based on the described procedure. 

NOTE. This estimate assumes all ion combinations are equally likely and possible; and that their appearances are 
independent; this is known to be a rough approximation (see Example 7.2). The effective chance match probability is 
therefore likely to be very much higher than the figure calculated, leading to a lower likelihood ratio.  

7.1.4 Final remarks 

The methodologies for estimating the LR(+) of identifications by GC-MS presented in this example tend to be 
over optimistic about the validity of qualitative analytical results (see Example 7.2 for a comparison with actual 
match probabilities). Therefore, these calculations should only be used as an initial assessment of identification 
validity. Example E5 discusses alternative and more realistic determinations of the uncertainty of 
identifications performed by GC-MS/MS. 

Although the methodologies for estimating chance match probabilities and likelihood ratios presented here 
may be optimistic, it is still possible to conclude that, for example, the identification of heroin in samples from 
a crime scene based solely on the presence of ions with m/z of 369 and 327 would be inadequate since it is 
associated with an LR(+) of 118 (118 = TP/{FP} = 100/{[526/(62235-1)]·100}) (Methodology of section 
7.1.1: case 7 of Table E1.2) or 4.5×104 (4.5×104 = 100/{[1/(44850-1)]·100}; where 
44850 = 300! R2! · (300 − 2)!T⁄ ) (Methodology of section 7.1.2) depending on the approach used for 
evaluating confidence in the results. In practice, this would indicate that additional criteria, or further 
confirmatory tests, would be required to provide adequate confidence. 

Similarly, although Sphon [55] and others suggested that veterinary drug residues in cattle can be identified 
by taking three mass spectrum ions, for the official monitoring of unauthorised substances, the European Union 
(EU) requires the collection of additional evidence of the presence of these compounds [20]. For instance, if 
it is only possible to monitor two characteristic ions by GC-MS at appropriate levels of the analyte, two 
independent chromatographic runs must be considered based on electron impact or chemical ionisation to 
confirm the presence of the analyte [20].  

  

Table E1.3. Uncertainty of identifying several analytes in different matrices, by GC-MS, estimated 
from the number of matches of spectra from the library used, taking tolerances for the relative 
abundances of two or three ions into account. 

Analyte Analysed item 
Number of spectra 
of the library, N 

Number of 
matches a 

TP 

(%) b 
FP 

(%) c 
LR(+) 

(TP/FP) 
DES  Meat products 270 000 1 in N ~100 3.7×10-4 2.7×105 
DES F&E 62 235 1 in N ~100 1.6×10-3 6.2×104 
Heroin F&E 62 235 1 in N ~100 1.6×10-3 6.2×104 
DDT F&E 62 235 1 in N ~100 1.6×10-3 6.2×104 
DES: diethylstilboestrol; F&E: Forensic and environmental samples; TP: True positive rate; 
FP: False positive rate; LR(+): Likelihood ratio (TP/FP) (see Table 2). 
a Number of matches considering the defined tolerances for the RA of specific ions. 
b Optimistic estimation of TP (approx. 100 %). 
c Estimated as 1/(N-1) (worst-case scenario from collected information). 
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7.2 E2: Identification of purified compounds by infrared spectrometry 

 

Scope: 

Type of qualitative analysis: Analysis based on quantitative criteria 

Item/matrix: Purified chemical compound 

Parameter/analyte: A compound from the available infrared spectra database 

Type of classification criterion: Match of the wavenumber of three or six bands of the infrared spectra in 
the interval [500, 1800] cm-1 

Technique/instrumentation: Infrared spectrometry 

Type of results reporting: Likelihood ratio 
 

Several authors have investigated the use of database statistics in evaluating criteria for qualitative analysis. 
De Ruig et al.  [58] proposed criteria to be met to identify veterinary drug residues in meat products (see 
section 7.1.2). The authors give indicative values of chance match probabilities based on a simple binomial 
model. Ellison et al. have shown that a hypergeometric distribution was a more appropriate model for chance 
matching in spectra because it allows for a small number of matching peaks between two spectra, both of 
which contain a larger number of peaks [5]. The latter authors focused on chance matches when an infrared 
spectrum is compared to a spectral library. 

Ellison et al. [5] studied the reliability of the identification of purified compounds by comparing the obtained 
infrared spectrum with spectra from a library. The library used by Ellison et al. was the Sadtler library 
containing spectra from 59 626 different materials. A random subset of thirty compounds were selected from 
this library and the number of bands, m, in the interval [500, 1800] cm-1 noted for each compound. It was 
determined that the average number of bands per spectrum in the interval [500, 1800] cm-1, M, was 16. The 
spectral resolution available was 4 cm-1, and this implied the existence of 1300/4 = 325, N, discrete peak 
positions in the [500, 1800] cm-1 interval. For each different spectrum in the chosen subset, the entire database 
was searched twice  first for a minimum of n = 3 matching peaks and the second time for a minimum of n = 6 
matching peaks. 

For n  3, the number of observed matches was about twice the number predicted by the hypergeometric 
distribution. For n  6, although the number of matches was considerably lower, as would be expected, the 

Table E2.1. Chance matches against six bands in an infrared database. 
 

Compound 
No. of bands 
m in range 

Chance match 
probability a 

Predicted 
matches b 

Observed 
matches 

 
LR(+) 

1-Chloro-3-(1-napthyloxy)-2-
propanol 

23 3.19  10-4 19 192 311 

-Cyano cinnamic acid, methyl ester 17 5.03  10-5 3 29 2056 
Phenyl -triazolo-[1,5-]-pyridin-3-
yl ketone 

24 4.19  10-4 25 190 314 

Benzo--thiophene-6-acrylic acid 20 1.34  10-4 8 52 1147 
3-((Dipropylamino)methyl)1-5-
nitroindole 

17 5.03  10-5 3 29 2056 

2-Mesityl-5-phenyl-oxazole 22 2.52  10-4 15 99 602 
p-Hydroxy-benzoic acid 18 6.71  10-5 4 44 1355 
Caproic acid, isobutyl ester 8 1.36  10-7 0 1 59626 
1-Bromoadamantane 10 9.64  10-7 0 1 59626 
Phenyl propyl ether 17 5.03  10-5 3 47 1269 
a The chance match probability is the probability that n = 6 peaks match by chance across two spectra of m 

bands, assuming random incidence of bands across the spectrum. The probability was calculated using the 
hypergeometric distribution (ref [5]). 
b The predicted number of matches is the chance match probability multiplied by the number of spectra in 
the database 
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observed matches exceeded the predicted matches by a factor of ten. Part of the data for six peaks matched is 
presented in Table E2.1. 

The calculated chance match probabilities for six-peak matches were in the interval [10-7, 10-5]. The chance 
match probability for a compound, when multiplied by the number of entries in the database, estimates the 
number of compounds fitting the search criteria. In the case of two of the compounds in Table E2.1, viz. caproic 
acid isobutyl ester and 1-bromoadamantane, the search criteria produce a single match and hence would appear 
to be adequate if these compounds are suspected. Many more matches are produced for the remaining 
compounds, which indicates a requirement for more stringent criteria. 

Assuming that '� is approximately 100 % (because IR spectra of pure compounds reliably match their own 
reference spectra) and taking %� as the ratio between the number of observed matches and the total number of 
spectra of the library (i.e., 59 626), it is possible to estimate the LR(+) of the identification. The last column of 
Table E2.1 presents the estimated LR(+) (calculated as '�/%� , with '� = 1.0). The reported LR(+) are much 
lower than the 106 minimum value considered to classify evidence as ‘Extremely strong’ (Table 5), suggesting 
that a simple six-peak match on wavelength alone might not provide sufficient confidence without additional 
criteria. Additional criteria (such as additional peak intensity matching, absence of peaks not present in the 
target compound, matching chromatographic retention time, or a requirement for close visual match to 
complete spectra) might be needed to provide sufficiently unambiguous identification.  

This example stresses that reference databases, of which spectral libraries are one type, can only obtain 
indicative information on false response rates. The response rates are only strictly reliable for populations 
similar to the population of samples expected. It is also the analyst's responsibility to decide which, if any, of 
a set of matches corresponds to an unknown. 
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7.3 E3: Identification of drugs of abuse in urine by the enzyme multiplied 
immunoassay technique (EMIT) and an alternative technique 

 

Scope: 

Type of qualitative analysis: Analysis based on quantitative criteria (studied using qualitative information) 

Item/matrix: Urine 

Parameter/analyte: Cocaine, methadone or opiates 

Type of classification criterion: Not specified 

Technique/instrumentation: Enzyme multiplied immunoassay technique, EMIT, and an alternative, 
proprietary, technique. 

Type of results reporting: Likelihood ratio and the probability of the positive result being correct 
 

Although EMIT determinations involve the processing of an instrumental signal, this example assesses the 
performance of this qualitative analysis from experimentally determined rates of false positive and false 
negative results. Therefore, this example illustrates the determination of the quality of a qualitative analysis 
based on qualitative information. 

The use of sample result databases for obtaining the relevant probabilities for a Bayesian assessment of 
qualitative analysis performance has been reported in the literature. To test for drugs of abuse in urine, 
Ferrara et al. [33] assembled a database containing information on drug types, analytical techniques, false 
response rates for the techniques, and prevalence of the drugs. For the cited authors’ laboratory, Table E3.1 
summarises part of this data for EMIT. The table also presents the estimated posterior probability of the test 
sample being genuinely positive, PP, as described in Eq. (6). For the calculation, the prevalence of negative 
results is taken as (1 – P(+)), the LR(+) = TP/FP and the TP = 1 – FN. 

Table E3.1. Probabilities for EMIT detection of drugs of abuse in urine [33]. 
 Values of performance characteristics for different drugs or 

drug classes 
Probability Opiates Methadone Cocaine 

P(+) 0.44 0.26 0.20 
FP 0.028 0.004 0.009 
FN 0.069 0.018 0.056 
PP 0.963 0.988 0.963 

P(+) - Prevalence of positive results. 

For instance, for identifying methadone, PP is evaluated by Eq. (E3.1) as 0.988 (PP is the posterior probability 
determined from the Bayes’ theorem). In other words, the analyst could be over 98 % certain that a positive 
response for methadone genuinely indicates this drug's presence. However, note that this depends in part on 
the high observed prevalence in the particular population sampled. PP might be very much lower in the general 
population, i.e., a population where drug use is not so frequent. 

�� =
�(+)
�(−) 
�(+)

�(+)
�(−) 
�(+) + 1

= Y 0.26
1 − 0.26Z Y1 − 0.018

0.004 Z
Y 0.26

1 − 0.26Z Y1 − 0.018
0.004 Z + 1

= 0.988 

(E3.1) 

Table E3.2 shows similar data for a different, non-immunochemical technique. Note that the FP for cocaine 
by this technique is reported as zero. However, it is debatable whether the false response rates for such 
screening tests can indeed be zero. In this case, no false positives were found, but had more samples been 
analysed, one or more false positives could have appeared. An estimated false response rate has accordingly 
been used in calculating the posterior probability. 
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Table E3.2. Probabilities for the detection of drugs of abuse in urine by the proprietary technique [33]. 

 Values of performance characteristics for different drugs or 
drug classes 

Probability Opiates Methadone Cocaine 
P(+) 0.44 0.26 0.20 
FP 0.038 0.012 0.000 
FN 0.276 0.179 0.247 
PP 0.937 0.960 0.995 § 

§ PP calculated using an estimated worst-case FP value equal to 0.001 (one in 
1000 tests). 

Considering methadone again, the PP is 0.960. This is a reasonably high probability, though slightly less 
convincing than that produced by the EMIT test.  

To illustrate the effect of combining data, suppose that both screening tests were performed. If a positive 
response is obtained in each case, then the combined PP becomes 0.9998 (see Eq. (E3.2) based on the 
combination of Eq. (5) and (6). 

�� =
�(+)
�(−) 
�(+)

�(+)
�(−) 
�(+) + 1

= Y 0.26
1 − 0.26Z Y1 − 0.018

0.004 Z Y1 − 0.179
0.012 Z

Y 0.26
1 − 0.26Z Y1 − 0.018

0.004 Z Y1 − 0.179
0.012 Z + 1

= 0.9998 (E3.2) 

In this example, reliable prevalence values (i.e., prior probabilities) are available. Had these not been at hand, 
or if the analyst had preferred not to use them, likelihood ratios could have been used instead; the 
corresponding values being 246 (EMIT) and ~68 (proprietary), giving a combined likelihood ratio of 
approximately 17 000 (Eq. (E3.3)) that, according to Table 5, corresponds to a ‘Very strong’ evidence of the 
presence of methadone. 


�(+) = 41 − 0.018
0.004 5 41 − 0.179

0.012 5 = 1.7 × 10[ (E3.3) 

In all cases, GC-MS was used as a reference technique to establish false result rates. The particular database 
referred to here is quite comprehensive for the studied analytes and has been designed to provide a 
representative collection, permitting a Bayesian analysis of the data. There are inevitably some missing values 
but, as more data is added, these should be reduced in number and the accuracy of predictions further improved. 

A further advantage of a database set up to record representative data for several different techniques is the 
information it provides to enable one to optimise analytical performance. For example, selecting a screening 
method with a low false positive rate should minimise the costs of expensive confirmatory analyses. However, 
other factors also need to be considered, such as the limit of detection of the technique, its false negative rate, 
and the speed and cost of analysis. 
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7.4 E4: Identification of human SRY gene in biological material by qPCR 

 

Scope: 

Type of qualitative analysis: Analysis based on quantitative criteria (fluorescence exceeding threshold)  

Item/matrix: Biological material 

Parameter/analyte: SRY gene (sex-determining region Y) 

Type of classification criterion: Not specified 

Technique/instrumentation: Quantitative polymerase chain reaction (qPCR) 

Type of results reporting: True positive rate. 

 

Although the interpretation of qPCR involves the processing of an instrumental signal, in this example, 
performance is assessed from determining TP at different DNA concentrations. 

Figure E4.1 shows some experimental data from a study of human SRY gene detection, by quantitative PCR 
(qPCR), in biological material [37]. The data were generated from a 3-plate assay using a 5’-nuclease assay 
with a dual labelled fluorogenic ‘TaqMan’ probe directed towards the human genome's male-specific SRY 
region. A result was considered 'positive' if the observed fluorescence exceeded a predetermined threshold 
within 55 amplification cycles. Though different preparative methods were used as part of the validation study, 
statistical tests showed no significant differences, so the data were treated as a single data set. 

 

 

Figure E4.1. DNA detection data processed by logistic regression. The TP is plotted as a function of log10(C), 
where C is the copy number of the gene, in a study of DNA detection and classification capability. Points show 
the proportion of positive results from a total of 36 replicates at each copy number. The solid line shows the 
logistic regression fit with b0 = 0.85 and b1 = 3.75 (see Section 3.3.6). The dashed line shows TP = 0.95 and 
the corresponding log concentration of log10(C) = 0.56, for C = 3.6 copies. 

 

Notice that the point at log10(C) = 2 does not show 100 % TP, though points either side do, making it hard to 
accurately assess the classification capability. However, the regression curve allows a reasonably precise 
location of the effective limit of detection, as shown in the figure; using a continuous model has effectively 
smoothed the random count data. This is a considerable advantage; it allows for the analyst to study large 
numbers of concentrations with relatively few replicates per level, instead of requiring many replicates at few 
levels, and still obtain relatively reliable probability estimates. 
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This data set illustrates an important caveat in modelling. The concentration data is plotted and modelled in 
the log domain; a common practice in working with experimental DNA concentrations or microbial counts. 
For a dependent variable, transformation is often dictated by the error distribution. However, there is no 
compelling reason to choose log-transformation for the independent variable in this instance; the choice is 
essentially arbitrary. So, too, is the logistic model choice; other models may also fit the data reasonably well. 
Where different, but smooth, models fit the data similarly, interpolation is not strongly sensitive to the choice 
of model. However, extreme probabilities can be very sensitive indeed to the choice of model. It follows that 
even where a model provides a good description of the data and relatively reliable probabilities and limits of 
detection within that range, it is very unsafe to extrapolate probability estimates much beyond the range studied 
without substantial evidence of model validity. 
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7.5 E5: Identification of pesticide residues in foodstuffs by GC-MS/MS based on 
retention time and ion abundance ratio 

 

Scope: 

Type of qualitative analysis: Analysis based on quantitative criteria 

Item/matrix: Foodstuffs of vegetable origin 

Parameter/analyte: Chlorpyrifos-methyl and malathion 

Type of classification criterion: Intervals for retention time and abundance ratios of characteristic ions 

Technique/instrumentation: GC-MS/MS 

Type of results reporting: Likelihood ratio and the probability of the positive result being correct 
 

This example discusses the estimation of FP of highly selective determinations of pesticide residues in 
foodstuffs by GC-MS/MS through modelling the instrumental signal using the Monte Carlo Method. Monte 
Carlo Method simulations were performed in an MS-Excel spreadsheet. 

The identification of analytes is based on the retention time, ��, in the chromatographic system and on the 
abundance ratio, AR = A1/A2, of two characteristic ions of the analyte's mass spectrum. Although the �� is 
approximately normally distributed, the AR can deviate significantly from normality. The ratio of correlated 
variables is known not to be normally distributed, particularly if the variable with lower precision (i.e., larger 
dispersion of values) is in the denominator [8]. 

The development and validation of a procedure for the identification of trace levels of the analytes in the 
foodstuffs by GC-MS/MS starts with the definition of the qualitative analysis method, including the sample 
preparation and GC-MS/MS conditions. The specification of the GC-MS/MS conditions includes selecting 
characteristic ions of the analyte’s mass spectrum (chlorpyrifos-methyl ions: 208 m/z and 271 m/z; malathion 
ions: 99 m/z and 127 m/z). Afterwards, replicate injections of analyte stock solutions and foodstuff extracts are 
performed. The injections of analyte stock solutions are used to study the dispersion of �� and ions abundances, 
A1 and A2, and the correlation of ion abundances of each analyte. Performance data were collected at various 
analyte concentrations since the value and dispersion of A1 and A2 varies with the concentration. Table E5.1 
presents a summary of ��, A1 and A2 performance parameters. The replicate analysis of extracts without 
detectable analyte levels was used to define models of signal noise dispersion in the retention time window 
(Table E5.1). Signals of extracts of food products representative of the nutritional patterns of foodstuffs of 
vegetable origin with high water content were studied. 

From the data in Table E5.1, models of �� and AR variability were developed. �� models were built from 
confidence intervals based on Student’s t distribution (��̅� ± ts���; where ��̅� and s��� are the mean and standard 
deviation of the ��, and t the t-value of the t-distribution for the defined confidence level and degrees of 
freedom of ��̅� and s���). The AR models were built from Monte Carlo Method simulations. From the observed 
dispersion of the various A1 and A2 of the analyte, ratios of correlated A1 and A2 (i.e., AR) were simulated. From 
blank extracts, the signal noise and, subsequently, the AR in blanks were simulated. The signal noise was 
modelled as a normal distribution truncated at zero since chromatographic peaks do not have negative areas. 
Table E5.2 presents the estimated dispersion of �� and AR. This table also presents the MS-Excel formulas 
used in the simulation of A1 and A2. The confidence limits for the �� and �� were set for a confidence level of 
99.9 % or 98 %, respectively, that corresponds to the TP. 

The FP from identifications based on �� was set at 10 % based on the experience of the analyst. This FP 
represents the probability of a peak not confirmed to be from the analyte, being observed within the defined 
retention time window for the analyte. The FP from AR was estimated from Monte Carlo simulations of signal 
noise and from determining how many times the simulated noise produces AR within the acceptance interval 
for this parameter. Since the FP can be extremely large for low analyte levels, it was determined at different 
analyte mass fractions by defining a minimum abundance of each ion. Table E5.3 presents the estimated TP, 
FP, and their combination in 
�(+). In the last column of the table, the performance of identifications based 
on both the �� and AR is reported. Table E5.3 also presents the posterior probability PP that a test item is 
positive, assuming that positive or negative results are equally likely (i.e., �(+) = �(−) = 0.5). 
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Table E5.1. Performance parameters relevant for the identification of chlorpyrifos-methyl and malathion in 
extracts of vegetable origin by GC-MS/MS. All parameters were estimated with 11 degrees of freedom. 

Analyte: Chlorpyrifos-methyl 
   Abundance 
  Retention time, �� Ion: 208 m/z Ion: 271 m/z  

 
Extract 

w 

(mg kg-1) 
��̅� 

(min) 
���� 

(min) 
�̅ 

(a.u.) 
�� 

(a.u.) 
�̅ 

(a.u.) 
�� 

(a.u.) 
ρ 

E § 3.33 17.24 0.024 105668 13.3 138678 6.14 0.9956 
E § 0.33 17.24 0.024 10163 10.5 15025 8.10 0.6151 
E § 0.083 17.24 0.024 4366 21.4 5790 15.1 0.3965 
G < 0.04 - - 372 892 372 892 - 
O < 0.04 - - 372 892 372 892 - 
I < 0.04 - - 372 892 372 892 - 

Analyte: Malathion 
   Abundance 
  Retention time, �� Ion: 99 m/z Ion: 127 m/z  

 
Extract 

w 

(mg kg-1) 
��̅� 

(min) 
���� 

(min) 
�̅ 

(a.u.) 
�� 

(a.u.) 
�̅ 

(a.u.) 
�� 

(a.u.) 
ρ 

E § 3.33 19.45 0.070 226592 7.85 226765 10.3 0.9988 
E § 0.33 19.45 0.070 22354 17.4 22969 15.6 0.9672 
E § 0.083 19.45 0.070 5882 30.7 6345 28.0 0.7677 
G < 0.11 - - 372 892 372 892 - 
O < 0.11 - - 372 892 372 892 - 
I < 0.11 - - 372 892 372 892 - 
§ – The dispersion of ion abundances was estimated by combining signals from the analyte in a pure solvent 
with signals from vegetable extracts. Extract matrix: G – Ginger, O – Spring onion, I – Irish moss seaweed; 
E – unspecified matrix. 
w – mass fraction of the analyte (mg kg-1); ��̅� – mean retention time (min) (this parameter can vary with 
the day of the injection); ���� – standard deviation of the retention time estimated under repeatability 
conditions (min); �̅ – mean ion abundances (arbitrary units, a.u.); �� – standard deviation of the ion 
abundance; ρ – Spearman’s correlation coefficient. 

 

Table E5.2. Acceptance intervals for the retention time and ion abundance ratio. 
 
Analyte 

 
Extract 

Mass fraction 
interval, w (mg kg-1) 

Maximum ��� difference 
(min) (c.l. 99.9 %) § 

�� interval 
(c.l. 98 %) † 

Chlorpyrifos-
methyl 

E 0.04 – 3.33 0.18 0.439 – 1.18 

Malathion E 0.11 – 3.33 0.54 0.467 – 1.54 
E – unspecified matrix; c.l. – confidence level; 
§ –  Maximum difference between the retention time of the analyte in a standard solution and in the analysed 

sample (√2�����); 
† – MS-Excel formula used in the simulation: First ion: �0 = �̅0 + ��0 ∗ '_&`(�1, b0) and 
Second ion: �; = �̅; + ��; ∗ ('_&`(�1, b;) ∗ c + '_&`(�2, b;) ∗ (1 − c^2)^0.5), where b� are the 
degrees of freedom associated with �� and ���, and R1 and R2 two independent random value generators 
U(0,1) (Excel formula RAND()). 

 

According to Table E5.3, only when identifications are performed at or above the Limit of Quantification 
(0.14 mg kg-1 or 0.38 mg kg-1 for chlorpyrifos-methyl and malathion, respectively), identifications are 
supported by ‘very strong’ pieces of evidence (i.e., 105 < 
�(+) < 106). All performance characteristics 
presented in Table E5.3 (TP and FP, 
�(+) and PP) are valid alternatives for reporting performance or 
uncertainty of qualitative analysis at different analyte mass fractions. Reporting the 
�(+) has the advantage 
of combining TP and FP in a single metric, and of not requiring the assumption of a prevalence of the pesticide 
in analysed samples. 
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Table E5.3. Performance characteristics of the identification of chlorpyrifos-methyl and malathion by GC-
MS/MS. 

   Performance characteristics at different analyte levels, w 
Analyte  w (mg kg-1) �� AR �� & AR 

Chlorpyrifos-
methyl 

TP (%) ≥ 0.04 99.9 98 97.9 

FP (%) 

0.04 § 10 30.2 3.02 
0.08 10 0.2 0.02 

0.14 † 10 0.001 0.0001 
0.27 10 0.001 0.0001 


�(+) 

0.04 § 9.99 3.24 32.4 
0.08 9.99 490 4895 

0.14 † 9.99 98000 979020 
0.27 9.99 98000 929020 

PP (%) 

0.04 § 90.9 76.4 97.0 
0.08 90.9 97.8 99.98 

0.14 † 90.9 99.999 99.9999 
0.27 90.9 99.999 99.9999 

Malathion 

TP (%) ≥ 0.11 99.9 98 97.9 

FP (%) 

0.11 § 10 29.8 2.98 
0.23 10 0.001 0.0001 

0.38 † 10 0.001 0.0001 
0.77 10 0.001 0.0001 


�(+) 

0.11 § 9.99 3.29 32.9 
0.23 9.99 98000 979020 

0.38 † 9.99 98000 979020 
0.77 9.99 98000 979020 

PP (%) 

0.11 § 90.9 76.68 97.0 
0.23 90.9 99.999 99.9999 

0.38 † 90.9 99.999 99.9999 
0.77 90.9 99.999 99.9999 

§ – Limit of detection; † – Limit of quantification; �� – analyte retention time; AR – abundance ratio of two 
characteristic ions of the analyte's mass spectrum. 

 

This example illustrates how the Monte Carlo simulation of signals can overcome the difficulty of experimental 
determination for false positive rates of highly selective identifications. 
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7.6 E6: Identification of SARS-CoV-2 RNA by nucleic acid amplification testing 

Scope: 

Type of qualitative analysis: Analysis based on quantitative criteria 

Item/matrix: Nasal swabs, nasopharyngeal and oropharyngeal swabs 

Parameter/analyte: SARS-CoV-2 RNA 

Type of classification criterion: Cycle threshold, Ct, values equal or lower than the Ct cutoff are classified 
as positives; higher values are classified as negatives. 

Technique/instrumentation: Reverse transcription polymerase chain reaction (RT-PCR) 

Type of results reporting: True positive rate and true negative rate. 

 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the disease COVID-
19, the respiratory illness responsible for the COVID-19 pandemic. One of the screening tests for this virus's 
presence in nasal swabs involves a reverse-transcription polymerase chain reaction (RT-PCR), a type of 
nucleic acid amplification testing (NAAT). The “in-house” validation of this test involves determining the 
cycle threshold cut-off, LOD, (clinical) sensitivity (SS) and specificity (SP) (Table 2), with other performance 
parameters (not presented in this example). In clinical analysis, the SS and SP are known as clinical accuracy 
estimators. Clinical accuracy is limited by FN and FP and by epidemiological prevalence, types and subtypes 
of agents, mutations, and other biological factors. 

7.6.1 Cycle threshold 

The “number of cycles needed for an amplicon to become detectable above background” is defined as the 
cycle threshold (Ct) [59] – the number of cycles needed to amplify viral RNA to reach a detectable level. Some 
variables should be recognized to understand the application of the Ct cut-off. Rn (normalized reporter value) 
is the magnitude of the signal generated by the given set of PCR conditions. ΔRn (Figure E6.1) is the 
normalised reporter value minus the baseline response. The threshold is the signal level that reflects a 
statistically significant increase over the computed baseline signal (see Figure E6.1). This decision line is 
established to distinguish relevant amplification signals from the background. In the example, the software 
sets the threshold to 10 times the standard deviation of the baseline fluorescence value. The limit is defined in 
the region related to an exponential growth of the PCR product. Figure E6.1 illustrates the positive 
classification (less than, or equal to, the Ct cut-off of 32) of a human sample. Fluorescence results higher than 
32 are classified as negatives. Note that only sigmoidal amplification curves are indicative of true amplification 
(see Figure E6.1). 

 

 
Figure E6.1. Detection of SARS-CoV-2 RNA from a true positive sample. 
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7.6.2 LOD estimation 

Detection capability near to the Ct cut-off is evaluated using the LOD. The LOD is defined as the concentration 
multiple (for example, expressed in number of copies/mL) associated with a TP of 95 % (LOD95%). The 
LOD95% is estimated by modelling the variation of TP with concentration and estimating the concentration 
where TP is 95 % using probit regression [60] – [63]. In the example, the LOD95% estimated in a series of seven 
dilutions from a sample with a concentration of 500 copies/mL is 114 copies/mL. More detail about the 
presented procedure for the determination of the LOD95% is available in the bibliography (5.5 of [63]). 

7.6.3 Clinical accuracy 

The assessment of the clinical accuracy involves defining target or minimum values for the lower limits of the 

95 % CI of SS and SP, 

HH.
�
��  and 

HN.
�

�� , and checking if the estimated lower limits are equal or higher than 

the respective target value (i.e., if 

HH.
� ≥ 

HH.
�
��  and 

HN.
� ≥ 

HN.
�

�� ). For this test purpose,  


HH.
�

�� = 95 % and 

HN.
�
�� = 90 %, that is the lower limit of the sensitivity should be greater than 95 % and 

the lower limit of specificity should be greater than 90 %. 

For method validation, 200 nasal swabs, nasopharyngeal and oropharyngeal swab samples were analysed: 100 
from individuals known to be infected with SARS-CoV-2 and 100 from individuals confirmed not to be 
infected with this virus. Table E6.1 shows the contingency table obtained from the 200 tests. This table reveals 
that no false negatives and three false positives have been reported, so the clinical SS and SP are 100 % and 
97 %, respectively. The limits of the 95 % CI of SS and SP, calculated from Eq. (8) to (11), are [96.3, 100] and 
[91.6, 99.0], respectively (Table E6.2). Since 

HH.
� and 

HN.
� are higher than 95 % and 90 %, respectively, 
the analytical method is considered valid. SS is complemented by seroconversion sensitivity [64]. 

 

Table E6.1. Contingency table that summarises the performance of the method for detecting SARS-Cov-2 
RNA in nasal swabs, nasopharyngeal and oropharyngeal swab samples. 

  Case  

  Positive (pc) Negative (nc) Result totals 

Result 
Positive (p) tp = 100 fp = 3 p = 103 

Negative (n) fn = 0 tn = 97 n = 97 

 Case totals pc = 100 nc = 100  

 

Table E.6.2. Clinical accuracy of the method for detecting 
SARS-Cov-2 RNA in human serum or plasma 

Clinical sensitivity 

(( = 100 % 

HH.
� = 96.3 % 	
HH.
� = 100 % 

Clinical specificity 

(� = 97 % 

HN.
� = 91.6 % 	
HN.
� = 99.0 % 
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Annex A – Bayes’ theorem, odds, and the likelihood ratio 

A.1 Bayes’ theorem 

Bayes’ theorem describes how the probability of an event A (such as a test item being genuinely positive) 
changes with new information E, such as a positive test result. Bayes’ theorem is most commonly written for 
two events, � and g, as:  

�(�|g) = �(g|�)�(�)
�(g)  (A.1) 

Here, �(�) and �(g) are the probabilities of the events A and E occurring alone, �(�|g) is the probability of 
event � given that g has occurred and �(g|�) is the probability of event g given that � has occurred. In 
statistics, �(�|g) and �(g|�) are usually referred to as “conditional probabilities”; for example, �(g|�) can 
be referred to as the conditional probability of event g given �. 

In the context of qualitative analysis, taking the positive case as an example, �(�) can be understood as the 
probability that a randomly chosen test item is genuinely positive before any tests are performed. �(g|�) is 
the probability that a genuinely positive test item will generate a positive test result – the true positive rate TP 
in Table 2. �(g) is the probability of a positive test result irrespective of the state of the test item. Finally, 
�(�|g) is the probability that the test item is genuinely positive, after considering the information added by 
the positive test result. Since it is calculated after the evidence g becomes available, �(�|g) is usually called 
the “posterior probability” for �. An estimated posterior probability gives a direct indication of the confidence 
that can be placed in a classification. 

It is important to remember that (continuing with the positive case) �(g) includes both true positive results 
and false positive results, and also that �(g) applies to the complete population of test items. This means that 
�(g) is sensitive both to the true and false positive rates and to the proportions of genuinely positive and 
negative test items. Quantitatively, for two cases � and ¬� (denoting “Not-�”, a genuinely negative test item), 
�(g) can be written as a weighted sum: 

�(g) = �(�)�(g|�) + �(¬�)�(g|¬�) (A.2) 

Considering E as a positive test result, equation A.2 says that the combined probability of E is the true positive 
rate times the proportion of genuinely positive samples, plus the false positive rate times the proportion of 
genuinely negative samples. This is why a high false positive rate reduces confidence in positive test results. 
Referring to equation A.1, if there is a high probability of positive results from genuinely negative test items, 
�(�|g) reduces because �(g) increases. This matches intuition; however high the true positive rate, the 
chance of a large number of false positives should make us less certain that a positive result indicates a 
genuinely positive test item.  

A.2 Probability and odds. 

A probability � is usually expressed as a number between 0 and 1. However, it can also be expressed in the 
form of “odds”5, a term perhaps most familiar in sports betting. If the probability of an event � is �(�) and 
the alternative possibility is simply “Not A”, the odds �(�) in favour of A can be calculated using: 

O(A) = �(�)
1 − �(�) (A.3) 

Unlike probabilities, odds can take any non-negative value; odds of 106 or “a million to one” are possible. 

Odds can be converted back to probabilities by rearranging A.3 to give: 

P(A) = O(�)
O(�) + 1 (A.4) 

 

 
5 The term “odds” is generally regarded as plural 
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A.3 The odds form of Bayes’ theorem and the likelihood ratio 

If there are only two alternative and complementary hypotheses, A and ¬A (that is, “Not �”), and some 
evidence E (such as a test result that is positive for A) is used to update the probabilities of each, Bayes’ 
theorem gives the posterior probabilities as: 

P(�|g) = �(g|�)�(�)
�(g)  (A.5a) 

P(¬�|g) = �(g|¬�)�(¬�)
�(g)  (A.5b) 

The ratio of their probabilities is then: 

�(�|g)
�(¬�|g) = �(g|�)�(�)

�(g|¬�)�(¬�) 

or, separating terms for clarity, 

�(�|g)
�(¬�|g) = �(g|�)

�(g|¬�) × �(�)
�(¬�) 

(A.6) 

Since there are only two hypotheses, � and ¬�, the prior probabilities and the posterior probabilities must sum 
to 1; that is, �(¬ �) = 1 − �(�) and �(¬�|g) = 1 − �(�|g). This means that the left side of A.6 is equal to 
P(�|g)/R1 − �(�|g)T. Comparing with A.3, this is just the odds in favour of �, given g, or �(�|g), the 
“posterior odds” in favour of hypothesis �. Similarly, the prior odds �(�) appear on the right side of A.6 as 
�(�)/�(¬�) = �(�)/R1 − �(�)T = �(�). The remaining ratio, �(g|�)/�(g|¬�), is known as the 
“likelihood ratio”. For the qualitative analysis case, where ¬� corresponds to a genuinely negative test item, 
Table 5 gives the (estimated) likelihood ratio as '�/%�. 

The odds form of Bayes’ theorem can therefore be written as 

�(�|g) = �(�) × �(g|�)
�(g|¬�) (A.7) 

or, schematically, 

Posterior odds = Prior odds × Likelihood ratio 

The likelihood ratio can therefore be interpreted quantitatively as the change in odds in favour of a particular 
hypothesis. 
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Annex B – Qualitative analysis associated with the assessment of 
conformity with a quantitative limit 

B.1 Conformity assessment as a qualitative analysis 

The assessment of the conformity of the value of a quantitative parameter of the analysed item with a limit 
value or interval can be considered a qualitative analysis using a single quantitative criterion (Section 2), with 
the outcomes ‘conforming’ or ‘non-conforming’. Table B.1 presents some examples of these types of analyses. 
 

Table B.1. Examples of qualitative analysis based on the assessment of the conformity of the value of a 
quantitative parameter of the analysed item with a limit value or interval. 

(1) Assessment of the colour of raw material by comparing absorbance measurements with a threshold. 

(2) Assessment of the conformity of an alloy with a minimum content for its major component. 

(3) Assessment of the conformity of a medicine with the specification interval for the concentration of the 
active substance. 

(4) Assessment of the conformity of a pesticide residue in fruit given a maximum residue level. 

(5) Assessment of the health condition of an individual by comparing a measured blood component with an 
interval of values from healthy individuals. 

 

The use of decision rules and measurement uncertainty in compliance assessment is discussed in detail in the 
Eurachem/CITAC guide on “Use of uncertainty information in compliance assessment” [29] (“The compliance 
guide”). For completeness, however, this annex discusses how uncertainty or performance information for 
quantitative analysis can be used to derive some of the metrics in Table 2. These can then be used to 
characterise the performance of qualitative analysis procedures based, wholly or partly, on comparing 
measurement results with a limit or specification. 

When the analysis involves assessing whether a measured property is above, below, or within a specification 
limit or interval, the measurement uncertainty can be used to quantify conformity assessment reliability. 

NOTE. The present Guide does not discuss how the measurement uncertainty should be evaluated. The evaluation of 
measurement uncertainty is described in detail in the Eurachem/CITAC guide “Quantifying uncertainty in analytical 
measurement” [65]. 

The use of measurement uncertainty for conformity decisions described in the Eurachem/CITAC compliance 
guide [29] involves setting a criterion for deciding if an item conforms or does not conform, with a maximum 
probability of false conformity decisions of x %. The compliance guide distinguishes “specific” and “global” 
risks. The “specific risk” quantifies the probability of a false decision on the conformity of a particular item; 
it is based solely on the distribution associated with the measurement result for that item. In contrast, the 
“global risk” quantifies the probability of false decisions on the conformity of a randomly chosen future item 
[66]. Global risk takes account of the distribution of possible values for items measured, such as the distribution 
of values of items from a production line or an environmental area. For instance, calculation of global producer 
risk requires the probability of a production line producing products with a value close to the limit value, such 
that it can be falsely considered as non-conforming. Therefore, for the determination of global risk, the 
distribution of values for the population of items must be well characterised. 

Most frequently, analysts are interested in assessing the conformity of a specific analysed item. In such cases, 
how can metrics used to quantify the reliability of other types of qualitative analysis be determined? A case 
study and the formulae used for determining these parameters are presented below 

B.2 Positive and negative conformity assessment results 

If the item is considered to conform from a ‘positive result’, the distribution describing the measurement 
uncertainty can be used to provide either a likelihood ratio 
�(+) in favour of conformity or, under some 
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circumstances, the posterior probability �� of the item actually conforming (‘a positive case’) and the 
probability of the item being, in fact, non-conforming (‘a negative case’) (1 − ��). Equivalently, if a result is 
reported as ‘non-conforming’ or ‘negative’ by comparison with a limit or interval, the measurement 
uncertainty can be used to obtain the corresponding likelihood ratio 
�(−) or the posterior probabilities �& 
and (1 − �&). The example below considers the posterior probabilities.  

NOTE. The definition of ‘positive results’ and ‘negative results’ as ‘conforming’ and ‘non-conforming’, respectively, is 
arbitrary; the opposite convention can be followed.  

B.3 Example – Conformity assessment for pesticide residue in fruit 

Assume the conformity of a sample of grapes is being assessed against a maximum residue level, ����, of 
0.5 mg kg-1 for acetamiprid [67], and the measured mass fraction in the sample is 0.70 mg kg-1, c. 6 The 
measurement result has a normal distribution with a standard uncertainty, u(c), of 0.14 mg kg-1 estimated with 
a very high number of degrees of freedom. Since c > ����, the most likely conclusion about conformity is the 
‘non-conformity’ of the grapes (a ‘negative result’).  

Formally, a posterior probability such as �� or �& requires a prior probability. In this case no information is 
available on the general distribution of acetamiprid in grapes. However, in cases of suspected contamination, 
it is often reasonable to assume that the distribution is so broad as to be essentially uninformative in the region 
of the measurement result. Where that is the case, the measurement uncertainty can be taken as an 
approximation to the posterior distribution. Taking that approach here, the posterior probability of a negative 
(non-conforming) test sample, PN, is the area under the probability density function of the measurement result 
to the right of ����, represented in Figure B.1 in red. The area is the upper tail probability of a normal 
distribution with mean c and standard deviation equal to u(c). This can be calculated from a spreadsheet or 
statistical package; in Microsoft Excel, for example, the required formula is 1 −NORM.DIST(���� = 0.5, 
� = 0.7, l(�) = 0.14, TRUE) (see Table B.2). For this example, the area is 0.923, or 92.3 %. The 
corresponding probability �� that the sample is positive (conforming) is (1 − �&) or 7.6 %. 

Where informative prior information is available and it is appropriate to make use of it, the calculations involve 
integration over the prior distribution. Integrals for normally distributed prior and measurement uncertainty 
are given in, for example, JCGM 106 [66], together with guidance on other distributions. 

 
6 The symbol, c, for concentration is used in this Guide for cases applicable to various types of quantities such as mass concentration, 
mass fraction and pH. 

 

Figure B.1. Graphical representation of the probability �& that an analysed item is non-conforming with a 
maximum limit, ����, from a measured value, c, with associated standard uncertainty, u(c) = 0.14 mg kg-1, 
and the corresponding probability 1 − �& that it does not conform. 
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NOTE It can be surprisingly hard to establish a genuinely uninformative prior distribution. For example, a simple uniform 
distribution over the range of Figure B.1 (0.2 – 1.2 mg kg-1) would correspond to a 30 % prior probability that a test 
item complies with the limit, simply because only 30 % of that range is below the limit of 0.5 mg kg-1. A complete 
Bayesian analysis will therefore include a check, typically involving alternative choices of prior distribution, to make 
sure that the conclusion is not unduly sensitive to the assumed prior distribution.  

 

B.4 Spreadsheet formulae for conformity assessment probabilities 

Table B.2 presents the MS-Excel formulas that should be used when different conformity limits or intervals 
are considered, and the measured value is below, above, within or outside the limit(s). 

If the standard uncertainty, u(c), is estimated with a small number of degrees of freedom, ν, instead of 
describing the dispersion of the estimate of the measurand by a normal distribution, Student’s t-distribution 
should be considered. In that case, the general formula used in Table B.2, NORM.DIST(C, c, u(c), TRUE), 
should be substituted by TDIST(ABS(C – c)/u(c),ν,TRUE). 

 

Table B.2. MS Excel formulas used to estimate the probability of conformity, PP, or non-conformity, PN, 
decision on the specific analysed item. The formulae can be used to calculate 
�(+) = ��/(1 − ��) and 

�(−) = �&/(1 − �&). 
 
S 

 
Limit 

Item conformity (result type) 
Scenario 

Conformity 
reliability 

MS-Excel formula (based on the cumulative 
normal distribution) 

1 Max. Conforming (positive) 
c ≤ ���� 

�� NORM.DIST(����, c, u(c), TRUE) 

2 Max. Non-conforming (negative) 
c > ���� 

�& 1 −NORM.DIST(����, c, u(c), TRUE) 

3 Min. Conforming (positive’) 
c ≥ ���� 

�� 1 −NORM.DIST(����, c, u(c), TRUE) 

4 Min. Non-conforming (‘negative’) 
c < ���� 

�& NORM.DIST(����, c, u(c), TRUE) 

5 Inter. Conforming (‘positive’) 
���� ≤ c ≤ ���� 

�� NORM.DIST(����, c, u(c), TRUE) –
NORM.DIST(����, c, u(c), TRUE) 

6 Inter. Non-conforming (‘negative’) 
c > ���� or c < ���� 

�& 1 − NORM.DIST(����, c, u(c), TRUE) + 
NORM.DIST(����, c, u(c), TRUE) 

S – Scenario; Inter., Max. or Min. – Interval, maximum or minimum limit; Positive or negative result – a 
conforming or non-conforming result; c and u(c) – measured concentration and associated standard 
uncertainty; ���� or ���� – Maximum or minimum admissible concentration 
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