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Foreword

ISO {the International Organization for Standardization) is a worldwide
federation of nationai standards badies (ISO member bodies). The work
of preparing International Standards is normally carried out through SO
technical committees. Each member body interested in a subject for
which a technical committee has been established has the right to be
represented on that committee. International organizations, governmental
and non-governmental, in liaison with ISO, also take part in the work. 1SO
colflaborates closely with the International Electrotechnical Commission
(IECY on all matters of electrotechnicat standardization.

Draft International Standards adopted by the technical committees are
circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting
a vote.

International Standard ISC 11095 was prepared by Technical Committee
ISO/TC 89, Applications of statisticai methods, Subcommittee SC B,
Measurement methods and results.

Annexes A and B form an integral part of this International Standard. An-
nex C is for information only.
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Introduction

Calibration is an essential part of most measurement procedures. It is a
set of operations which establish, under specified conditions, the re-
lationship between values indicated by a measurement system and the
corresponding accepted values of some “standards”. in this International
Standard, the standards are reference materials.

A reference material {RM) is a substance or an artifact for which one or
more properties are established sufficiently well to validate a measure-
ment system. There exist several kinds of Ris:

al an internal reference material is an RM developed by a user for his/her
own internal use,

b} an external reference material is an RM provided by someone other
than the user;

¢} a certified reference material is an RM issued and certified by an or-
ganization recognized as competent to do so.
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1 Scope

This International Standard:

al outlines the general principles needed to calibrate
a measurement system and toc maintain that
“calibrated” measurement system in a state of
statistical control;

b} provides a basic method

— for estimating a linear calibratton function un-
der either one of two assumptions relating to
the variability of the measurements,

— for checking the assumption of linearity of the
calibration function and the assumptions on
the variability of the measurements, and

— for estimating the value of a new unknown
guantity by transforming the measured values
obtained on that quantity with the calibration
function;

¢l provides a control method for extended use of a
calibration function

— for detecting when the calibration function
needs to be updated, and

— for estimating the uncertainty of the measured
values after transformation with the calibration
function;

d} provides two alternatives to the basic method
under special conditions;

el illustrates the basic method and the contio!
method with an example.

This Internaticnal Standard is applicable to measure-
ment systems for which reference materials are
available.

It is applicable to measurement systems with an as-
sumed linear calibration function. It offers a method
for examining the assumption of linearity. If it is
known that the calibration function is nonlinear, then
this International Standard is not applicable unless one
uses the "bracketing technique” described in 8.3,

This International Standard does not make a dis-
tinction among the various types of RMs and consig-
ers that the accepted values of the RMs selected to
calibrate the measurement system are without error.

2 Normative references

The following standards contain provisions which,
through reference in this text, constitute provisions
of this International Standard. At the time of publica-
tion, the editions indicated were valid. All standards
are subject to revision, and parties to agreements
based on this International Standard are encouraged
to investigate the possibility of applying the most re-
cent editions of the standards indicated below.
Members of IEC and ISQ maintain registers of cur-
rently valid International Standards.

ISO 3634-1:1993, Statistics — Vocabulary and sym-
bols — Part 1 Probability and general statistical
terms.

iSO 3534-2:1993, Statistics — Vocabulary and sym-
bols — Part 2: Statistical quality control,

ISC Guide 30:1992, Terms and definitions used in
connection with reference materials.

3 Definitions

For the purposes of this International Standard, the
definitiens given in ISC 3534-1 and 1SO 3534-2 and
the following definition apply.

3.1 reference material: A substance or an artifact
for which one or more properties are established suf-
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ficiently well to be used to validate a measurcmoent
system.

4 General principles

Calibration is a procedure that determines thc sys
tematic  difference  that may exist between a
mecasurement system and a “reference” system rep-
resented by the reference materials and their ac-
cepted values, In this International Standard, the term
systom {measurement system or reference system)
is used to reprosent not only a measuring instrument
but also the set of procedures, operators and en-
vironment conditions associated with that instrument,

The output of a calibration procedure is a calibration
function that is used 1o make transformations of fu-
ture measurement results. In this International Slan-
dard, the term "transformation” refers to

— either a correction of the future measurements if
both the accepted values of the reference ma-
tenals {RMs) and the observed values have the
same units,

— or a translation from the units of the observed
measurements to the units of the RMs.

The validity of the calibration function depends on two
conditions:

al that the measurements from which the calibration
function was calculated are representative of the
normal conditions under which the measurement
gystem operates; and

b} that the measurement system is in a state of
control.

The calibration expenmenl must be designed to en-
sure that point a} is met. The contrul method deter-
mines, & So0n as possible, when the systerm has 1o
be considered out of control.

The procedure In this International Standard is only
applicable to measurement systems which are lingarly
related to their reference systems. To check whether
the assumption of linearity is valid, more than two
RMs must be used during the calibration experimant.
Thig is illustrated in the basic method. Using several
AMs, the basic method provides a strategy and tech-
niques to analyse the data collected during the cali-
bration experimeant. If linearity iz not in question, than
an alternative method, simpler than tha basic method,
can be used to estimate a linear calibration tunction
based on one point. This “one-point calibration”
method (following a zero-level transformation) does
not allow for any test of assumptions, hitt it is a quick

and sasy mecthod to "rocalibrate” a system that has
been studied more thoroughly during provious exper-
iments. [If linearity is in guestion, thon a socond
alternative can be used, called "bracketing”.

The basic method and the one-point method are
based on the assumption that the effort invested in
calibration will be valid over a period of stability of the
process. 1o study the period aver which the call-
bration is valid, a control method has 1o be in place.
The contiol method is designed to detect whether
chanyes have taken place in the system that justify
an invesligation andfor a recalibration. The control
method also provides a simple way to determine the
precision of the values that have been transformed
with a given calibration function.

The bracketing method is labour intensive but may
provide greater accuracy in the determination of the
values of unknown guantities. This method consists
ot surrounding as tightly as possible {bracketing) each
unknown quantity by two RMs and extracting a
transformed value for the unknown quantity from
measLireaments ot both the unknown guantity and the
values of the twa HMs. Only short-term stability of
the measurement process 1S assumed {stability during
the measurament of the unknown guantity and ot the
two RMs) linearity is assumed solely in the interval
between the valuas of the two BMs.

5 Basic method

5.1 General

This clause describes how to estimate and use a lin-
ear calibration function when saveral imore than two)
RMs are available. The availability of several RMs al-
lows the linearity of the calibration function to be
verified,

5.2 Assumptions

.21 1t is assumcd that there 15 no error in the ac
cepted values of the BMs (this assumption will not
be checked in this International Standard). In practice,
accepted values of RMs are quoted with their uncer
tainties. The assumption of no crror in the accepted
values of the RMs can be considered valid if the un
certainties are small compared to the magnitude of
the errors in the measured values of those RMs {sec

ref. [1]}

NOTE 1 in situations where the BMs have been freatad
chemically o1, in some instances physically, before mstru-
ment readings are taken, this International Standard may
underestimate the uncertainty associated with the trans-
tormation of a new measurement result.
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5.2.2 The calibration function is assumed to be linear
(this assumption will be examined).

5.2.3 Repeated measurements of a given RM are
assumed to be independent and normally distributed,
with variance referred to as “residual variance” {the
independence and normality assumptions will not be
checked in this Intarmnational Standard). The sguare
roat of the residusl variance is referred to as the re-
sidual standard deviation.

5.2.4 The residual standard deviation is assumed to
be either constant or proportional to the accepted
valug of the RM (this assumption will be examined).

5.3 Calibration experiment

5.3.1 Experimental conditions

Experimental conditions should be the same as the
normal operating conditions of the measurement
system; i.e. if. for example. more than one operator
uses the measuring equipment then there shouid be
more than one operater represented in the calibration
experiment.

5.3.2 Choice of RMs

The range of values spanned by the selected RMs
should include {as far as 1s possible) the range of val-
ues encountered during normal operating conditions
of tha measurement system.

The composition of the selected RMs should he as
close as possible to the compesition of the targeted
material to be measured.

The values of the RMs should be distributed approxi-
mately equidistantly over the range of values en-
countered during normai operating conditions of the
measurement system.

5.3.3 Number of RMs, N

The number of RMs used to assess the calibration
function should be at least 3.

Far an initial assessment of the calibration function, a
number larger than 3 is recommended (at least 3 over
any subinterval where there is a doubt about the lin-
earity of the calibration function).

5.3.4 Number of replicates, X

Each RM should be measured at least twice (as many
replicates as is possible in practice is recornmended).
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The number of replicates should be the same for all
RMs.

The time and conditions at which tha replicates are
taken should cover as wide a range as is nacessary
to ensure that ait operating conditions are rep-
resented.

5.4 Strategy for analysing the data

5.4.1 Plot the data to check

a) the state of control of the measuremsant sysiem
during the calibration experiment,

b} the assumption of linearity, and

¢l tho variability of the measurements as a function
of the accepted valucs of the RMs.

5.4.2 Estimate Lhe lnear calibration function under
the assumption of constant residual standard devi-
ation.

h.4.3 Plot the calibration function and the rasiduals.
The residuals plot is a strong indicator of departure
from either the assumption of linearity or from the
assumption of constant residual standard deviation. If
the assumption of constant residual standard devi-
ation does hold, skip step 5.4.4 and continue with
step 5.4.5. Otherwise, execute step 5.4.4.

5.4.4 ECstimate the linear calibration function under
the assumption of proportional residual standard de-
viation and plot the calibration function and the re-
siduals,

5.45 Lvaluate the lack of fit of the calibraticn func-
fion. If the variability due to lack of fit is large relative
to the vanability due tc replication of measurements,
investigate the procedures followed during the cali-
bration experiment and re-examine the assumption
of lingarity of the calibration function. If the assump-
tion of linearity does not held, then an alternative is
to use the bracketing technique described in 8.3

NOTE 2 Theare exist other techniguaes, heyond the seope
of this International Standard, that allow the fitting of a
quadratic or polynomial curve to the data (see refs. [27 and
(30

5.4.6 Transform future measured values with the
calibration function.

The next clause describes the six steps of this strat-
egy. Clause 9 Hliustrates the bhasic method with an
example.



150 11095:1996(E)

6 The steps of the basic method

6.1 Plot of the data collected during the
calibration experiment

Figure 1 shows a plot of the measured vaiues versus
the corresponding accepted values of the RMs.
Figure 1 as well as figures 2 tc 5 are cbtained from
simulated data. The purpose of these five plots is to
illustrate the type of information one can extract from
such plots. A complete example is treated in
clause 8 with data, plots and analysis.

The major purpase of the plot shown as figure 1 is to
detect visually any unusual behaviour of the
measurement system during the calibration exper-
iment, and to identify potential outliers. If passible,
label the order of the data points and look for obvious
time trends. i some of the data are considered sus-
picious, or if a time trend is obvious, then an investi-
gation shall take place to discover causes of
irreqularities. As soon as the causes of irregularities
are removed, the calibration experiment should be
repeated and new data should be callected to estab-
lish a calibration function.

X Replicate 1
A Replicate 2
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If the causes for one or a very few outliers are found,
and if these causes do not affect the remaining
measurements, then the cutliers can bhe eliminated.
The calibration experiment then becomes unbalanced;
i.e. there is an unegual number of measuremenis K,
instead of K for each RM. Estimation of the calibration
function can still proceed with the formulae given in
6.2, 6.4 and 6.5 replaced by the ones in annex B.

Figure 1 also allows an early disgnosis of the as-
sumption of linearity of the calibration function, as
well as a first look at the assumption of constant re-
sidual standard dewviation. The linearity of the cali-
bration function can be visually checked by visualizing
a straight line through the data plotted in figure 1
{there seems to be some curvature in the data of fig-
ure 1). The assumption of constant residual standard
deviation can be checked by looking at the spread of
the points in figure 1 for a given BM. If it appears that
this spread increases with the accepted values of the
Ris, then the assumption of constant residual stan-
dard deviation is probably not correct {this does not
seem to be the case for figure 1). A more sophisti-
cated plot to check the assumptions of linearity and
of constant residual standard deviation is presented in
6.3.

O Replicate 3
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Accepted vaiues of RMs
{e.g. phosphorus content, % of total weight}

Figure 1 — Schematic diagram of data collected during the calibration experiment
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6.2 Estimation of the linear calibration
function under the assumption of constant
residual standard deviation

6.2.1 Model

The assumptions of linearity of the calibration function
and of constant residual standard deviation are cap-
tured by the madel

Y = -BO + JB’I)'}: + Ent

where

x, is the accepted value of the n™ RM
n=1, ... Ny

Yok is the ¥™ measurement of the #"
AM k=1, .. K

Bo + Bix, represents the expected value of
the measurements of the ™ RM:

£ is the deviation between y,, and

the expected wvalue of the
measurement of the #" RM
(these deviations are assumed to
be independent and normally dis-
tributed with mean 0 and with
variance az};

Bo. By and o are three parameters to be esti-
mated from the data collected
during calibration:

Jif\ is the intercept of the
calibration function,

B, is its slope,

2 .
o 15 a measure of the

precision of the
measurement system.

6.2.2 Estimates of the parameters

Estimates of the parameters f,, B, and o° can be ob-
tained by using the formulae below or by running a
linear regression software package with two columns
of equal length as input, one for y and one for x.

NOTE 3 Estimates of parameters in this Internaticnal
Standard have a symbol * to differentiate them from the
parameters themseives which are unknown.

ISO 11095:1996(E)}
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("'_}r - E) U‘n - _‘T')

“ i
,812

-
&
|
:
\—'l\.)

'8{] =y - BVT
A2 SSE
(NK — 2)
where

NKE=NxK

n A A
Yo = ﬁO + 181xﬂ

M

Cnke = Ynp — ¥

SSE = i i (e,.f

H—1%=1

6.3 Plots of the calibration function and of
the residuals

Figures 2 and 3 are recommended to test departures
from the assumptions embedded in the model of
6.2.

6.3.1 Plot of the calibration function

in figure 2 the estimated calibration function is added
to figure 1.

The plot shown as figure 2 primarily allows a check
of the calculations given in 6.2.2. It also provides a
visual check of the assumption of linearity of the cali-
bration function,
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Figure 3 — Schematic diagram of a plot of residuals versus fitted values
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Figure 2 — Schematic diagram of a calibration curve
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6.3.2 Plot of the residuals versus the fitted values

The plot of the residuals ¢, versus the fitted values
¥, {figure 3) is a powerful tool to detect departure from
the two assumptions of linearity and of constant re-
sidual standard deviation. If these two assumptions
hold, then figure 3 should display a plot of randomly
distributed points centred around zero. Departure
from the assumption of linearity is indicated by a
systematic pattern between the residuals and the fit-
ted values {as is the case in figure 3). Departure from
the assumption of constant residual standard devi-
ation is indicated by a dispersion in the data that in-
creases or decreases with the fitted values. In
figure 3, the dispersion of the residuals for any fitted
value is almost constant throughout. Therefore, the
assumption of constant residual standard deviation is
tenabie in this sttuation.

NOTE 4 Figure8 illustrates the situation where the as-
sumption of constant residual standard deviation is not ten-
able.

If the assumption of constant residual standard devi-
ation does not hold, then the data collected during the
calibration experiment must be re-analysed. A plot of
the standard deviation of the replicated measure-
ments of an RM versus the accepted value of that RM
will indicate whether the assumption of proportional
residual standard deviation is tenable. See figure 9 for
such a plot.

al If the assumption of proportional residual standard
deviation seems to hold, then the data can be re-
analysed according to step 8.4.

bl If the assumption of proportional residual standard
deviation does not hold but there exists a model
relating the residual standard deviation to the ac-
cepted values of the RMs (for example inverse
proportionality), then an approach similar to the
one presented in step 6.4 can be used.

If the assumption of linearity does not hold, then an
alternative is to use the bracketing technique de-
scribed in 8.3,

NOTE 5 There exist other techniques, beyond the scope
of this International Standard, that affow the fitting of a
guadratic or polynomial curve to these data {see refs. | 2]
and {37}

Finally, testing the assurnptions of independence and
of normality of the ¢, values is beyond the scope of
this International Standard. These two assumplicns
are crucial to the validity of step 6.5 and can also be
checked by studying the residuals. For example, a
narmal probability plot of the residuals allows a check
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of the normality assurmption and a plot of the residuals
against time allows a check of the assumption of in-
dependence of the measurements. Further infor-
mation can be found in ref. [3].

6.4 Estimation of the calibration function
under the assumption of proportional
residual standard deviation and plot of the
calibration function and the residuals

6.4.1 Model

An alternate model to the one given in step 6.2.1 is
one where the calibration function is linear but the
residual standard deviation increases with the ac-
cepted values of the RMs. This is captured in the
model

Yak = Vot VX + My

where

X, is the accepted value of the 2™ RM
(n=1, _, N}

Yot is the & measurement of the »"
RM k=1, .., K

Yo + X, represents the expected value of
the measurement of the »™ RM:

Tk is the deviation between v, and

the expected measurement of the
2" BM {these deviations are as-
sumed to be independent and
normally distributed with mean 0
and with a variance proportional to
xf}; le.
va r(nnk) =Vva r(.}"nk) = ‘(f T2
Yo V1 &8Nd ©  are three parameters to be esti-
mated from the data collected
during calibration:

ypandy; are, respectively,
the intercept and
the sflope of the
calibration fune-
tion,

is a measure of the
relative  precision
of the measure-
ment system.

(2}

This model can be transformed into a model equiv-
alent to the one given in 6.2.1; i.e. with errors having
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constant variance. The transformation consists of div-
iding by x, both sides of the equation

Y = Yo + V1% M

This gives
i Yo Mk
e e S TR
'xﬂ ’XJ'! /1 ""}1

of, equivalently,

Zop = V1T YoWa + B

where
o ™ .}Inkl" A
w, = 1/x,
& = Mgl Xy

The new model can be analysed as in 6.2 after making
the correct substitutions of terms.

6.4.2 Estimates of the parameters

The estimates of the parameters y,, 7, and 2 can be
obtained by using the formula below or by running a
weighted linear regression software package with
three columns of equal length as input, one for v, one
for x, and one for the weights ( = 1[)(2). The same
outputs can alsc be obtained by using a linear re-
gression software package without weights but with
the two input columns being z and w.

:t}[} =1= N
Dt~ WY
n=1

e

%2 _ WS3SSE

(NK — 2)
where

NK=N=xK

. Yrk

Cnk T X

13 — 1 .

W = X,

1<

W= W an

n=1

« |SO

K
1 N
TN Zzn-

H=1

[ 1]

1>

’ A
i + YoWn

My = By — Iy

WSSE = i ZK: (14,

n=1%t—-1

6.4.3 Plot of the calibration function and
residuals

As in 8.3, two plots are recommended:

lot of the estimated calibration function
=9 + J1x with the data of figure 1;

al a

v

b} a plot of the weighted residuals «,, versus the
weighted fitted values z,.

The interpretation of these plots is the same as that
for figures 2 and 3.

6.5 Evaluation of the lack of fit of the
calibration function

6.5.1 General

A comparison between

— the variability due to lack of fit of the model
selected sither in 6.2 or in 6.4 and

— the varfability of the pure error representing the
inability of the systern to repeat measurements
exactly

is carried out after constructing an ANOVA table. Such
a comparison I1s possible because the measurements
of each RM have been replicated.

The selection of the significance level o depends on
particular applications and is left to the user of this
International Standard.

6.5.2 Model with constant residual standard
deviation {defined in 6.2}

6.5.2.1 The ANOVA table shown as table1 can be
obtained by using the formulae below or as an output
of most linear regression software packages.
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Table 1 — ANOVA table to compare lack of fit and pure error under the assumption of constant residual
standard deviation

Source Degrees of freedom, DF Sum of squares, S5 SS/DF F ratio
Calibration function 1 S5R - S&T - SSE
Residual NK -2 SSE s2_  SSE
NK -2
Lack of fit N-2 SSE — SSP ;7. SSE -SSP &
N — 2 &E
Pure error NK - N SSP at_ _SSP
? NK — N
Total NE -1 S8T
N K _.2
SS5T=Z E (yu—3
n="Tk="1
SSF = Z Z 0,,*
n="1k=
SSE is defined in 8.2.2

6.5. 2 2 The variability due to pure error is astimated
by rr . This variability is independent of the model
(v = ﬁo + f,x) fitted to the data The variability due to
lack of fit is estimated by &{. A test of the validity
of the model defined rn 6.2. ‘I is carried out by comr-
paring & fc;2 o Fy_N-~2,NK—-N) where
Foq _ N -2, NK—N) IS the (1 — «}-quantile of the
F-distribution with & — 2 and NK — N degrees of free-
dom.
ab If 6757 g, is not larger than F, Fis N =2, NK = N),
then there is no evidence to reject the linear
model.

by If c‘a‘é‘rf) is larger than Fy _ (N — 2, NK — N), then
potential causes for a large variability due to lack
of fit relative to the pure error variability should be
investigated. One common cause is the inad-
equacy of the linear assumption of the calibration
function {see figures 2 and 3. Another possible
cause may be the conditions under which the
calibration experiment was performed {e.g. repli-
cations may not have been genuine repeats but
Just repetitions of the same reading).

6.5.3 Model with proportional residual standard
deviatien (defined in 6.4)

If the model with proportional residual standard devi-

ation was used, then the ANOVA table is constructed
as shown in table 2.

The same test, interpretation, conclusions and re-
marks apply to ?[“f?g as 1o SFJ% described in 6.5.2.2.

6.6 Transformation of future measured
values with the calibration function

Once a calibration experiment has been carried out,
measured values of new unknown quantities {in op-
position to standards which have known or accepted
values) will be transformed via the calibration function.
Transforming these measured values will result in a
single value xj that estimates the true value of the
unknown gquantity. The transformation depends on
the assumption made concerning the residual vari-
ance and is implemented as follows.

A new unknown quantity is measured p times, re-
sulting in p measurements yu., ¥g5, .. ¥gp- 1he mean
¥, of these p measurements is obtained as

ttp =1, then y, = y,,.
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Table 2 — ANOVA table to compare lack of fit and pure error under the assumption of proportional
residual standard deviation

Source Degrees of freedom, DF Sum of squares, S5 S5/DF F ratio
Calibration function 1 WSSRE = WSST — WSSE
Residual NK -2 WSSE 22 _ WSSE_
) NK -2
Lack of fit N2 WSSE — WSSP :iz _ WSSE — WESEP ’+‘f
" N2 e
i 4
Pure error NK —N WSSP a2 _ _WSSP
F NK — N
Total NK —1 WSST
N e 2
WSST = E1 ,;.):1 (2o — 2)
Y & 2
WSESP = 2_1 i%] (Zn.{' - Zn-}
WSSE is defined in 6.4.2.

a) If the maodel with constant residual standard devi-
ation was selected, then
«_ Yo bo
Xo=—F%
i

by If the model with proportional residual standard
deviation was selected, then

Fo— 3
= 0__5_.__.9._.
I
This International Standard does not provide confi-
dence intervals, either one-at-a-time (see ref. [2]) or
simultanecus (see refs. [4] and [5]), for the estimates
of new unknown guantities based on the calibration
experiment itself. Instead, this International Standard
offers a control method which, among other benefits,
allows for the derivation of confidence intervals based
on the variability chserved in monitoring a few RMs

over a period of time.
7 Control method

7.1 General

When the calibration function is to be used for an ex-
tended pericd of time, it is desirable to implement a

10

control method to check the validity of the calibration
curve, as well as to identify, and subsequently elim-
inate, sources of undesired variation. The control
method monitors on a reguiar basis the measurement
system in order to detect quickly when the systern
behaves erratically or shifts, thus potentially making
the calibration function useless if not harmful.

Detection is achieved by monitoring the measured
values (after transformations by the calibration func-
tion} of a set of m BMs with a control chart technique.

MOTE &  This approach in an extension of traditional con-
trol charts described in 1SO 7870061 and |SO 8258171,

The control chart is first established from the data
collected during the calibration experiment. The con-
trol chart is then used to decide if the calibration
function needs to be re-estimated. The same contro
chart is also used to estimate the uncertainty in the
measurements after they have been transformed with
the calibration function.
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7.2 Catculation of upper and lower control
limits

7.21

deviation

a)

b)

Mode! with constant residual standard

Calcutate the upper control limit U, and the lower

control limit L, as

A

Ug=——ty _12fNK = 2)
B
G
1
where

5 is the square root of the esti-
mate 4° obtained from the
calibration experiment (see
6.2.2};

NK - 2 is the number of degrees of
freedom associated with the
estimation of ¢° (see 6.5):

?3] is the estimate of #, obtained
from the calibration exper-
iment {see 8.2.2};

x is the significance level
selected for the control chart;

i oNK —2) is the (1 — {[2yquantile of the
~distribution with NK — 2 de-
grees of freedom; t.e.

PLr> 1y _piNK — 201 =£)2
£ is the significance level as-

sociated with each individual
BM and with the limits U/, and
Ly such that the overall sig-
nificance of « is obtained for
all the m RMs simultaneously;
¢ is obtained {for small values
of &) as

= —exp(&m_a)-)

e
o

a_
i

Plot the limits U, and L4 on the control chait.
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7.2.2 Model with proportional residual standard
deviation

al Caleutate the upper control iimit U, and the lower
control limit L, as

Il
-

Ue = 5=t 249NK = 2)
1
L=~ ,:— i - gz NK —2)
¥4
where

(S

is the square root of the estimate 7°
obtained from the calibration exper-
iment {see 6.4.7);

NK — 2 15 the number of degrees of free-
dorn associated with the estimation
of ° (see 6.5);
¥ is the estimate of y, obtained from
the calibration experiment (see
6.4.2).
NOTE 7 &, 1, _o(NK —2) and { are as defined in

7.2.1al x

b) Plot the limits U, and L, on the control chart.

7.3 Collection and plotting of the data

7.3.1 Select m RMs such that their accepted values
cover the range of values encountered under normal
operating conditions of the measurement system. A
minimurmn of two RMs is needed. Three RMs are rec-
ommended. i is preferable but not mandatory to use
RMs that are different from the ones used during the
calibration experiment.

7.32 On 2 regular basis {e.g. once a day or once
gvery shift), make one measurement on each of these
m BMs.

7.3.3 Obtain the transformed values of each one of
these m BMs (see 6.6). These transformed values are
referred to as ' fori=1, ., m.

7.3.4 Caiculate the differences d. between the
transformed values x7 and the accepted values of
these RMs, y, as

s
d!- =X — &

1



ISO 11095:1996(E)

7.3.5 If the calibration model assumes constant re-
sidual standard deviation, let the differences d; be re-
ferred to as the control values.

If the calibration model assumes proportional residual
standard deviation, normalize the differences d, by
dividing them by x. Let the resulting values ¢; be re-
ferred 10 as the control values where

i x
P T
o =—

! x!'

7.3.6 Plot the appropriate control values (d; or ¢
versus the time at which the m RMs are measured
on the control chart. Figure 4 illustrates a control chart
for the constant residual standard deviation model. A
similar control chart can be drawn for the proportional
rasidual standard deviation model {see figure 12}.

7.4 Decision about the state of the system

If one or more values of d falls ocutside the control
limits U, and L, for the model with constant residual
standard deviation, the system is declared out-of-
contral at that time. The m RMs should be remeas-
ured. If at least one of the new measurements of the
m RMs is still outside the limits, an investigation shail
take place at this point to determine the cause of the
problem. Depending on the nature of the problem, the
calibration function may need ta be re-estimated from
a new calibration experiment.

& S0

The same conclusions are reached for the model with
proportional residual standard deviation by comparing
the ¢; values to the limits I/, and L.

7.5 Estimation of the uncertainty of the
transformed values

7.5.1 Estimation during the validity period of a
given calibration function

For the calibration function subject to the control
method, the uncertainty of the transformed vaiues is
approximated by the pooled variance of the control
values of two RMs {out of the m RMs selected for the
control method): the RMs with smallest and targest
values. This is explained by the fact that the trans-
formed values at the end of the range of vaiues en-
countered during the calibration experiment are
expected to have a larger variance than the ones in
the middle of that range. Thus, the confidence interval
for a transformed value derived from the vanability of
the two extreme RMs is approximately correct for the
values at the end of the range of applications and
conservative for the values in the middle of that
range.

To calculate such a confidence interval, carry out the
procedure given in 7.5.1.1 for the appropriate model
{constant or proportional residual standard deviation).

04 -
. s
w02
u
i &
=1 X
T; b 5 0 ¥ -
— - A
5 i &
E ol
o -0 -
Ly
Ty
] ! i | i
2z L & ] 10

Day

Key: x = RM with low value, A = RM with middle value, o = RM with upper value

Figure' 4 — Schematic diagram of a control chart to validate the calibration curve under the assumption
of constant residual standard deviation

12
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7.5.1.1 Model with constant residual standard
deviation

Let d; and d,,; be the control values of the smallest
and largest RMs, where j represents the time at
which the measurements were made. Then, over a
period of J times when the measurement system is
in a state of statistical control, the standard deviation
of g transformed value is approximated by

S
~ i=1
Tl = A E,{ =

with 2J degrees of freedom.

An approximate confidence interval for the unknown
true value of a quantity estimated by the transformed
value xj {derived from p measurements made over a
short period of time) with a confidence level of
(1 — o) is obtained as

* ”
Xg £ Ogu B _app (2N

where &, _,»{27) is the (1 - «f2)-quantile of the rdis-
tribution with 27 degrees of freedom.

7.5.1.2 Model with proportional residual
standard deviation

Let ¢; and ¢, be the control values of the smallest and
largest RMs, where j represents the time at which the
measurements were made. Then, over a period of J
times when the measurement systern has been in a
state of statistical contral, the coefficient of variation
of a transformed value is approximated by

with 27 degrees of freedom.

An approximate confidence interval for the unknown
true value of a quantity estimated by the transfermed
value 13 {derived from p measurements made over &
short period of time} with a confidence level of
{1 — &) is obtamned as

_'? N _F
Aok Ty f —m_.-?.‘;{z’nl' A9

where 4. »(2/) is the (1 - of2)-quantile of the rdis-
tribution with 2J degrees of freedom.

7.5.2 Estimation over a period that includes
recalibration

To insure that the variability due to the calibration

ISO 11095:1996(E}

procedure is included in the uncertainty statement
pick one set of control values (d, ) OF (). €y} Trom
each calibration interval and use the same formula for
.4 OF Gy where j is now the number of reca-
librations.

8 Two aHlernatives to the basic method

8.1 General

Under special conditions, two alternative methods can
be used to calibrate a measurement process. These
two methods are actually special cases of the basic
methed, where only one or two BMs are used. The
one-point calibration method is a fast technigue that
allows one to “recalibrate” a measurement system
when there is no doubt about the linearity of the caii-
braticn function. The bracketing method is a labour-
intensive technigue that allows the determination of
the value of an unknown guantity with great precision
and with a minimal set of assumptions.

8.2 One-point calibration method

8.2.1 General

This method is useful for a guick recalibration when
there is no doubt about the linearity of the function
over a given range [, .., M]. The “zerc-point” is ob-
tained by adjusting some dials to ensure that an un-
known quantity with true value 0 is measured as 0.
OCnly a blank {quantity with true vatue 0) and one RM
are used in this method.

One can note that, historically, this methad is called
a cne-point calibration but in reality this is a two-point
calibration carried out with one blank and one RM.
This so-called "one-peoint calibration” is a weak and
uncertain method because of the doubtfulness of the
zero point. It shouid not be recommended for cali-
bration purposes, but primarily for checking an exist-
ing linear calibration function,

8.2.2 Assumptions

It is assumed that:

a) there are ng errors in the accepted value of the
only BRM and of the blank used with this method

fassumption not testeds;

bl the calibration function is linear over the range
[0, ., M) {assumption not tested);

c) the residual standard deviation is constant {as-
sumpticn not tested).

13
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8.2.3 One-point calibration experiment

a) Experimental conditions: the experimentai condi-
tions should be the same as the normal operating
conditions of the measurement system.

b} Choice of RM: the only RM used in this exper-
iment should have an accepted wvalue that is
greater {as far as is possible} than the values gn-
countered during normal conditions of the
measurement system.

ci  Number of replicates: the BM should be meas-
ured at least twice.

8.2.4 Estimation of the calibration function

8.2.4.1 Model

This model is similar to the one of the basic method
with constant residual variance defined in 6.2.7, but
without an intercept. This model is

Vo = Ba g
where
X is the accepted value of the only RM
used;
¥ is the & measurement of that RM
k=1, .. K
£ 18 the deviation between y, and the

expected value of the measurement
of the RM (these deviations are as-
sumed to be independent and

h
g uy
=
=
£ 10|
el
k=2
.EEB
fﬂm -
2E
58 6t
i
L
S
=
g
2 2r
-]
=

0 1

© SO

normally distributed with mean 0 and
variance 02);

B and o> are two pararneters to be estimated

from the data collected during the ex-
periment.

8.2.4.2 Estimates of § and o

These are obtained fram the following formuias:

-y

¥

K
w7 _ __1— . _ = 2z

=1

=

where

y= ,j( Z t

K
¥
k=1

8.2.4.3 Plot of the data

Plot the data collected during the experiment, as
shown in figure 5.

The plot shown as figure b allows visual identification
of potential outliers for investigation. It also displays
the linear calibration function constrained to go
through the origin.

8.2.5 Transformation of future measurements
with the calibration function

An unknown guantity is measured p times, resulting

L |

1 1
0 05 10

H 1
1.5 20 25 30

Accepted value of single RM used in calibration experiment

Figure 5 — Schematic diagram of the data in a one-point calibration experiment
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n p Measurements yu;, yyp. .. ¥y, 1he mean g of
these p measurements is obtained as

I
( ;) Z}'Ok

k=1

ot

If p=1, then ¥ = ¥,. Transforming these measure-
ments will result in a single valua being reported as
Xp = ¥alf.

NOTE B In principle, the biank doos not always have a
trua vaiue of G but instead has an accepted valus of x,
known 1o have a measurement of y,. If 5, is not negligible,
the one-point calibration method described in 8.2.3 can be
usaed with the following adaptations.

al  Measure the blank and adjust the dials of the measur-
ing instrument to read ..

bl Measure the only RM used, as in the case of a blank
with value O.

¢} The model becomes

Ye— o Bla— ) + 5

d)  The estimate of # becomes
B=t - ylx — )

e} The estimate of 4° is unchanged.

fi  The estimate of the true value of an unknown quantity
measured p iMes (ye.. Yo, - ¥o,) i5

= %+ G — Wb

8.3 Bracketing technique

8.3.1 General

This method is useful when there is some doubt
about the linearity of the calibration function over the
full range of values encountered during normal oper-
ations of the measurement system. This method is
also useful when there is some concern about the
stability of the measurement process. The principle
of the method consists in reducing as much as poss-
ible the interval over which the linearity of the cali-
bration function is assumed. This lgads to surrounding
as tightly as possible (or bracketing) the value of the
unknown quantity by two values of reference ma-
terials (RMs). Because of the tight surrounding of
each unknown guantity by two RMs, and because of
the short period of time needed for this procedure
{time to measure the unknown guantity and the two
RMs), the bracketing technique usually yields greater

ISO 11095:1996(E}

accuracy in determining the transformed value of an
unknown quantity.

The unknown quaniity and the two RMs are meas-
ured together. The value of the unknown quantity is
estimated directly, based on a linear interpolation be-
tween the values of the two RMs.

8.3.2 Assumptions

Because only two RMs are used, the bracketing
technique does not allow for checking of any of the
following assumptions:

a} that there is no error in the accepted values of the
RMs;

b} that the calibration function between the two
RMs is linear;

¢} that the residual standard deviation is constant.

8.3.3 Bracketing experiment

a) Experimental conditions: the experimental condi-
tions should be such that the variability between
measurements of the same RMs is as small as
possible.

b} Cheice of RMs: the range of values spanned by
the two RMs should be as small as possible and
shall include the value of the unknown quantity 10
be measured.

¢} Number of RMs: two RMs are used for each un-
known quantity.

d} Number of replicates: both RMs and the unknown
quantity should be measured at least twice.

8.3.4 Estimation of the unknown quantity

8.3.4.1 Model

The model is the same as that for the basic method
with constant residual standard deviation (see 8.2},
ie.

Y= Bo + Bixi + g
where

i is an index that refers to both
RMs (i =1, 2) as well as to the
unknown guantity (i = Oy,

15
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v and i, are the accepted values of the
RMs;
g is the unknown true value of the

unknown guantity;

are the measurements of the
two RMs and of the unknown
guantity, respectively k=1, ..,
K},

£ is the deviation between vy, and
the expected value of the
measurament of either an RM
or the unknown quantity {de-
pending on the wvalue of
{these deviations are assumed
10 be randomly distributed with
mean O and variance 0-2];

Beo Bq. xy and o are the four parameters to be
estimated from the data col-
lected during the bracketing ex-
periment {there is no interest in
B;and B, except for the fact that
they impact the parameter xg).

8.3.4.2 Estimates of ., and of the residual
variance ¢~

These are obtained from the following formulae:

Ll T~ =)

Xg = - n = -
Yo — ¥

K K K
2 - 2
Z“ PR ZU"Qk W)+ Z(}:Jk Vo)

22 _ k=] hoes A1

3(K-1N
where

when | — O, 1, 2
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9 Example

9.1 General

This example illustrates the basic method for esti-
mating a linear calibration function for a measurement
systern and the control method for monitoring the
sarme measurement system. The example is based
on ref. [8].

9.2 Basic method

9.2.1 Background and data

Measurements of line-spacing in integrated circuits
photomasks in the 0,5 um 1o 12 um range can be
made with an optical-imaging system f{an optical
microscope fitted with a measurement attachment).
Such a system can be calibrated using the standard
reference material SRM-474 issued by the National
Institute of Standards and Technology (NIST).
SRM-474 contains {among other things! a row of ten
randomly arranged spacings in the range of 0.5 um to
12 um.

This example describes a calibration experirmnent con-
ducted on an optical-imaging system. Each one of the
ten line-spacings of the standard was measured four
times. These repetitions were spaced over a Z-week
interval  to  ensure independence among the
measurements. The data displayed in table 3 consist
of four (K =4) replicates of measurements on ten
(N = 10) line-spacings for which NIST provides ac-
cepted values.

9.2.2 Plot of the data

The plot of the data collected during the experiment,
as shown in figure 6, does not identify obvious outliers
ar unusual behaviour of the system during the caii-
bration experiment. It supports the assumption of lin-
earity of the calibration function and raises questions
as to the assumption of constant residual standard
deviation, since the spread of the data for a given
NiST value seems to increase slightly with that NIST
value.
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Table 3 — Calibration experiment for line-spacing
Values in micromatres

NIST value Measured value
Replicate 1 Replicate 2 Replicate 3 Replicate 4
Xy Yot Yz Y3 Yoa
6,19 6,31 8,27 6,31 6,28
917 8,27 9,21 9,34 8,23
1,89 2,21 2,18 2,22 2,20
7,77 8.00 7.81 7.95 7,84
4.00 4,27 4,15 415 4,15
10,77 10,93 10,73 10,92 10,85
4,78 4,95 4,87 5.00 5,00
2,99 3.24 317 3.21 3,21
6,98 7.14 7.07 7,18 7.20
9,98 10,23 10,02 10,07 10,17

x Replicate 1
O Replicate 2
& Replicate 3
O Replicate 4

. 1w} 8
4 ]
S
:::
-
5 =}
§ B
B oo &
B
s a
“
n
3 [ .
= n
2—? | | ] |
? L [ | 0

NIST values for x,, um

Figure 6 — Data collected during the calibration experiment for line-spacing
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9.2.3 Estimation of the linear calibration function
under the assumption of constant residual
standard deviation

The formulae given in 6.2.2 lead to:

a N=10, K=4

b) X~ 5,462

¢l 3 is as given in table 4

dl ¥y=6,614

el SSE=10.146 2

© 150

g fo=0.2358
hy 6% =0,0038
The calibration function is

¥ =10,235 8 + 0,987x

The fitted values %, are obtained by replacing x in this
formula with the NIST values x, listed in table 3.

The residuals are obtained as
N
[

i = Yok T ¥a

These residuals are listed in table 5.

i f,=09870
Table 4 — Values of 4,
i 1 2 3 4 5 6 7 8 10
¥ 6,292 | 9,263 2,205 | 7800 | 4,180 | 10868 | 4.955 | 2,208 7,148 10,12

Table 5 — Linear calibration under the assumption of constant residual standard deviation

Values in micromorres

NIST value Fitted value Residual value i
_[R j;” (.’H-| (.”2 {?“3 {_-‘”_;_
6,19 6,3455 -0,0355 —0,0755 0,03556 —0,0655
9,17 92869 -0,0169 —-0,0769 00,0531 0,569
1,89 22000 00100 --0,6100 00200 0,0C00
707 7.9050 0,0850 —0,0980 0,0450 —0,0650
4 00 4,1838 0.0861 —0,0339 ~-0,0339 —-0.0334
10,77 10,8662 00638 - 0,i362 00638 0,0238
4,78 48538 -0.0038 —D,0838 0,0462 0,046 2
2,99 3,1870 0,0530 -0,0170 0,0230 00230
£.98 T1253 0,0147 —0,0653 0,0547 00747
9,98 10,0864 0,14386 —0.0664 -0,0164 0,0838

18
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¥ Replicate i
O Replicate 2
A Replicate 3
0O Replicate 4
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F-— - — ——
¢ - 8
wi 8
g &
= aL = 0,235 8.+ 0,987x g/
@ e
g | A
g 6
E -
= r u/
L
2 L s 1:’}

NIST values for x,, pm

Figure 7 — The calibration curve for line-spacing under the assumption of constant residual standard
deviation

9.2.4 Plots of the calibration function and of the
residuals

The plot of the calibration function {figure 7) confirms
that a linear calibration function seems to be appro-
priate.

The plot of the residuals {figure 8) shows that replicate
2 has consistently lower residual values than the other
replicates. These low residual values can be traced to
the original data in table3 which are consistently
lower for replicate 2 than for the other replicates. No
definite explanation was found for this phenomenon
and the data from replicate 2 were retained as repre-
sentative of the behaviour of the measurement sys-
tem under normal operating conditions,

A more sophisticated medel than the two models
proposed respectively in 8.2.1 and 6.4.1 could be
used to analyse these data in order to take into con-
sideration the systematic differences between repli-
cates. For the sake of simplicity and for an illustration
of the basic and control methods, this effect wili be
ignored and the present strategy and associated
models will be pursued.

Figure 8 also indicates that the assumption of con-
stant residual standard deviation does not seem to
hold. This suggestion is confirmed with figure 9,

which shows a plot of the standard deviation of the
replicated measurements of a RM versus the ac-
cepted values of that RM.

9.2.5 Estimation of the calibration function under
the assumption of proportional residual standard
deviation

Estimate the calibration function under the assump-

tion of proportional residual standard deviation and
plot the calibration function and the residuals.

The formulae given in 6.4.2 lead to:
al N=10,K=4

by w=10203

c) z.is as given in table 6

d} 7=1,036

e} WSSE = 0,003 4

fil ¥,=10,9851

g9 §,=02469

hy %% =0,889 % 10 *
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Residual values, ¢,,, pm

035

o

0%

-005

-0

¥ Replicate 1
¢ Replicate 2
& Replicate 3
O Rasplicate 4
-
L § %
0 I
B . b
L % £ i) A & P
s B w o
- < |
0 x La)
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B o . e
K L )
5 C G
- o}
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Fitted values, Cn [TEey}
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Figure 8 — Residuals versus fitted values for line-spacing under the assumption of constant residuat
standard deviation

Standard deviation of replicated

measurements

N

6

NIST values for x,, pm

Figure 9 — Standard deviations of replicated measurements for line-spacing versus NIST values

Table 6 — Values of :;

2

3

4

5

sl

1,017

1,010

1,108

1,017

1.045

1,009

1,037

1,024

1,084

20



& 150 ISO 11095:1996(E)

The calibration function is by the NIST values x,.
»=10,246 9 +0,9851x The Weighted residuals are obtained as
The fitted values, 3,, are obtained by replacing x in this Uy = Iy — 2,
formula with the NIST values x,. These fitted values
are listed in table 7. These weighted residuals are listed in table 7.

The weighted fitted values are obtained by replacing

. Figure 10 shows the original data and the calibration
x in the formula

function under the assumption of proportional residual
Z=10,985 1+ 0,246 9/x standard deviation.

Table 7 — Linear calibration under the assumption of proportional residual standard deviation

NIST value Fitted value Weighted fitted value Weighted residual
'rﬂ 3:?! 2]’] u
wm pm M W Hy3 Hya
6,19 6,344 9 1,0250 —0,0056 —0,0121 —0,0066 —0.0105
9,17 92807 1,0121 —0,0012 —0,0077 0,0065 -0,0055
1,59 2,2074 11092 0,0013 —0,0087 0,0064 -0,0037
777 79015 1,0169 00127 —0,0118 0,0062 -0,0079
4,00 41875 1,046 9 0.0206 —0.0054 -0,0094 —0,0094
10,77 10,8669 1,0081 0,0068 -0,0118 0,0059 0.0031
4,78 4,9559 10368 —0,0012 - 00,0180 0,0092 00,0092
2,99 31925 1.0677 00159 —0,007% 0,0059 0.,0059
6,98 71232 1,0205 20,0024 —0.0076 0,008 1 00110
9,98 10,0786 1,008 9 0,0152 —0,0059 -0,0009 0,0082
x Replicate 1
O Replicate 2
4 Replicate 3
3 Replicate 4
10 E/g
£ &
> sk ¥=0,246 9 +0,985 1x é/
(s}
@ g
3 e
S 6k a
g /
= B
3 4 /!5
= /B
2 ? | . 1. | L
7 b 6 B )

NIST vaiues for x,, pm

Figure 10 — Calibration curve for line-spacing under the assumption of proportional residual standard
deviation
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Figure 10, similarly to figure 7, supports the assump-
tion of linearity. The coefficients of the linear cali-
braticn function have slightly changed compared to
the cnes of figure 7. This change is the result of as-
signing less weight to the measured values for large
line-spacings than to the measured values for small
line-spacings (assumption of proportional residual
standard deviation).

Figure 11 shows a plot of the weighted residuals.

The weighted residuals shown in figure 11 appear to
be randomly distributed. The increasing spread of the
residuals of figure 8 has disappeared, lending more

credence to the assumption of proportional residual

standard deviation. As in figure8, figure11 shows
lower weighted residual values for replicate 2.

9.2.6 Evaluation of the lack of fit of the
calibration function

Table 8 shows the ANOVA takle under the model of
propertional residual standard  dewviation given in
6.5.3.

The ANGOVA table reveals that the variability in the
residuais due to lack of fit (LF} s smalaer than the
variability in the data due to pure error (% p} The ratio
’\Q,f 22 is smaller than the ¥y 95(8,30) value equal to 2,27

Thm confirms that the assumption of linearity is ap-

propriate for the calibration expsriment described in
this example.

% Replicate 1
C Replicate 2
& Replicate 3
0 Replicate 4
w02}
;é kS *
= X
= 1L
£ 00 C . fa
e Al | Fa
‘g ¢ =, *
> a
o ol A .
= GoLo = -
2 oot| ] °
g [ 2 )
i)
i il I 1 L
102 104 106 108 10

Weighted fitted values ino unit}, ::\,,

Figure 11 — Weighted residuals versus weighted fitted values for line-spacing under the assumption of
proportional residual standard deviation

Table 8 — ANOVA table to compare lack of fit and pure error for line-spacing under the assumption of
proportional residual standard deviation

Source Degrees of freedom, DF Sum of squares, SS S5/DF | F ratio
Calibration function 1 WSSR = 00,0369 MSR = (3,0369
Residual 38 WSSE = 0,0034 #=089x10°¢
Lack of fit 8 WSSE — WSSP = 0,00056 H=069x10 " | $9-0,73
Pure crror 30 WSSP = 0,0028 ¥ 094x10 °
Total 39 WSST = 0,0403
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9.2.7 Tranformation of future measurements

Based on the calibration function obtained in 6.4,
measurement or measurements on new unknown
line-spacings will be transformed as follows:

a) a single measurement y; of an unknown line-
spacing will lead to a reported line-spacing value
of

. Y- 02469

0T 7T0,885 1
B} several measurements of the same unknown
Hne-spacing yg1, Yoo - ¥op, Will lead to & singie re-
ported line-spacing value of
oo ¥g— 0,246 9
0 0,985 1

9.3 Control method

9.3.1 Background and data

Two line-spacings were sefected for the control
method (m = 2}. These line-spacings were selected in

such a way that they cover as large a range as poss-
ible of values encountered during normal operating
conditions. Each line-spacing was measured every
day. Table9 shows measurements obtained during
the first 7 days, together with the NIST value x.

9.3.2 Calculation of upper and lower contro!
limits
A value of 0,05 was selected for «. From 6.4.2 one
has

¥ =0889x 10 *

7, = 0,985 1

NK — 2 =38 and

{=0,025
These values lead to:

U, =0,0094 %2334 20,985 1=0,022 3

L. =-00223

These limits are plotted in figure 12,

Table 9 — Data collected for the control method

NIST value Measured value Transformed value Control value
Day % ¥ X' G
am nm HLm
1 2,99 3,164 2,951 —0,013
10,77 10,760 10,673 - 0,009
2 2,59 3,215 3,013 0,008
10,77 10,809 10,823 0,005
3 2,89 3,166 2,962 —0,008
10,77 10,740 10,852 —0,011
4 295 3,213 3,011 0,007
10,77 10,892 10,806 0,003
5 2,99 3,178 2,076 --0,005
10,77 10,772 10,685 —0,008
6 298 3,188 2,996 0,602
10,77 10,807 10,720 —0,005
7 2,99 3,230 3,028 0,013
10,77 10,897 10,811 0,004

23



ISO 11095:1996(E)

© |50

004 —
w2l U 00223
&3 ®
4 0 b "'J ® e
© o
= o]
& x &
[
S0t i -303221
Rl ol o 1 |
i ? i & ] 10

Key: x = RM with low value, o0 = RM with high value

Day

Figure 12 — Control chart to validate the calibration curve for line-spacings under the assumption of
proportional residual standard deviation

9.3.3 Transformation and plot of the data

a)  The values y; are transformed to x using the cali-
bration function and the controf values

are chtained. A model with proportional residual
standard deviation was adopted to derive the
calibration function, the control method uses the
narmalized differences as control values rather
than the regular differences (4, =x —x). The
controf values are listed in table 9.

by The control values are plotted in the control chart
(figure 12},

9.3.4 Decision about the state of the system
The system seems 1o be under control and the cali-

bration function does not need to be updated as of
day 7.

24

9.3.5 Estimation of the uncertainties of the
transformed values during the validity period of
the calibration function

Since only two RMs are used in the control chart, all
control values ¢; are included in the calculation of an
estimate of the coefficient of variation of a trans-
formed value. This estimate is equal to

el = [, —— =0,007 9

with 27 = 14 degrees of freedom.

An approximate confidence interval for the unknown
true value of a quantity estimatad by the transfermed
value a; with a confidence ievel of 0,95 is obtained as

Xk Toal fy _gaf 270 = 25 + 0,007 9 x 2,1455]
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List of symbols and abbreviations

Number of reference matenals

Number of replicate measurements per
reference material

Total number of measurernents on all
reference materials

Accepted vaiue of a reference material
Accepted value of a blank
Average of all accepted values

Inverse of an accepted value of a refer-
ence material (1/x)

Average of all inverse accepted values
Measurement of a reference material
Measurement of a blank

Average of all measurements

Average of measurements of a specific
reference material

Ratio of a measurement of a specific
RM over the accepted value of the same
BM (v/x)

intercept of the calibration function un-
der the assumption of constant residual
standard deviation

Slope of the calibration function under
the assumption of constant residual
standard deviation

intercept of the calibration function un-
der the assumption of proportional re-
sidual standard deviation

Slope of the calibration function under
the assumption of proportional residual
standard deviation

Deviation between a measurement and
its expected value under the assump-

2
a

2
T
SSE

WSSE
SST, WSST

SSP, WSSP

tions of linearity and of constant residual
standard deviation

Deviation between a measurement and
its expected value under the assump-
tions of linearity and of proportional re-
sidual standard deviation

Residual under the assumptions of fin-
earity and of constant residual standard
deviation

Weighted residual under the assump-
tions of linearity and of proportional re-
sidual standard deviation

Constant  residual  variance {variance

of &)

Variance associated with pure error un-
der assumption of constant residual
standard dewviation

Variance associated with lack of fit un-
der assumption of constant residual
standard deviation

Proportional residual variance {variance
of nfx)

Variance associated with pure error un-
der assumption of proportional residual
standard deviation

Variance associated with lack of fit un-
der assumption of proportional residual
standard deviation

Sum of sguared residuals e
Sum of sguared weighted residuals u

Total sum of squared deviations under,
respectively, the assumption of constant
or preportional residual standard devi-
ation

Sum of squared deviations due to pure
error under, respectively, the assump-
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SSR, WSSR

o
T-u
o gl )

4 _:](m)
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tion of constant or proportional residual
standard deviation

Sum of squared deviations explained by
the calibration function under the as-
sumption, respectively, of constant or
proportional residual standard deviation

Significance level
Confidence fevel

{1 - a)-quantile of the F-distribution
with n; and », degrees of freedom

{1 — H-qguantile of the distribution with
n, degrees of freedom

d

& |50

Upper control limit under assumption of
constant residual standard deviation

Lower control limit under assumption of
constant residual standard deviation

Upper control limit under assumption of
proportional residual standard deviation

Lower control limit under assumption of
propertional residual standard deviation

Control value under assumption of con-
stant residual standard deviation

Centrol valug under assumption of pro-
partional residual standard deviation



Annex B
(normative)

Basic method when the number of replicates is not constant

When the number of replicates for each RM, K,,, is not :;1 —7_ ]}}OW
constant, the calibration function can stilt be esti-
mated by using adjusted formulas in 6.2.2, 6.4.2 and 22 _ WSEE
6.5. NK—2)
B.1 Estimates of B 81 and o are calculated as where
follows: N
NK =Y K,
Z(x —xzm—f) "=
P = k=1 )
.81 _ R = 2y = 4::(
ZKn(xn - ﬂz .
me= w, = I_”
BO = t - )8'1A 1 N
2 SSE V=R 2K
(NK — 2) n=1
1 N K
her Z=— Z
whnere <& NK Z Z"nk
N n=14L=1
NK = K ”
:‘; " Z, = Y1+ YoW,
i Hpp = 2y — En
- 1
T=E ZKNXH

K,
et ) WSSE = i > wlf
N n ..
y= i\J—K Z Zynk

n=l k=l B.3 The lack of fit is evaluated as follows Tables
WA a 1 and 2 still apply where
Yo 7 'BO + JBTXH x y
1 .
Cupr = Yok — jj‘n Yy = X Zynk
7t Ee=1

N K
$SE=D, 2 (o SST = i i (s — 5)°

n—"1k=1
#H=1k=
B.2 Estimates of y,, y, and 1° are calculated as fol- v K
lows: S5P = Z Z Ot — )
n="1k=1
N
Z (w, — W)Z -3 SSE is as defined in B.1
o~ k=1
0= N and

Kw, — wf
Z R

n=1
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K

4= 1%! Zznk

T

N K

WSST = > > (g4 — 7
1

=

i =

n=

28

i K

wssp =" Z (g — 20)

Ll B

WSSE is as defined in B.2.
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